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1 Introduction
The geometry of Banach spaces has been intensively developed during the last decades.
Nonsquareness and uniform nonsquareness are important properties in this area. Uni-
form nonsquareness implies both superreflexivity and the fixed point property (see [, ]
and []). Therefore it is natural to investigate nonsquareness properties in various classes
of Banach spaces (see [–]). They are also connected with the notion of James constant
(see [–]) which describes the measure of nonsquareness. The class of uniformly non-
square Banach spaces is strictly smaller than the class of B-convex Banach spaces. Recall
that B-convexity plays an important role in the probability (see []).
On the other hand, it is natural to ask whether a separated point x in a Banach func-

tion space E has some local property P whenever the whole space E does not possess this
property. This leads to the local geometry which has been deeply studied recently (see
[–]). The monotonicity properties of separated points have applications in best dom-
inated approximation problems in Banach lattices (see []). The extreme points, and SU
points play a similar role in the theory of Banach spaces.
The purpose of this paper is to characterize nonsquare points of the Lorentz space �p,w.

We also give a criterion for a point to be nonsquare in the subspace of order continu-
ous elements (�p,w)a of �p,w. Since degenerated weight functions w are admitted, such
investigations concern the most possible wide class of these spaces. Moreover, the local
approach presented in this paper required new techniques and methods (in comparison
with the global approach in []), which may be of independent interest.

2 Preliminaries
Let R be the set of real numbers and SX or S(X) be the unit sphere of a real Banach
space X. Denote by L = L[,α) the set of all m-equivalence classes of real-valued mea-
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surable functions defined on [,α) with m being the Lebesgue measure on R and α =  or
α =∞.
A Banach lattice (E,‖ · ‖E) is called a Banach function space (or a Köthe space) if it is a

sublattice of L satisfying the following conditions:
() If f ∈ L, g ∈ E and |f | ≤ |g| a.e., then f ∈ E and ‖f ‖E ≤ ‖g‖E .
() There exists a strictly positive on [,α), f ∈ E.

The symbol E+ stands for the positive cone of E, that is, E+ = {x ∈ E : x ≥ }. We say that
E has the Fatou property if for any sequence (fn) such that  ≤ fn ∈ E for all n ∈ N, f ∈ L,
fn ↑ f a.e. with supn∈N ‖fn‖E < ∞, we have f ∈ E and ‖fn‖E ↑ ‖f ‖E .
We say that a Banach function space (E,‖ · ‖E) is rearrangement invariant (r.i. for short)

if whenever f ∈ L and g ∈ E with df = dg , then f ∈ E and ‖f ‖E = ‖g‖E (see []). Recall that
df stands for the distribution function of f ∈ L, that is, df (λ) = m{t ∈ [,α) : |f |(t) > λ} for
every λ ≥ . Then the nonincreasing rearrangement f ∗ of f is defined by

f ∗(t) = inf
{
λ > : df (λ)≤ t

}

for t ≥ . Given f ∈ L, we denote themaximal function f ∗∗ of f ∗ by

f ∗∗(t) =

t

∫ t


f ∗(s)ds.

It is well known that f ∗ ≤ f ∗∗ and (f + g)∗∗ ≤ f ∗∗ + g∗∗ for any f , g ∈ L (see [, ] for
other properties of f ∗ and f ∗∗).
A Banach function space E is said to be strictly monotone (E ∈ (SM)) if for each  ≤ g ≤ f

with g 	= f we have ‖g‖E < ‖f ‖E . A point f ∈ E+ \ {} is a point of lower monotonicity (upper
monotonicity) if for any g ∈ E+ such that g ≤ f and g 	= f (respectively, f ≤ g and g 	= f ), we
have ‖g‖E < ‖f ‖E (respectively, ‖f ‖E < ‖g‖E). We will write shortly that f is an LM point
and UM point, respectively.
Clearly, the following assertions are equivalent:
(i) E is strictly monotone (shortly, E ∈ (SM));
(ii) each point of E+ \ {} is a point of upper monotonicity;
(iii) each point of E+ \ {} is a point of lower monotonicity.

Definition . Let  ≤ p < ∞ and α =  or α = ∞. Let w ∈ L be a nonnegative weight
function. The Lorentz space �p,w = �p,w[,α) is a subspace of functions f ∈ L satisfying
the following formula:

‖f ‖ := ‖f ‖p,w =
(∫ α



(
f ∗∗)pw

)/p

=
(∫ α



(
f ∗∗)p(t)w(t)dt

)/p

<∞.

Throughout the paper, we assume that w satisfies the following conditions:

∫ t


w(s)ds < ∞ and

∫ α

t
s–pw(s)ds < ∞

for all  < t ≤ α if α =  and for all  < t < α in the opposite case. These two conditions
assure that �p,w 	= {} and (�p,w,‖ · ‖) is a rearrangement invariant Banach function space
with the Fatou property (see [, ]).
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These spaces were introduced by Calderón in [] and are naturally related to classi-
cal Lorentz spaces �p,w = {f ∈ L :

∫ γ

 (f
∗)pw < ∞} defined by Lorentz in []. Obviously,

�p,w ⊂ �p,w for any  < p < ∞ and these spaces coincide if and only if the Hardy operator
Hf = f ∗∗ is bounded on �p,w. This condition is equivalent to the so-called Bp condition
related to the weight w (see [, –]). It is also worth mentioning that spaces �p,w ap-
pear naturally in the interpolation theory as a result of the Lions-Peetre K-method. These
spaces have been recently intensively investigated from both the isomorphic as well as the
isometric point of view (see [, , ]).

Definition . A point f ∈ SX is a point of nonsquareness (we write shortly f is an NSQ
point) provided that

min
{‖f + g‖,‖f – g‖} < 

for all g ∈ SX . A Banach space (X,‖ · ‖) is nonsquare (X ∈ (NSQ) for short) if each point of
SX is an NSQ point.

Notation . For simplicity, we will sometimes use the following notations:
(a) (

∫
A +

∫
B)f =

∫
A f +

∫
B f .

(b) By S(f ) we denote the support of f ∈ L.
(c) f ∗(∞) = limt→∞ f ∗(t) ifm(S(f )) = ∞.
(d) f ∗(∞) :=  ifm(S(f )) < ∞.
(e) For measurable subsets A, B of R, by A = B we meanm(A÷ B) = .

Let us recall some useful properties of a nonincreasing rearrangement operator.

Lemma . ([], Property ◦, p.) Let f ∈ L[,∞). If f ∗(t) > f ∗(∞), then there is a set
et(f ) withm(et(f )) = t and

∫ t


f ∗ =

∫
et (f )

|f |.

Remark . Let f ∈ L[,α) with α =  or α = ∞. The above lemma holds (without the
assumption f ∗(t) > f ∗(∞))
(a) for every t ∈ (,m(Z)), where Z = {t : |f (t)| ≥ f ∗(∞)};
(b) for every t ∈ (,α) in the case ofm(S(f )) < ∞.

Lemma . ([], Property ◦, p.) The equality

∫ t


f ∗ = sup

m(e)=t

∫
e
|f |

holds for f ∈ L[,∞).

Remark . Lemma . implies

∫ t


(f + g)∗ ≤

∫ t


f ∗ +

∫ t


g∗,

i.e., the subadditivity property of the maximal function.
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Remark . Let f , g ∈ S(�p,w). The inequality

(f + g)∗∗(t) < f ∗∗(t) + g∗∗(t) ()

for t ∈ Z with m(Z ∩ S(w)) >  implies ‖f + g‖ < . Indeed,
∥∥∥∥ f + g



∥∥∥∥
p

=
∫ α



[(
f + g


)∗∗]p

w <
∫ α



[
f ∗∗ + g∗∗



]p

w≤
∫ α



(f ∗∗)p + (g∗∗)p


w = .

The following result is a generalization of Lemma  from [].

Lemma . Let x, y ∈ L \ {}. Ifm(S(x)∩ S(y)) = , then

(x + y)∗∗(t) < x∗∗(t) + y∗∗(t)

for every  < t < m(S(x)∪ S(y)).

Proof Set

t = sup
{
t : (x + y)∗(t) > (x + y)∗(∞)

}
,

with the convention sup∅ = .
Since m(S(x) ∩ S(y)) = , so (x + y)∗(∞) =max{x∗(∞), y∗(∞)}. Assume, without loss of

generality, that (x + y)∗(∞) = x∗(∞). Clearly,
∫ t


y∗ >  and

∫ t


x∗ >  for all t > . ()

Notice that for every  < t ≤ t if t < ∞ and for every  < t < t if t = ∞, by Lemma  in
[], we have

∫ t


(x + y)∗ <

∫ t


x∗ +

∫ t


y∗ if t > . ()

Moreover, if t < ∞, then for t < t < m(S(x)∪ S(y)),
∫ t

t
x∗(s)ds +

∫ t

t
y∗(s)ds≥

∫ t

t
x∗(∞)ds +

∫ t

t
y∗(s)ds

=
∫ t

t
(x + y)∗(∞)ds +

∫ t

t
y∗(s)ds

=
∫ t

t
(x + y)∗(s)ds +

∫ t

t
y∗(s)ds

≥
∫ t

t
(x + y)∗(s)ds ()

since (x + y)∗(s) = (x + y)∗(∞) for every s ≥ t.
If t >  then, by () and (), we get

∫ t


(x + y)∗ <

∫ t


x∗ +

∫ t


y∗

for  < t <m(S(x)∪ S(y)).
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If t =  then, by () and (), we have

∫ t


x∗(s)ds +

∫ t


y∗(s)ds≥

∫ t


(x + y)∗(s)ds +

∫ t


y∗(s)ds >

∫ t


(x + y)∗(s)ds

for  < t <m(S(x)∪ S(y)). �

Remark . Let x ∈ L \ {} and C = {t : |x(t)| > x∗(∞)}. Then x∗ is constant on (,∞) if
and only if m(C) = .

Proof Clearly, m(C) = m{t : x∗(t) > x∗(∞)} and x∗(t) ≥ x∗(∞) for all t ≥ . Therefore
m(C) =  is equivalent to x∗ = aχ(,∞) for some a > . �

Theorem . Let E be a symmetric Banach function space, x ∈ S(E) and C = {t : |x(t)| >
x∗(∞)}. If x is an NSQ point, thenm(C) > .

Proof Assume m(C) = . By Remark ., x∗(t) = x∗(∞) = a >  for every t ≥ . Thus
dx(θ ) = ∞ for every  ≤ θ < x∗(∞) and dx(θ ) =  for every θ ≥ x∗(∞). Moreover, ev-
ery function of the type y = ±x∗(∞)χZ with m(Z) = ∞ is equimeasurable with x since
dy(θ ) = m(Z) = ∞ for every  ≤ θ < x∗(∞) and dy(θ ) =  for every θ ≥ x∗(∞). Therefore
‖y‖ = ‖x‖.
Denote

A =
{
t :

∣∣x(t)∣∣ = x∗(∞)
}
, B =

{
t :  <

∣∣x(t)∣∣ < x∗(∞)
}
.

Case I. Suppose m(A) =∞ and denote

A+ =
{
t ∈ A : x(t) > 

}
, A– =

{
t ∈ A : x(t) < 

}
.

If m(A+) = ∞, then take A
+ and A

+ such that A+ = A
+ ∪ A

+, A
+ ∩ A

+ = ∅ and m(A
+) =

m(A
+) = ∞. Define

y = x∗(∞)χA
+
– x∗(∞)χA

+
.

Thus

(x + y)∗ = (x – y)∗ = x∗,

whence ‖x + y‖ = ‖x – y‖ = ‖x‖, i.e., x is not an NSQ point. The case m(A–) = ∞ goes
analogously.
Case II. Let m(A) <∞ and m(B) = ∞. Define

B+ =
{
t ∈ B : x(t) > 

}
, B– =

{
t ∈ B : x(t) < 

}
.

Note that either dxχB+ (θ ) = ∞ for all  ≤ θ < x∗(∞) or dxχB– (θ ) = ∞ for all  ≤ θ < x∗(∞),
since in the opposite case there are θ, θ < x∗(∞) that

dxχB+ (θ) < ∞ and dxχB– (θ) <∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/467


Kolwicz and Panfil Journal of Inequalities and Applications 2014, 2014:467 Page 6 of 23
http://www.journalofinequalitiesandapplications.com/content/2014/1/467

Thus, taking θ =max{θ, θ}, we get

dxχB (θ) = dxχB+ (θ) + dxχB– (θ) < ∞,

whence

dx(θ) = dxχA (θ) + dxχB (θ) <∞,

a contradiction.
Without loss of generality, wemay assume dxχB+ (θ ) =∞ for all  ≤ θ < x∗(∞). For n ∈N,

let

Bn =
{
t ∈ B+ :

(
 –


n

)
x∗(∞) < x(t)≤

(
 –


n + 

)
x∗(∞)

}
,

and note
⋃

n Bn = B+, Bn∩Bm = ∅ for all n,m ∈N and n 	=m. Let B
n, B

n satisfy Bn = B
n∪B

n,
m(B

n) = m(B
n), and B

n ∩ B
n = ∅. Denote

D =
⋃
n
B
n and D =

⋃
n
B
n.

Notice D ∩D = ∅, D ∪D = B+ and m(D) = m(D) = ∞. We claim that

dxχD (θ ) = ∞ and dxχD (θ ) = ∞ ()

for all  < θ < x∗(∞). If there exists  < θ < x∗(∞) such that dxχD (θ) < ∞, then take n
satisfying ( – /n)x∗(∞)≤ θ < ( – /(n + ))x∗(∞). Thus

∞ > dxχD

((
 –


n + 

)
x∗(∞)

)
=m

{
t ∈D : x(t) >

((
 –


n + 

)
x∗(∞)

)}

=m
( ⋃
n=n+

B
n

)
=m

( ⋃
n=n+

B
n

)
= dxχD

((
 –


n + 

)
x∗(∞)

)
.

Therefore dxχB+ (( – /(n + ))x∗(∞)) < ∞, a contradiction. The case dxχD (θ) < ∞ is
analogous, which proves claim ().
Let y = x∗(∞)χD – x∗(∞)χD . Then, for all  < θ < x∗(∞), we have

d(x+y)/(θ ) = m
{
t :

∣∣∣∣
(
x + y


)
(t)

∣∣∣∣ > θ

}
≥m

{
t ∈D :

∣∣∣∣
(
x + y


)
(t)

∣∣∣∣ > θ

}

=m
{
t ∈ D :

x(t) + x∗(∞)


> θ

}
=m

{
t ∈D : x(t) > θ – x∗(∞)

}

= dxχD (θ) = ∞,

where θ =max{, θ – x∗(∞)} < x∗(∞), since xχD ≥  and m(D) = ∞. Analogously, for
 < θ < x∗(∞), d(x–y)/(θ )≥ dxχD (θ) = ∞.
Obviously, by assumption that m(C) = , |x(t)| ≤ x∗(∞) and |y(t)| ≤ x∗(∞). Thus

∣∣∣∣x± y


∣∣∣∣ ≤ x∗(∞),

http://www.journalofinequalitiesandapplications.com/content/2014/1/467
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whence d(x±y)/(θ ) = dx(θ ) =  for every θ ≥ x∗(∞). Therefore ( x±y
 )∗ = x∗, whence x is not

an NSQ point. �

In the sequel we will use the following notations:

γ = inf
{
t : m

(
S(w)∩ (t,α)

)
= 

}
with α =  or α =∞,

β = sup
{
t : m

(
S(w)∩ [, t)

)
= 

}
,

()

with the convention inf∅ = α, sup∅ = .

Theorem . Let x ∈ S(�p,w). If x is an NSQ point, then
(i) x∗ is not constant on (, γ ) if α =∞,
(ii) x∗ is not constant on (, γ ) if α =  and γ ≤ /,

where γ is defined in ().

Proof The case γ =∞ follows from Remark . and Theorem ..
Consider γ < ∞ if α = ∞ or γ ≤ / if α = . For the contrary, assume that x∗χ(,γ ) =

aχ(,γ ) for some a > . LetC = {t : |x(t)| > x∗(∞)}. Then, in the case of α =∞, Theorem .
impliesm(C) ≥ γ . Thus a > x∗(∞). By Lemma ., there are disjoint sets e and e, both of
measure γ , such that

∫ γ

 x∗ =
∫
e

|x| and ∫ γ
γ

x∗ =
∫
e

|x|.Moreover, e∪e ⊂ C and |x(t)| = a
for t ∈ e ∪ e. Taking y = xχe – xχe , we get y∗χ(,γ ) = x∗χ(,γ ) and (x + y)∗χ(,γ ) = (x –
y)∗χ(,γ ) = x∗χ(,γ ). Since m(S(w) ∩ (γ ,α)) = , then ‖x± y‖ = ‖x‖, i.e., x is not an NSQ
point. �

Theorem . If x ∈ S(�p,w) is an NSQ point, thenm(S(x))≥ β , where β is defined in ().

Proof Suppose m(S(x)) < β . This means β > . Take a = β – m(S(x)), y = bχA, where
m(A) = a, A ∩ S(x) = ∅, and b = 

a
∫ β

 x∗. Then y∗∗(β) = x∗∗(β) and ‖ x±y
 ‖ = ‖x‖ since

( x±y
 )∗∗(β) = 

β

∫ β

 (
x±y
 )∗ = 

β (
∫ β

 x∗ +
∫ β

 y∗) = x∗∗(β). �

Theorem . Let x ∈ S(�p,w[,∞)), β and γ are as in (), and let the weight function be
such that γ = ∞. The function x is an NSQ point if and only if m(S(x)) ≥ β and x∗ is not
constant on (,∞).

Proof Necessity. It follows from Theorems . and ..
Sufficiency. Let y ∈ S(�p,w[,∞)). If m(S(x)∩S(y)) =  then, by Lemma ., (x+ y)∗∗(t) <

x∗∗(t) + y∗∗(t) for all t ∈ (,m(S(x)∪ S(y))). Since m(S(x)) ≥ β , so m(S(w)∩ (β ,m(S(x)∪
S(y)))) > , whence ‖x + y‖ <  (see Remark . and the definition of β), i.e., x is not an
NSQ point.
Now assume m(S(x)∩ S(y)) > . Denote

A =
{
t ∈ I : x(t)y(t) > 

}
, A =

{
t ∈ I : x(t)y(t) < 

}
,

A =
{
t ∈ I : x(t)y(t) =  and

∣∣x(t)∣∣ + ∣∣y(t)∣∣ > 
}
.

()

We have

m(A ∪A) > . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/467
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Obviously,

Ai ∩Aj = ∅ for i 	= j and i, j ∈ {, , }. ()

We will consider the following pairwise independent cases.
Case I. (|x| + |y|)∗(∞) = .
Case II. (|x| + |y|)∗(∞) > .

Case II.A. There is t >  such that (x + y)∗(t) < (|x| + |y|)∗(t), or there is t > 
with (x – y)∗(t) < (|x| + |y|)∗(t).
Case II.B. For every t > , (x + y)∗(t) = (x – y)∗(t) = (|x| + |y|)∗(t).

Now let us discuss all the cases.
Proof of Case I. Since (|x|+ |y|)∗(∞) =  and γ =∞, then |x|+ |y| satisfies the conditions

(i) and (ii) of Theorem . in [], whence |x|+ |y| is an LM point. Moreover, by (), at least
one of the following inequalities holds:

(x + y)χA <
(|x| + |y|)χA or (x – y)χA <

(|x| + |y|)χA .

Since |x± y| ≤ |x| + |y|, one of the following inequalities holds:

‖x + y‖ < ∥∥|x| + |y|∥∥ ≤ ‖x‖ + ‖y‖ =  or ‖x – y‖ < ∥∥|x| + |y|∥∥ ≤ ‖x‖ + ‖y‖ = .

Proof of Case II.A. Assume that there exists t >  such that (x + y)∗(t) < (|x| + |y|)∗(t).
Since |x± y| ≤ |x| + |y|, so (x± y)∗ ≤ (|x| + |y|)∗. By the right continuity of nonincreasing
rearrangement function, there exists δ > t such that (x + y)∗(t) < (|x| + |y|)∗(t) for all t ∈
(t, δ). Therefore,

∫ t


(x + y)∗ <

∫ t



(|x| + |y|)∗

for t > t. It is clear that
∫ t
 (|x| + |y|)∗ ≤ ∫ t

 x
∗ +

∫ t
 y

∗ (see Remark .), whence

(x + y)∗∗(t) < x∗∗(t) + y∗∗(t)

for every t > t. Since m(S(w)∩ (t,∞)) > , so ‖x + y‖ <  (see Remark .).
Notice, if there is t >  such that (x – y)∗(t) < (|x| + |y|)∗(t), then analogous reasoning

gives ‖x – y‖ < .
Proof of Case II.B. Assume

(x + y)∗(t) = (x – y)∗(t) =
(|x| + |y|)∗(t) ()

for every t > . Consequently,

(x± y)∗(∞) =
(|x| + |y|)∗(∞). ()

Denote

t = sup
{
t :

(|x| + |y|)∗(t) >
(|x| + |y|)∗(∞)

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/467
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(a) Suppose t =∞. Then

(|x| + |y|)∗
χ(a,∞) and (x± y)∗χ(a,∞) are not constant for every a > . ()

By (), there is  < t < ∞ satisfying

(x + y)∗(t) < lim
t→t–

(x + y)∗(t) ()

for every t > t. An analogous inequality holds for (x– y)∗ and (|x|+ |y|)∗. Take the sets B+,
B–, B of measure t such that

∫ t


(x + y)∗ =

∫
B+

|x + y|,
∫ t


(x – y)∗ =

∫
B–

|x – y|,
∫ t



(|x| + |y|)∗ =
∫
B

|x| + |y|

(see Lemma .). Clearly, by the definition of t and equimeasurability of a function and
its nonincreasing rearrangement, we get

B+ =
{
t :

∣∣(x + y)(t)
∣∣ > (x + y)∗(t)

}
,

B– =
{
t :

∣∣(x – y)(t)
∣∣ > (x – y)∗(t)

}
,

B =
{
t :

(|x| + |y|)(t) > (|x| + |y|)∗(t)
}
.

Let

Bi
+ = B+ ∩Ai, Bi

– = B– ∩Ai, Bi
 = B ∩Ai for i ∈ {, , } ()

(see notation ()). By |x± y|χA = (|x| + |y|)χA , (), () and (),

B
+ = B

– = B
. ()

Analogously, the equality |x + y|χA = (|x| + |y|)χA gives

B
+ = B

,

and |x – y|χA = (|x| + |y|)χA yields

B
– = B

.

We claim that m(B
+) = m(B

–) = . Indeed, if m(B
+) > , then by Lemma . and (), we

get

∫ t


(x + y)∗ =

∫
B+

|x + y| =
(∫

B+
+

∫
B+∪B+

)
|x + y|

<
(∫

B+
+

∫
B+∪B+

)
|x| + |y| =

∫
B+

|x| + |y| ≤
∫ t



(|x| + |y|)∗ =
∫ t


(x + y)∗,

a contradiction. Analogous reasoning goes for m(B
–) > , which proves the claim.
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Moreover, the above arguments and () imply m(B
) = m(B

) = , since

m
(
B
+ ∪ B

+
)
=m(B+) = m(B) = m

(
B
 ∪ B

 ∪ B

)
=m

(
B
+ ∪ B

 ∪ B
+
)

and

m
(
B
– ∪ B

–
)
=m(B–) = m(B) = m

(
B
 ∪ B

 ∪ B

)
=m

(
B
 ∪ B

– ∪ B
–
)
.

Thus B = B
, whence () implies m(B

+) = m(B
–) = . Summarizing, we get

B = B+ = B– ⊂ A. ()

For  < t ≤ t there exists a set B+(t) of measure t such that

∫ t


(x + y)∗ =

∫
B+(t)

|x + y| =
∫
Bx+(t)

|x| +
∫
By+(t)

|y|,

where

Bx
+(t) = B+(t)∩ S(x) and By

+(t) = B+(t)∩ S(y).

We have B+(t) = Bx
+(t) ∪ By

+(t) and, by (), m(Bx
+ ∩ By

+) = . By the above argumentation,
together with Lemma . andm(S(x)∪S(y)) =∞, at least one of the following inequalities
holds:

∫
Bx+(t)

|x| ≤
∫ m(Bx+(t))


x∗ <

∫ t


x∗ or

∫
By+(t)

|y| ≤
∫ m(By+(t))


y∗ <

∫ t


y∗

for  < t ≤ t. Thus, for every  < t ≤ t,

∫ t


(x + y)∗ <

∫ t


x∗ +

∫ t


y∗. ()

By (), we may find a sequence (tn), tn → ∞, such that inequality () is satisfied for
each tn. Similarly as above, we conclude inequality () with tn instead of t. Consequently,
() holds for all t > . This means ‖x + y‖ <  (see Remark .).
(b) Assume  < t <∞ and take the sets B+, B–, B of measure t such that

∫ t


(x + y)∗ =

∫
B+

|x + y|,
∫ t


(x – y)∗ =

∫
B–

|x – y|,
∫ t



(|x| + |y|)∗ =
∫
B

|x| + |y|

(see Lemma .). Clearly, by the definition of t and equimeasurability of a function and
its nonincreasing rearrangement, we get

B+ =
{
t :

∣∣(x + y)(t)
∣∣ > (x + y)∗(∞)

}
,

B– =
{
t :

∣∣(x – y)(t)
∣∣ > (x – y)∗(∞)

}
,

B =
{
t :

(|x| + |y|)(t) > (|x| + |y|)∗(∞)
}
.
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Let Bi
+, Bi

– and Bi
 for i ∈ {, , } be defined as in (). By |x ± y|χA = (|x| + |y|)χA , ()

and () we conclude (). Moreover, similarly as above, we get () for t instead of t.
Moreover, by the definition of t, for every t > t,

∫ t

t
(x± y)∗ =

∫ t

t

(|x| + |y|)∗ =
∫ t

t

(|x| + |y|)∗(∞)

≤
∫ t

t
x∗(∞) +

∫ t

t
y∗(∞)≤

∫ t

t
x∗ +

∫ t

t
y∗.

Finally, by () and the above inequality, we get

∫ t


(x + y)∗ <

∫ t


x∗ +

∫ t


y∗

for every t > . Therefore, ‖x + y‖ <  (see Remark .).
(c) Suppose t = , i.e.,

(x± y)∗χ(,∞) =
(|x| + |y|)∗

χ(,∞) =
(|x| + |y|)∗(∞)χ(,∞) = aχ(,∞)

for some a > . Notice m(C) > . Then, for every  < t < m(C), we have

(|x| + |y|)∗(t) =
(|x| + |y|)∗(∞)≤ x∗(∞) + y∗(∞) < x∗(t) + y∗(t).

Additionally, for all t > ,

(|x| + |y|)∗(t) =
(|x| + |y|)∗(∞)≤ x∗(∞) + y∗(∞) ≤ x∗(t) + y∗(t).

Since γ = ∞ and (|x| + |y|)∗ satisfies the conditions (i) and (ii) of Theorem . in [], so
(|x| + |y|)∗ is a UM point. Thus ‖(|x| + |y|)∗‖ < ‖x∗ + y∗‖. Therefore,

‖x + y‖ = ∥∥(|x| + |y|)∗∥∥ <
∥∥x∗ + y∗∥∥ ≤ ∥∥x∗∥∥ +

∥∥y∗∥∥ = ‖x‖ + ‖y‖,

which finishes the proof. �

Theorem . An element x ∈ S(�p,w[, )) is an NSQ point if and only ifm(S(x))≥ β and,
if γ ≤ /, x∗ is not constant on [, γ ], where β and γ are defined in ().

Proof Necessity. It follows from Theorems . and ..
Sufficiency. Let y ∈ S(�p,w[,∞)). If x and y have disjoint supports, then, by Lemma 

in [], (x + y)∗∗(t) < x∗∗(t) + y∗∗(t) for all t ∈ (,m(S(x) ∪ S(y))). Since m(S(x)) ≥ β , so
m(S(w)∩ (β ,m(S(x)∪ S(y)))) > , whence ‖x + y‖ <  (see Remark .).
Assume that x and y have not disjoint supports, i.e.,

m(A ∪A) > , ()

where

A =
{
t ∈ (, ) : x(t)y(t) > 

}
, A =

{
t ∈ (, ) : x(t)y(t) < 

}
,

A =
{
t ∈ (, ) : x(t)y(t) =  and

∣∣x(t)∣∣ + ∣∣y(t)∣∣ > 
}
.

()
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A. Assume m(S(|x| + |y|)) ≤ γ . By Theorem . in [], |x| + |y| is an LM point. By (),
at least one of the inequalities holds:

|x + y|χA <
(|x| + |y|)χA or |x – y|χA <

(|x| + |y|)χA .

Obviously, |x± y| ≤ |x| + |y|, whence at least one of the inequalities holds: ‖x + y‖ < ‖|x| +
|y|‖ ≤ ‖x‖ + ‖y‖ or ‖x – y‖ < ‖|x| + |y|‖ ≤ ‖x‖ + ‖y‖.
B. Suppose

m
(
S

(|x| + |y|)) > γ . ()

Denote the sets B+, B–, B, Bx, By of measure γ satisfying

∫ γ


(x + y)∗ =

∫
B+

|x + y|,
∫ γ


(x – y)∗ =

∫
B–

|x – y|,
∫ γ



(|x| + |y|)∗ =
∫
B

|x| + |y|,
∫ γ


x∗ =

∫
Bx

|x|,
∫ γ


y∗ =

∫
By

|y|
()

(see Lemma . and Remark .). Notice

Ai ∩Aj = ∅ for i 	= j and i, j ∈ {, , }. ()

Moreover,

A ∪A ⊂ S(x), A ∪A ⊂ S(y), S
(|x| + |y|) = A ∪A ∪A.

Consider the following cases.
Case I. There is t ∈ (,γ ) such that (x + y)∗(t) < (|x| + |y|)∗(t), or there is t ∈ (,γ )
such that (x – y)∗(t) < (|x| + |y|)∗(t).
Case II. (x + y)∗(t) = (x – y)∗(t) = (|x| + |y|)∗(t) for all t ∈ (,γ ).

Case II..m(B+ ∩A) >  orm(B– ∩A) > .
Case II..A. S(y) = B+ ∩A or S(x) = B+ ∩A.
Case II..B. S(x)� B+ ∩A and S(y)� B+ ∩A.

Case II..m(B+ ∩A) =  andm(B– ∩A) = .
Now let us discuss all the cases.
Proof of Case I. Assume that there is t ∈ (,γ ) such that (x + y)∗(t) < (|x| + |y|)∗(t).

Since (x ± y) ≤ |x| + |y| so (x ± y)∗ ≤ (|x| + |y|)∗. By the right continuity of nonincreasing
rearrangement, there is δ > t such that (x+y)∗(t) < (|x|+ |y|)∗(t) for all t ∈ (t, δ). Therefore,

∫ t


(x + y)∗ <

∫ t



(|x| + |y|)∗

for t ∈ (t,γ ). It is clear that
∫ t
 (|x| + |y|)∗ ≤ ∫ t

 x
∗ +

∫ t
 y

∗ (see Remark .), whence

(x + y)∗∗(t) < x∗∗(t) + y∗∗(t)

for every t ∈ (t,γ ). By the definition of γ , m(S(w) ∩ (t,γ )) > , so ‖x + y‖ <  (see Re-
mark .).
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Notice, if there is t ∈ (,γ ) that (x – y)∗(t) < (|x| + |y|)∗(t), then analogous reasoning
gives ‖x – y‖ < .
Proof of Case II. Suppose

(x + y)∗(t) = (x – y)∗(t) =
(|x| + |y|)∗(t) ()

for every t ∈ (,γ ). Condition () implies

m(B+ ∩A) =  and m(B– ∩A) = , ()

since otherwise if, for example, m(B+ ∩A) > , then, by S(x + y) ⊂ A ∪A ∪A,

∫ γ


(x + y)∗ =

∫
B+

|x + y| =
∫
B+∩A

|x + y| +
∫
B+∩(A∪A)

|x| + |y|

<
∫
B+∩A

|x| + |y| +
∫
B+∩(A∪A)

|x| + |y| =
∫
B+

|x| + |y| ≤
∫ γ



(|x| + |y|)∗,

a contradiction with ().
Notice

min
{
m

(
S(x + y)

)
,m

(
S(x – y)

)} ≥ γ ()

by () and ().
Case II.. Assume m(B+ ∩A) > . Then m(B+) = γ implies

m(B+ ∩A) < γ . ()

By (), we have

∫ γ


(x + y)∗ =

∫
B+

|x + y| =
∫
B+∩A

|x + y| +
∫
B+∩A

|x + y|

=
∫
B+∩A∩S(x)

|x| +
∫
B+∩A∩S(y)

|y| +
∫
B+∩A

|x| + |y|. ()

Case II..A. Assume S(y) = B+ ∩A. Then m(S(y)) < γ by (), and S(y) = A since A ⊂
S(y). Thus

A ⊂ S(x), m(A) = ,∫
B+∩A∩S(y)

|y| =  and
∫
B+∩A

|y| =
∫
By

|y|. ()

Moreover, by () and S(|x| + |y|) = A ∪A = S(x), we get m(S(x)) > γ .
We claim that

∫
B+∩A∩S(x)

|x| +
∫
B+∩A

|x| <
∫
Bx

|x|. ()
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Assume for the contrary that
∫
B+∩A∩S(x) |x| +

∫
B+∩A

|x| = ∫
Bx |x|. By () and (),

∫ γ


(x + y)∗ =

∫
Bx

|x| +
∫
By

|y| =
∫ γ


x∗ +

∫ γ


y∗. ()

Moreover, by () and m(A) = , we get B– ∩ (S(x– y)) ⊂ A ⊂ S(x). Furthermore, by ()
and (), we get

∫ γ


(x + y)∗ =

∫ γ


(x – y)∗ =

∫
B–

|x – y| =
∫
B–

|x| ≤
∫ γ


x∗ <

∫ γ


x∗ +

∫ γ


y∗,

a contradiction with (). This proves claim (). Therefore, (), (), () imply
∫ γ

 (x +
y)∗ <

∫ γ

 x∗ +
∫ γ

 y∗, which finishes the proof (see Remark . and the definition of γ ).
It is clear that analogous reasoning holds for the case of S(x) = B+ ∩A.
Case II..B. Assume S(x)� B+ ∩A and S(y)� B+ ∩A. Then

m
(
S(x)

)
> m(B+ ∩A) and m

(
S(y)

)
> m(B+ ∩A). ()

We claim that at least one of inequalities () or () holds,

∫
B+∩A∩S(y)

|y| +
∫
B+∩A

|y| <
∫
By

|y|, ()

∫
B+∩A∩S(x)

|x| +
∫
B+∩A

|x| <
∫
Bx

|x|. ()

If m(B+ ∩A ∩ S(y)) =  or m(B+ ∩A ∩ S(x)) = , then, by () and (), we get () or
(), respectively.
If m(B+ ∩A ∩ S(x)) >  and m(B+ ∩A ∩ S(y)) > , then

m
(
B+ ∩ S(x)

)
< γ and m

(
B+ ∩ S(y)

)
< γ . ()

Assume for the contrary that () and () do not hold, i.e.,

∫
B+∩[A∪(A∩S(y))]

|y| =
∫
By

|y| and
∫
B+∩[A∪(A∩S(x))]

|x| =
∫
Bx

|x|. ()

The equality S(y) = A ∪A ∪ (A ∩ S(y)) and () imply

B+ ∩ S(y) = B+ ∩ [
A ∪A ∪ (

A ∩ S(y)
)]

= B+ ∩ [
A ∪ (

A ∩ S(y)
)]
,

and analogously we get

B+ ∩ S(x) = B+ ∩ [
A ∪ (

A ∩ S(x)
)]
.

Therefore, by (), we have

∫
B+∩S(y)

|y| =
∫
B+∩[A∪(A∩S(y))]

|y| =
∫
By

|y| =
∫ γ


y∗
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and
∫
B+∩S(x)

|x| =
∫
B+∩[A∪(A∩S(x))]

|x| =
∫
Bx

|x| =
∫ γ


x∗.

Thus by (), S(x)⊂ B+ and S(y) ⊂ B+, whence S(|x| + |y|) ⊂ B+. Since m(B+) = γ , we get
a contradiction with (). This proves that () or () holds.
Finally, by () and () or (), we get

∫ γ

 (x + y)∗ <
∫ γ

 x∗ +
∫ γ

 y∗, which finishes the
proof (see Remark . and the definition of γ ).
Considering the case of m(B– ∩ A) > , we may follow analogously but with element

(x – y)∗.
Case II.. Suppose m(B+ ∩A) =  and m(B– ∩A) = . Then, by (),

B+ ∩ S(x + y) ⊂ A and B– ∩ S(x – y) ⊂ A. ()

We claim that m(A) ≥ γ and m(A) ≥ γ . If m(A) < γ , then m(B+ ∩S(x+ y)) < γ , whence
m(S(x+y)) < γ by the definition of set B+, a contradiction with (). The case of m(A) < γ

goes analogously and proves the claim.
By (), γ ≤ / and m(S(x))≥ γ . Since x∗ is not constant on (, γ ), then

∫ γ


x∗ < 

∫ γ


x∗.

Conditions () imply (B+ ∩ S(x + y))∩ (B– ∩ S(x – y)) = ∅. Consequently,
∫
B+∩S(x+y)

|x| +
∫
B–∩S(x–y)

|x| ≤
∫ γ


x∗ < 

∫ γ


x∗.

Thus
∫
B+∩S(x+y)

|x| <
∫ γ


x∗ or

∫
B–∩S(x–y)

|x| <
∫ γ


x∗.

Finally, by (), one of the following holds:

∫ γ


(x + y)∗ =

∫
B+∩S(x+y)

|x + y| =
∫
B+∩S(x+y)

|x| + |y| <
∫ γ


x∗ +

∫ γ


y∗

or
∫ γ


(x – y)∗ =

∫
B–∩S(x–y)

|x – y| =
∫
B–∩S(x–y)

|x| + |y| <
∫ γ


x∗ +

∫ γ


y∗,

which finishes the proof (see Remark . and the definition of γ ). �

Below we present some modification of Lemma . from [].

Lemma . Let x, y ∈ L satisfy |x| ≤ |y|, |x(t)| < |y(t)| for t ∈ A, m(A) >  and |y(t)| >
x∗(∞) for every t ∈ A. Then there is a set B of positive measure such that x∗(t) < y∗(t) for
t ∈ B.
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Proof Denote D = {t :  < |x(t)| < x∗(∞)}. The case of m(D) =  is done in Lemma . in
[]. Assume m(D) > . Thus x∗(∞) > . Define

x̃ = |x|χI\D + x∗(∞)χD and ỹ = |y|χI\D + |y|χD + x∗(∞)χD ,

where D = {t ∈D : |y(t)| < x∗(∞)}, D =D \D.
Then x̃ and x as well as ỹ and y are equimeasurable. Since x̃ and ỹ satisfy the assumptions

of Lemma . in [], there is a set B with m(B) >  such that x∗(t) = x̃∗(t) < ỹ∗(t) = y∗(t) for
t ∈ B. �

Theorem . Let x ∈ S(�p,w[,∞)), β and γ are as in (), and let the weight function be
such that γ <∞. Then x is an NSQ point if and only ifm(S(x))≥ β and x∗ is not constant
on (, γ ).

Proof Necessity. It follows from Theorems . and ..
Sufficiency.Let y ∈ S(�p,w). If m(S(x)∩S(y)) = , then by Lemma., (x+y)∗∗(t) < x∗∗(t)+

y∗∗(t) for all t ∈ (,m(S(x)∪S(y))). Since m(S(x))≥ β , so m(S(w)∩ (β ,m(S(x)∪S(y)))) >
, whence ‖x + y‖ <  (see Remark . and the definition of β).
Denote

A =
{
t ∈ (, ) : x(t)y(t) > 

}
, A =

{
t ∈ (, ) : x(t)y(t) < 

}
,

A =
{
t ∈ (, ) : x(t)y(t) =  and

∣∣x(t)∣∣ + ∣∣y(t)∣∣ > 
}
,

()

and assume

m(A ∪A) > . ()

Obviously,

Ai ∩Aj = ∅ for i 	= j and i, j ∈ {, , }. ()

A. Assume m(S(|x| + |y|)) ≤ γ . We follow as in the proof of Theorem ., Case A.
B. Suppose

m
(
S

(|x| + |y|)) > γ . ()

Consider the following cases (for the definitions of s, s+, s–, B+ and B– see () and ()
below).

Case I. There is t ∈ (,γ ) such that (x + y)∗(t) < (|x| + |y|)∗(t), or there is t ∈ (,γ )
such that (x – y)∗(t) < (|x| + |y|)∗(t).
Case II. (x + y)∗(t) = (x – y)∗(t) = (|x| + |y|)∗(t) for all t ∈ (,γ ).

Case II.A. s =  or s+ =  or s– = .
Case II.B. s >  and s+ >  and s– > .

Case II.B.a. s ≤ γ .
Case II.B.a..m(B+ ∩A) >  orm(B– ∩A) > .
Case II.B.a..A. S(y) = B+ ∩A or S(x) = B+ ∩A.
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Case II.B.a..B. S(x)� B+ ∩A and S(y)� B+ ∩A.
Case II.B.a..m(B+ ∩A) =  andm(B– ∩A) = .
Case II. B.a..A. x∗ or y∗ is not constant on (, s).
Case II. B.a..B. x∗χ(,s) = a >  and y∗χ(,s) = b > .

Case II.B.b. s > γ .
Now let us discuss all the cases.
Proof of Case I. The proof is the same as that of Theorem ., Case B.I.
Proof of Case II. Suppose

(x + y)∗(t) = (x – y)∗(t) =
(|x| + |y|)∗(t) ()

for every t ∈ (,γ ). Notice

min
{
m

(
S(x + y)

)
,m

(
S(x – y)

)} ≥ γ ()

by () and ().
Denote

s = sup
{
t :

(|x| + |y|)∗(t) >
(|x| + |y|)∗(∞)

}
,

s+ = sup
{
t : (x + y)∗(t) > (x + y)∗(∞)

}
, ()

s– = sup
{
t : (x – y)∗(t) > (x – y)∗(∞)

}
.

Case II.A.
(a) Assume s = , i.e., for every t > , (|x| + |y|)∗(t) = (|x| + |y|)∗(∞) = a > . Since x∗ is

not constant on (, γ ), so by Remark ., m(C) > , where C = {t : |x(t)| > x∗(∞)}. Thus,
for every  < t < m(C),

(|x| + |y|)∗(t) =
(|x| + |y|)∗(∞)≤ x∗(∞) + y∗(∞) < x∗(t) + y∗(t).

Additionally, for all t > ,

(|x| + |y|)∗(t) =
(|x| + |y|)∗(∞)≤ x∗(∞) + y∗(∞) ≤ x∗(t) + y∗(t).

Since (|x| + |y|)∗ is constant on (,∞), so it satisfies the conditions (i) and (ii) of Theo-
rem . in []. Thus (|x| + |y|)∗ is a UM point, whence ‖(|x| + |y|)∗‖ < ‖x∗ + y∗‖. Finally,

‖x + y‖ ≤ ∥∥|x| + |y|∥∥ =
∥∥(|x| + |y|)∗∥∥ <

∥∥x∗ + y∗∥∥ ≤ ∥∥x∗∥∥ +
∥∥y∗∥∥ = ‖x‖ + ‖y‖,

which finishes the proof.
(b) Assume s+ = . By (), for every t > , (x + y)∗(t) = (x + y)∗(∞) = a > . By () and

(x + y)∗(∞) ≤ (|x| + |y|)∗(∞),

(x + y)∗(t) =
(|x| + |y|)∗(t) = a

for all t > , whence s = . The rest of the proof goes as in (a).
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(c) If s– = , then analogous reasoning as in (b) goes for element (x – y)∗.
Case II.B. Suppose s >  and s+ >  and s– > . Clearly,

min{s+, s–} ≥min{s,γ } ()

by () and

(x± y)∗(∞) ≤ (|x| + |y|)∗(∞) <
(|x| + |y|)∗(t) = (x± y)∗(t)

for all t ∈ (,min{s,γ }).
Case II.B.a. Assume s ≤ γ . Then (|x|+ |y|)∗(∞) > , since the opposite case () implies

s > γ .
By Lemma . and Remark ., we find the sets B+, B–, B of measure s satisfying

∫ s


(x + y)∗ =

∫
B+

|x + y|,
∫ s


(x – y)∗ =

∫
B–

|x – y|, ()

∫ s



(|x| + |y|)∗ =
∫
B

|x| + |y|.

Clearly, by () and s ≤ γ , the sets B+ and B– are well defined.
Condition () implies

m(B+ ∩A) =  and m(B– ∩A) = , ()

since otherwise if, for example, m(B+ ∩A) > , then, by S(x + y) ⊂ A ∪A ∪A,

∫ s


(x + y)∗ =

∫
B+

|x + y| =
∫
B+∩A

|x + y| +
∫
B+∩(A∪A)

|x| + |y|

<
∫
B+∩A

|x| + |y| +
∫
B+∩(A∪A)

|x| + |y|

=
∫
B+

|x| + |y| ≤
∫ s



(|x| + |y|)∗,

a contradiction with ().
Case II.B.a.. Assume m(B+ ∩A) > . Then m(B+) = s implies

m(B+ ∩A) < s. ()

By (), we have

∫ s


(x + y)∗ =

∫
B+

|x + y| =
∫
B+∩A

|x + y| +
∫
B+∩A

|x + y|

=
∫
B+∩A∩S(x)

|x| +
∫
B+∩A

|x| +
∫
B+∩A∩S(y)

|y| +
∫
B+∩A

|y|. ()
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Case II.B.a..A. Assume S(y) = B+ ∩ A. Then m(S(y)) < s by () and S(y) = A since
A ⊂ S(y). Thus

A ⊂ S(x), m(A) = ,∫
B+∩A∩S(y)

|y| =  and
∫
B+∩A

|y| = sup
m(By)=s

∫
By

|y|. ()

Moreover, by () and S(|x| + |y|) = A ∪A = S(x), we get m(S(x)) > γ .
We claim that

∫
B+∩A∩S(x)

|x| +
∫
B+∩A

|x| < sup
m(Bx)=s

∫
Bx

|x|. ()

Assume for the contrary that
∫
B+∩A∩S(x) |x|+

∫
B+∩A

|x| = supm(Bx)=s

∫
Bx |x|. By Lemma .,

() and (),

∫ s


(x + y)∗ = sup

m(Bx)=s

∫
Bx

|x| + sup
m(By)=s

∫
By

|y| =
∫ s


x∗ +

∫ s


y∗. ()

Moreover, by () and m(A) = , we get B– ∩ (S(x – y)) ⊂ A ⊂ S(x). Furthermore, ap-
plying () and (), we obtain

∫ s


(x + y)∗ =

∫ s


(x – y)∗ =

∫
B–

|x – y| =
∫
B–

|x| ≤
∫ s


x∗ <

∫ s


x∗ +

∫ s


y∗,

a contradiction with (). This proves claim (). Therefore, (), () and () imply

∫ s


(x + y)∗ <

∫ s


x∗ +

∫ s


y∗. ()

Furthermore, by the definition of s, for every t > s,

(x± y)∗(t) ≤ (|x| + |y|)∗(t) =
(|x| + |y|)∗(∞) ≤ x∗(∞) + y∗(∞)≤ x∗(t) + y∗(t).

Thus

∫ t

s
(x± y)∗(t) ≤

∫ t

s
x∗(t) + y∗(t) for t > s. ()

Finally,

∫ t


(x + y)∗(t) <

∫ t


x∗ +

∫ t


y∗ for all t ≥ s. ()

Taking t = γ , we finish the proof (see Remark . and the definition of γ ).
It is clear that analogous reasoning holds for the case of S(x) = B+ ∩A.
Case II.B.a..B. Assume S(y)� B+ ∩A and S(x)� B+ ∩A, whence

m
(
S(x)

)
> m(B+ ∩A) and m

(
S(y)

)
> m(B+ ∩A). ()
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We claim that at least one of inequalities () or () holds,

∫
B+∩A∩S(y)

|y| +
∫
B+∩A

|y| < sup
m(By)=s

∫
By

|y|, ()

∫
B+∩A∩S(x)

|x| +
∫
B+∩A

|x| < sup
m(Bx)=s

∫
Bx

|x|. ()

If m(B+ ∩ A ∩ S(y)) =  or m(B+ ∩ A ∩ S(x)) = , then by () and () we get () or
(), respectively.
If m(B+ ∩A ∩ S(x)) >  and m(B+ ∩A ∩ S(y)) > , then

m
(
B+ ∩ S(x)

)
< s and m

(
B+ ∩ S(y)

)
< s. ()

Assume for the contrary that () and () do not hold, i.e.,

∫
B+∩[A∪(A∩S(y))]

|y| = sup
m(By)=s

∫
By

|y| and

∫
B+∩[A∪(A∩S(x))]

|x| = sup
m(Bx)=s

∫
Bx

|x|.
()

By (), we get

B+ ∩ S(y) = B+ ∩ [
A ∪ (

A ∩ S(y)
)]

and

B+ ∩ S(x) = B+ ∩ [
A ∪ (

A ∩ S(x)
)]
.

Therefore, by () and Lemma ., we have

∫
B+∩Sy

|y| =
∫
B+∩[A∪(A∩S(y))]

|y| = sup
m(By)=s

∫
By

|y| =
∫ s


y∗

and
∫
B+∩Sx

|x| =
∫
B+∩[A∪(A∩S(x))]

|x| = sup
m(Bx)=s

∫
Bx

|x| =
∫ s


x∗.

Thus, by (), S(x) ⊂ B+ and S(y) ⊂ B+, whence S(|x| + |y|) ⊂ B+. Since m(B+) = s ≤ γ ,
we get a contradiction with (). This proves that () or () holds.
Therefore, by () and () or (), we get

∫ s
 (x+ y)∗ <

∫ s
 x∗ +

∫ s
 y∗. Analogously as in

Case II.B.a..A, we get () and then (), which for t = γ finishes the proof.
Considering the case of m(B– ∩ A) > , we may follow analogously as above but with

the element (x – y)∗.
Case II.B.a.. Suppose m(B+ ∩A) =  and m(B– ∩A) = . Then, by (),

B+ ∩ S(x + y) ⊂ A and B– ∩ S(x – y) ⊂ A. ()
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We claim m(A) ≥ s and m(A) ≥ s. If m(A) < s, then m(B+ ∩ S(x + y)) < s, whence
m(S(x + y)) < s ≤ γ by the definition of set B+, a contradiction with (). The case of
m(A) < s goes analogously and proves the claim.
By (), m(S(x))≥ s and m(S(y))≥ s.
Case II.B.a..A. If x∗ is not constant on (, s), then

∫ s


x∗ < 

∫ s


x∗.

Conditions () imply (B+ ∩ S(x + y))∩ (B– ∩ S(x – y)) = ∅. Consequently,
∫
B+∩S(x+y)

|x| +
∫
B–∩S(x–y)

|x| ≤
∫ s


x∗ < 

∫ s


x∗.

Thus,

∫
B+∩S(x+y)

|x| <
∫ s


x∗ or

∫
B–∩S(x–y)

|x| <
∫ s


x∗.

Finally, by (), one of the following holds:

∫ s


(x + y)∗ =

∫
B+∩S(x+y)

|x + y| =
∫
B+∩S(x+y)

|x| + |y| <
∫ s


x∗ +

∫ s


y∗

or
∫ s


(x – y)∗ =

∫
B–∩S(x–y)

|x – y| =
∫
B–∩S(x–y)

|x| + |y| <
∫ s


x∗ +

∫ s


y∗.

Analogously as in Case II.B.a..A, we get () and then (), which for t = γ finishes the
proof.
If y∗ is not constant on (, s), then we use analogous argumentation.
Case II.B.a..B. Assume x∗χ(,s) = a >  and y∗χ(,s) = b > . Note that this is only the

case of s < γ since x∗ is not constant on (, γ ).
Since for a.e. t > , |x(t)| ≤ a and |y(t)| ≤ b, so

(x± y)∗(t) ≤ (|x| + |y|)∗(t)≤ a + b = x∗(t) + y∗(t) ()

for all  < t < s.
If there is t ≤ s such that (|x| + |y|)∗(t) < x∗(t) + y∗(t) then, for every t < t < s,

(x± y)∗(t) ≤ (|x| + |y|)∗(t) < x∗(t) + y∗(t). ()

If (|x| + |y|)∗(t) = x∗(t) + y∗(t) for every t ≤ s, then by the definition of s we get () for
every s ≤ t < s. Thus, by (),

∫ t


(x + y)∗ <

∫ t


x∗ +

∫ t


y∗

for s < t < s.
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Analogously as in Case II.B.a..A, we get () and then (), which for t = γ > s finishes
the proof.
Case II.B.b. If s > γ , then we apply the argumentation in Cases II.B.a. to II.B.a..A for

γ instead of s. �

The following corollaries have been proved directly in [].

Corollary . The Lorentz space �p,w is nonsquare if and only if
(i) β = ,
(ii) if α =∞ then

∫ ∞
 w =∞,

(iii) if α =  then γ > /,
where β and γ are defined in ().

Proof Necessity. (i) Assume β >  and take x = χA/‖χA‖, where  < m(A) < β . Then ‖x‖ = .
By Theorem ., x is not an NSQ point.
(ii) and (iii) Suppose α = ∞ and

∫ ∞
 w < ∞, or α =  and γ ≤ /. Let x = χI/‖χI‖. Then

‖x‖ =  and Theorem . implies that x is not an NSQ point.
Sufficiency. Let x ∈ S(�p,w).
Let α = . By Theorem ., (i) and (iii), x is an NSQ point.
If α =∞ then (ii) implies γ =∞. In view of Theorem ., x is an NSQ point. �

Recall that (�p,w(I))a 	= �p,w(I) if and only if I = (,∞) and
∫ ∞
 w <∞ (see []).

Corollary . Suppose α = ∞ and
∫ ∞
 w < ∞. The Lorentz space (�p,w[,∞))a is non-

square if and only if
(i) β = ,
(ii) γ =∞,

where β and γ are defined in ().

Proof Necessity. (i) The proof is analogous to the proof of Corollary ..
(ii) Let γ < ∞ and take x = χ(,γ )/‖χ(,γ )‖. Clearly, by Proposition . in [], x ∈ (�p,w)a.

The definition of x and Theorem . imply that x is not an NSQ point.
Sufficiency. Let x ∈ S((�p,w)a). By Proposition . in [], x∗(∞) = . Thus x∗ is not con-

stant on (,∞). Moreover, (i) implies that m(S(x)) > β . By Theorem ., x is an NSQ
point. �
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