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Abstract
The purpose of this paper is to introduce new approximation methods for solutions
of generalized non-accretive multi-valued mixed quasi-variational inclusion systems
involving (A,η)-accretive mappings in q-uniformly smooth Banach spaces and, by
using the new resolvent operator technique associated with (A,η)-accretive
mappings, Nadler’s fixed point theorem and Liu’s inequality, we prove some existence
theorems of solutions for our systems by constructing the new Mann iterative
algorithm. Further, we study the stability of the iterative sequence generated by the
perturbed iterative algorithms. The results presented in this paper improve and
generalize the corresponding results of recent works given by some authors.
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1 Introduction
It is well known that the ideas and techniques of the variational inequalities and variational
inclusions are being applied in a variety of diverse fields of pure and applied sciences and
proven to be productive and innovative. It has been shown that this theory provides the
most natural, direct, simple, unified, and efficient framework for a general treatment of a
wide class of linear and nonlinear problems. Correspondingly, the existence of solutions
or the convergence and stability of a suitable iterative algorithm to the system of nonlinear
variational inequalities or variational inclusions has also been studied by many authors,
see [–] and the references therein.
Recently, Lan et al. [] introduced a new concept of (A,η)-accretive mappings, which

provides a unifying framework for maximal monotone operators, m-accretive opera-
tors, η-subdifferential operators, maximal η-monotone operators, H-monotone opera-
tors, generalized m-accretive mappings, H-accretive operators, (H ,η)-monotone opera-
tors,A-monotonemappings. Further, we studied some properties of (A,η)-accretivemap-
pings and defined the resolvent operators associatedwith (A,η)-accretivemappings which
include the existing resolvent operators as special cases. By using the new resolvent op-
erator technique, we also developed a new perturbed iterative algorithm with errors to
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solve a class of nonlinear relaxed cocoercive variational inclusions with (A,η)-accretive
mappings in q-uniformly smooth Banach spaces and prove the convergence and stability
of the iterative sequence generated by the perturbed iterative algorithm. For details, we
can refer to [–, , , , , , ].
On the other hand, some systems of variational inequalities, variational inclusions, com-

plementarity problems and equilibrium problems have been studied by some authors in
recent years because of their close relations to Nash equilibrium problems. Huang and
Fang [] introduced a system of order complementarity problems and established some
existence results for the problems by using fixed point theory. Kassay and Kolumbán []
introduced a system of variational inequalities and proved an existence theorem by us-
ing Ky Fan’s lemma. In [], Cho et al. developed an iterative algorithm to approximate the
solution of a system of nonlinear variational inequalities by using the classical resolvent
operator technique. By using the resolvent operator technique associated with an (H ,η)-
monotone operator, Fang et al. [] further studied the approximating solution of a system
of variational inclusions inHilbert spaces. Very recently, Guan andHu [] introduced and
studied a system of generalized variational inclusions involving a newmonotonemapping
in Banach spaces. Furthermore, by using the concept of (A,η)-accretive mappings and
the new resolvent operator technique associated with (A,η)-accretive mappings, Lan []
introduced and studied a system of general mixed quasi-variational inclusions involving
(A,η)-accretive mappings in Banach spaces, and construct a new perturbed iterative algo-
rithmwithmixed errors for this system of nonlinear (A,η)-accretive variational inclusions
in q-uniformly smooth Banach spaces. Kazmi et al. [] considered the convergence and
stability of an iterative algorithm for a system of generalized implicit variational-like inclu-
sions in Banach spaces. Suwannawit and Petrot [] studied the existence of solutions and
the stability of iterative algorithm for a system of random set-valued variational inclusion
problems involving (A,m,η)-generalized monotone operators. Because stability is one of
optimization theory, it is not surprising to see a number of papers dealing with the study
of convergence and stability to investigate various important themes. For other related
works, we refer to [, , , , ] and the references therein.
Motivated and inspired by the above works, in this paper, we consider the following

system of generalized non-accretive multi-valued mixed quasi-variational inclusions:
Find (x, y) ∈ B ×B, u ∈ F(x), and v ∈G(y) such that

⎧⎨
⎩
 ∈ N(x, v) +M(x,x),

 ∈ N(u, y) +M(y, y),
(.)

where Bi is a real Banach space, Ni : B ×B → Bi, Ai : Bi → Bi, and ηi : Bi ×Bi → Bi are
single-valued mappings, and F : B → B and G : B → B are multi-valued mappings,
Mi : Bi × Bi → Bi is an any nonlinear mapping such that Mi(·, t) : Bi → Bi is an (Ai,ηi)-
accretive mapping for all t ∈ Bi and i = , .
We remark that, for suitable choices of Ni, Mi, Ai, ηi, F , G, and Bi for i = , , it is

easy to see that the problem (.) includes a number (systems) of quasi-variational in-
clusions, generalized quasi-variational inclusions, quasi-variational inequalities, implicit
quasi-variational inequalities studied by many authors as special cases. See, for example,
[–] and the following examples:
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Example . If F : B → B and G : B → B are two single-valued mappings, then, from
the problem (.), we have the following problem: Find (x, y) ∈ B ×B such that

⎧⎨
⎩
 ∈ N(x,G(y)) +M(x,x),

 ∈ N(F(x), y) +M(y, y).
(.)

Example . In (.), for any (a,b) ∈ B × B, if N(x,G(y)) = E(f (x), y) – a and N(x,
G(y)) = E(x, g(y)) – b, where f : B → B and g : B → B are two single-valued mappings,
then the problem (.) reduces to finding (x, y) ∈ B ×B such that

⎧⎨
⎩
a ∈ E(f (x), y) +M(x,x),

b ∈ E(x, g(y)) +M(y, y).
(.)

The problem (.) is called a system of mixed quasi-variational inclusion problems,
which was studied by Lan [].

Example . If F = G = I , Mi(·, t) =Mi(·) for all t ∈ Bi and M(·, t) =M(·) for all t ∈ B,
then the problem (.) is equivalent to the problem of finding (x, y) ∈ B ×B such that

⎧⎨
⎩
 ∈ N(x, y) +M(x),

 ∈ N(x, y) +M(y),
(.)

which is studied by Fang et al. [] and Verma [] when Mi is A-monotone and (H ,η)-
monotone for i = , , respectively. Some special cases of the problem (.) can be found
in [, , –] and the references therein.

Moreover, in this paper, by using the new resolvent operator technique associated with
(A,η)-accretive mappings, Nadler’s fixed point theorem and Liu’s inequality, we prove
some existence theorems of solutions for our systems by constructing the newMann iter-
ative algorithm. Further, we study the stability of the iterative sequence generated by the
perturbed iterative algorithms. The results presented in this paper improve and generalize
the corresponding results of recent works given by some authors.

2 Preliminaries
Let B be a real Banach space with the dual space B∗, 〈·, ·〉 be the dual pair between B and
B

∗, B denote the family of all the nonempty subsets of B and CB(B) denote the family of
all nonempty closed bounded subsets of B. The generalized duality mapping Jq : B → B∗

is defined by

Jq(x) =
{
f ∗ ∈ B

∗ :
〈
x, f ∗〉 = ‖x‖q,∥∥f ∗∥∥ = ‖x‖q–}

for all x ∈ B, where q >  is a constant. In particular, J is the usual normalized duality
mapping. It is well known that, in general, Jq(x) = ‖x‖q–J(x) for all x �=  and Jq is single-
valued if B is strictly convex.
In the sequel, we always suppose thatB is a real Banach space such that Jq is single-valued

andH is a Hilbert space. If B =H, then J becomes the identity mapping onH.
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Themodulus of smoothness of B is the function �B : [,∞)→ [,∞) defined by

�B(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : ‖x‖ ≤ ,‖y‖ ≤ t

}
.

() A Banach space B is said to be uniformly smooth if

lim
t→

�B(t)
t

= .

() B is said to be q-uniformly smooth if there exists a constant c >  such that

�B(t) ≤ ctq

for all q > .
Note that Jq is single-valued if B is uniformly smooth. In the study of characteristic in-

equalities in q-uniformly smooth Banach spaces, Xu [] proved the following result.

Lemma . Let q >  be a given real number and B be a real uniformly smooth Banach
space. Then B is q-uniformly smooth if and only if there exists a constant cq >  such that,
for all x, y ∈ B,

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ cq‖y‖q.

In the sequel, we give some concept and lemmas for our main results later.

Definition . Let B be a q-uniformly smooth Banach space and f ,A : B → B be two
single-valued mappings. T is said to be:
() accretive if

〈
f (x) – f (y), Jq(x – y)

〉 ≥ 

for all x, y ∈ B;
() strictly accretive if T is accretive and

〈
f (x) – f (y), Jq(x – y)

〉
= 

if and only if x = y;
() r-strongly accretive if there exists a constant r >  such that

〈
f (x) – f (y), Jq(x – y)

〉 ≥ r‖x – y‖q

for all x, y ∈ B;
() γ -strongly accretive with respect to A if there exists a constant γ >  such that

〈
f (x) – f (y), Jq

(
A(x) –A(y)

)〉 ≥ γ ‖x – y‖q

for all x, y ∈ B;

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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() m-relaxed cocoercive with respect to A if there exists a constant m >  such that

〈
f (x) – f (y), Jq

(
A(x) –A(y)

)〉 ≥ –m
∥∥f (x) – f (y)

∥∥q

for all x, y ∈ B;
() (α, ξ )-relaxed cocoercive with respect to A if there exist constants α, ξ >  such that

〈
f (x) – f (y), Jq

(
A(x) –A(y)

)〉 ≥ –α
∥∥f (x) – f (y)

∥∥q + ξ‖x – y‖q

for all x, y ∈ B;
() s-Lipschitz continuous if there exists a constant s >  such that

∥∥f (x) – f (y)
∥∥ ≤ s‖x – y‖

for all x, y ∈ B.

Remark . WhenB =H, ()-() of Definition . reduce to the definitions ofmonotonic-
ity, strict monotonicity, strong monotonicity, and strong monotonicity with respect to A,
respectively (see [, ]).

Definition . Amulti-valuedmapping F : B→ B is said to be ζ -Ĥ-Lipschitz continuous
if there exists a constant ζ >  such that

Ĥ
(
F(x),F(y)

) ≤ ζ‖x – y‖

for all x, y ∈ B, where Ĥ : B × B → (–∞, +∞)∪ {+∞} is the Hausdorff metric, i.e.,

Ĥ(A,B) =max
{
sup
x∈A

inf
y∈B‖x – y‖, sup

x∈B
inf
y∈A

‖x – y‖
}

for all A,B ∈ B.

Definition . A single-valued mapping η : B×B → B is said to be τ -Lipschitz continu-
ous if there exists a constant τ >  such that

∥∥η(x, y)
∥∥ ≤ τ‖x – y‖

for all x, y ∈ B.

Definition . Let B be a q-uniformly smooth Banach space, η : B×B → B andH : B →
B be single-valued mappings. Then set-valued mappingM : B → B is said to be:
() accretive if

〈
u – v, Jq(x – y)

〉 ≥ 

for all x, y ∈ B, u ∈M(x), and v ∈ M(y);

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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() η-accretive if

〈
u – v, Jq

(
η(x, y)

)〉 ≥ 

for all x, y ∈ B, u ∈M(x), and v ∈ M(y);
() strictly η-accretive ifM is η-accretive and equality holds if and only if x = y;
() r-strongly η-accretive if there exists a constant r >  such that

〈
u – v, Jq

(
η(x, y)

)〉 ≥ r‖x – y‖q

for all x, y ∈ B, u ∈M(x), and v ∈ M(y);
() α-relaxed η-accretive if there exists a constant α >  such that

〈
u – v, Jq

(
η(x, y)

)〉 ≥ –α‖x – y‖q

for all x, y ∈ B, u ∈M(x), and v ∈ M(y);
() m-accretive ifM is accretive and (I + ρM)(B) = B for all ρ > , where I denotes the

identity operator on B;
() generalized m-accretive ifM is η-accretive and (I + ρM)(B) = B for all ρ > ;
() H-accretive ifM is accretive and (H + ρM)(B) = B for all ρ > ;
() (H ,η)-accretive ifM is η-accretive and (H + ρM)(B) = B for every ρ > .

In a similar way, we can define strictly η-accretivity and strongly η-accretivity of the
single-valued mapping A : B → B.

Definition . The mapping N : B × B → B is said to be ε-Lipschitz continuous with
respect to the first argument if there exists a constant ε >  such that

∥∥N(x, ·) –N(y, ·)∥∥ ≤ ε‖x – y‖

for all x, y ∈ B.

In a similar way, we can define the Lipschitz continuity of the mapping N(·, ·) with re-
spect to the second argument.

Definition . Let A : B → B, η : B × B → B be two single-valued mappings. Then a
multi-valued mappingM : B→ B is said to be (A,η)-accretive if
() M is m-relaxed η-accretive;
() (A + ρM)(B) = B for all ρ > .

Lemma . ([]) Let B be a q-uniformly smooth Banach space and η : B × B → B be τ -
Lipschitz continuous, A : B → B be a r-strongly η-accretive mapping and M : B → B be
an (A,η)-accretive mapping. Then the resolvent operator Rρ,A

η,M : B→ B defined by

Rρ,A
η,M(u) = (A + ρM)–(u)

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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for all u ∈ B is τq–

r–ρm-Lipschitz continuous, i.e.,

∥∥Rρ,A
η,M(x) – Rρ,A

η,M(y)
∥∥ ≤ τ q–

r – ρm
‖x – y‖

for all x, y ∈ B, where ρ ∈ (, r
m ) is a constant.

3 Approximationmethods andmain results
In this section, by using the resolvent operator technique associated with (A,η)-accretive
mappings, we introduce the new Mann iterative algorithm with mixed errors for solv-
ing the system (.) of generalized nonlinear mixed quasi-variational inclusion in Banach
spaces and prove the convergence and stability of the iterative sequence generated by the
Mann iterative algorithm.

Definition . Let S be a self-mapping of B, x ∈ X and let {xn} be an iterative sequence
in B defined by xn+ = h(S,xn) for all n ≥ . Suppose that {x ∈ B : Sx = x} �= ∅ and {xn}
converges to a fixed point x∗ of S. Let {υn} be a sequence in B and let εn = ‖υn+ –h(S,υn)‖.
If lim εn =  implies that υn → x∗, then the iterative sequence {xn} defined by xn+ = h(S,xn)
for all n ≥  is said to be S-stable or stable with respect to S.

Lemma . ([]) Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying the
following condition: there exists a natural number n such that

an+ ≤ ( – tn)an + bntn + cn

for all n ≥ n, where tn ∈ [, ],
∑∞

n= tn = ∞, limn→∞ bn =  and
∑∞

n= cn < ∞. Then
an →  as n→ ∞.

The solvability of the problem (.) depends on the equivalence between (.) and the
problem of finding the fixed point of the associated generalized resolvent operator. From
Definition ., we can obtain the following.

Lemma . For i = , , let Ai, ηi, Mi, Ni, F , and G be the same as in the problem (.).
Then the following statements are mutually equivalent:
() An element (x, y,u, v) ∈ B ×B ×B ×B is a solution to the problem (.).
() There exist (x, y) ∈ B ×B, u ∈ F(x), and v ∈ G(y) such that

x = Rλ,A
η,M(·,x)

[
A(x) – λN(x, v)

]
,

y = Rρ,A
η,M(·,y)

[
A(y) – ρN(u, y)

]
,

(.)

where Rλ,A
η,M(·,x) = (A + λM(·,x))–, Rρ,A

η,M(·,y) = (A + ρM(·, y))–, and λ > , ρ > 
are two constants.

() For any λ >  and ρ > , the mapping Tλ,ρ : B ×B → B ×B defined by

Tλ,ρ(x, y) =
(
Pλ(x, y),Qρ(x, y)

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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for all (x, y) ∈ B ×B has a fixed point (x, y,u, v) ∈ B ×B ×B ×B, where
mappings Pλ : B ×B → B and Qρ : B ×B → B are defined by

Pλ(x, y) = Rλ,A
η,M(·,x)

[
A(x) – λN(x, v)

]

for all v ∈G(y) and

Qρ(x, y) = Rρ,A
η,M(·,y)

[
A(y) – ρN(u, y)

]

for all u ∈ F(x), respectively.

This fixed point formulation allows us to construct the following perturbed iterative
algorithm with mixed errors.

Algorithm . Step . For any (x, y) ∈ B × B, define the iterative sequence {(xn, yn)}
by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+ = ( – αn)xn + αnRλ,A
η,M(·,xn)(zn) + αndn + en,

yn+ = ( – αn)yn + αnRρ,A
η,M(·,yn)(wn) + αnfn + hn,

zn = A(xn) – λN(xn, vn),
wn = A(yn) – ρN(un, yn)

(.)

for all n ≥ , where un ∈ F(xn), vn ∈G(xn), and λ,ρ >  are constants.
Step . Choose the sequences {αn}, {dn}, {en}, {fn}, and {hn} such that, for all n≥ , {αn} is

a sequence in (, ] with
∑∞

n= αn =∞, {dn}, {en} ⊂ B, and {fn}, {hn} ⊂ B are the sequences
of errors and satisfy the following conditions:
(a) dn = d′

n + d′′
n and fn = f ′

n + f ′′
n , where {d′

n}, {d′′
n} ⊂ B and {f ′

n}, {f ′′
n } ⊂ B;

(b) limn→∞ ‖d′
n‖ =  and limn→∞ ‖f ′

n‖ = ;
(c)

∑∞
n= ‖d′′

n‖ < ∞,
∑∞

n= ‖en‖ <∞,
∑∞

n= ‖f ′′
n ‖ < ∞ and

∑∞
n= ‖hn‖ < ∞.

Step . If the sequences {xn}, {yn}, {zn}, {wn}, {αn}, {dn}, {en}, {fn}, and {hn} satisfy (.)
to sufficient accuracy, then go to Step . Otherwise, set n := n +  and return to Step .
Step . Let {(ϕn,ψn)} be any sequence inB×B and define a sequence {(εn, εn)} inR×R

by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εn = ‖ϕn+ – {( – αn)ϕn + αnRλ,A
η,M(·,ϕn)(sn) + αndn + en}‖,

εn = ‖ψn+ – {( – αn)ψn + αnRρ,A
η,M(·,ψn)(tn) + αnfn + hn}‖,

sn = A(ϕn) – λN(ϕn,�n),
tn = A(ψn) – ρN(χn,ψn),

(.)

where χn ∈ F(ϕn) and �n ∈G(ψn).
Step . If the sequences {εn}, {εn}, {ϕn+}, {ψn+}, {sn}, {tn}, {αn}, {dn}, {en}, {fn}, and {hn}

satisfy (.) to sufficient accuracy, the stop here. otherwise, set n := n +  and return to
Step .

Now, we show the existence of solutions of the problem (.) and prove the convergence
and stability of Algorithm ..

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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Theorem . For i = , , let Bi be a qi-uniformly smooth Banach space with qi > , ηi :
Bi × Bi → Bi be τi-Lipschitz continuous, Ai : Bi → Bi be ri-strongly ηi-accretive and σi-
Lipschitz continuous, F : B → CB(B) be k-Ĥ-Lipschitz continuous, G : B → CB(B) be
κ-Ĥ-Lipschitz continuous, M : B × B → B be (A,η)-accretive in the first variable
and M : B × B → B be (A,η)-accretive in the first variable. Suppose that N : B ×
B → B is (π, ι)-relaxed cocoercive with respect to A, δ-Lipschitz continuous in the first
argument, β-Lipschitz continuous in the second variable and N : B×B → B is (π, ι)-
relaxed cocoercive with respect to A, δ-Lipschitz continuous in the second argument and
β-Lipschitz continuous in the first variable. If

∥∥Rλ,A
η,M(·,x)(z) – Rλ,A

η,M(·,y)(z)
∥∥ ≤ ν‖x – y‖,

∥∥Rρ,A
η,M(·,x)(z) – Rρ,A

η,M(·,y)(z)
∥∥ ≤ ν‖x – y‖

(.)

for all (x, y, z) ∈ B × B × B and there exist constants λ ∈ (, r/m) and ρ ∈ (, r/m)
such that

⎧⎪⎨
⎪⎩

τ
q–


q
√

σ
q
 –qλι+qλπδ

q
 +cqλ

q δ
q


r–λm
+ ρkβτ

q–


r–ρm
+ ν < ,

τ
q–


q
√

σ
q
 –qρι+qρπδ

q
 +cqρq δ

q


r–ρm
+ λκβτ

q–


r–λm
+ ν < ,

(.)

where cq , cq are the constants as in Lemma ., then
() the problem (.) has a solution (x∗, y∗,u∗, v∗);
() the iterative sequence {(xn, yn,un, vn)} generated by Algorithm . converges strongly

to the solution (x∗, y∗,u∗, v∗);
() if, in addition, there exists α >  such that αn ≥ α for all n≥ , then

lim
n→∞(ϕn,ψn,χn,�n) =

(
x∗, y∗,u∗, v∗) ⇐⇒ lim

n→∞(εn, εn) = (, ),

where (εn, εn) is defined by (.).

Proof For any λ >  and ρ > , define Pλ : B ×B → B and Qρ : B ×B → B by

⎧⎨
⎩
Pλ(x, y) = Rλ,A

η,M(·,x)[A(x) – λN(x, v)],

Qρ(x, y) = Rρ,A
η,M(·,y)[A(y) – ρN(u, y)]

(.)

for all (x, y) ∈ B ×B, u ∈ F(x) and v ∈G(v). Now, define the norm ‖ · ‖∗ on B ×B by

∥∥(x, y)∥∥∗ = ‖x‖ + ‖y‖

for all (x, y) ∈ B × B. It is easy to see that (B ×B,‖ · ‖∗) is a Banach space (see []). By
(.), for any λ >  and ρ > , define Tλ,ρ : B ×B → B ×B by

Tλ,ρ(x, y) =
(
Pλ(x, y),Qρ(x, y)

)

for all (x, y) ∈ B ×B.

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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Now, we prove that Tλ,ρ is a contractive mapping. In fact, for any (xi, yi) ∈ B × B and
i = , , there exist u ∈ F(x) and v ∈ G(y) such that

⎧⎨
⎩
Pλ(x, y) = Rλ,A

η,M(·,x)[A(x) – λN(x, v)],

Qρ(x, y) = Rρ,A
η,M(·,y)[A(y) – ρN(u, y)].

(.)

Since F(x) ∈ CB(B) and G(y) ∈ CB(B), it follows from Nadler’s result [] that there
exist u ∈ F(x) and v ∈G(y) such that

‖u – u‖ ≤ Ĥ
∥∥F(x) – F(x)

∥∥, ‖v – v‖ ≤ Ĥ
∥∥G(y) –G(y)

∥∥. (.)

Setting

⎧⎨
⎩
Pλ(x, y) = Rλ,A

η,M(·,x)[A(x) – λN(x, v)],

Qρ(x, y) = Rρ,A
η,M(·,y)[A(y) – ρN(u, y)].

(.)

Thus it follows from (.), (.), (.), and Lemma . that

∥∥Pλ(x, y) – Pλ(x, y)
∥∥

≤ ∥∥Rλ,A
η,M(·,x)

[
A(x) – λN(x, v)

]
– Rλ,A

η,M(·,x)
[
A(x) – λN(x, v)

]∥∥
+

∥∥Rλ,A
η,M(·,x)

[
A(x) – λN(x, v)

]
– Rλ,A

η,M(·,x)
[
A(x) – λN(x, v)

]∥∥

≤ τ
q–


r – λm

∥∥A(x) –A(x) – λ
(
N(x, v) –N(x, v)

)∥∥

+ ν‖x – x‖ + λτ
q–


r – λm

∥∥N(x, v) –N(x, v)
∥∥ (.)

and

∥∥Qρ(x, y) –Qρ(x, y)
∥∥

≤ τ
q–


r – ρm

∥∥A(y) –A(y) – ρ
(
N(u, y) –N(u, y)

)∥∥

+ ν‖y – y‖ + ρτ
q–


r – ρm

∥∥N(u, y) –N(u, y)
∥∥. (.)

By the assumptions, (.), and Lemma ., we have

∥∥A(x) –A(x) – λ
(
N(x, v) –N(x, v)

)∥∥q

≤ ∥∥A(x) –A(x)
∥∥q – qλ

〈
N(x, v) –N(x, v), Jq

(
A(x) –A(x)

)〉
+ λqcq

∥∥N(x, v) –N(x, v)
∥∥q

≤ (
σ
q
 – qλι + qλπδ

q
 + cqλ

qδ
q


)‖x – x‖q , (.)
∥∥A(y) –A(y) – ρ

(
N(u, y) –N(u, y)

)∥∥q

≤ (
σ
q
 – qρι + qρπδ

q
 + cqρ

qδ
q


)‖y – y‖q , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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∥∥N(x, v) –N(x, v)
∥∥

≤ β‖v – v‖ ≤ βĤ
∥∥G(y) –G(y)

∥∥ ≤ κβ‖y – y‖, (.)
∥∥N(u, y) –N(u, y)

∥∥
≤ β‖u – u‖ ≤ βĤ

∥∥F(x) – F(x)
∥∥ ≤ kβ‖x – x‖. (.)

Combining (.)-(.), we infer

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖Pλ(x, y) – Pλ(x, y)‖
≤ (ν +

τ
q–


r–λm
q
√

σ
q
 – qλι + qλπδ

q
 + cqλqδ

q
 )‖x – x‖

+ λκβτ
q–


r–λm
‖y – y‖,

‖Qρ(x, y) –Qρ(x, y)‖
≤ (ν +

τ
q–


r–ρm
q
√

σ
q
 – qρι + qρπδ

q
 + cqρqδ

q
 )‖y – y‖

+ ρkβτ
q–


r–ρm
‖x – x‖.

(.)

It follows from (.) that

∥∥Pλ(x, y) – Pλ(x, y)
∥∥ +

∥∥Qρ(x, y) –Qρ(x, y)
∥∥

≤ θ
(‖x – x‖ + ‖y – y‖

)
, (.)

where

θ = max

{
τ
q–


r – λm

q
√

σ
q
 – qλι + qλπδ

q
 + cqλqδ

q
 +

ρkβτ
q–


r – ρm
+ ν,

τ
q–


r – ρm

q
√

σ
q
 – qρι + qρπδ

q
 + cqρqδ

q
 +

λκβτ
q–


r – λm
+ ν

}
.

By (.), we know that  ≤ θ <  and it follows from (.) that

∥∥Tλ,ρ(x, y) – Tλ,ρ(x, y)
∥∥∗ ≤ θ

∥∥(x, y) – (x, y)
∥∥∗.

This proves that Tλ,ρ : B × B → B × B is a contraction mapping. Thus, from Nadler’s
fixed point theorem [], it follows that there exist (x∗, y∗) ∈ B × B, u∗ ∈ F(x∗) and v∗ ∈
G(y∗) such that

Tλ,ρ
(
x∗, y∗) = (

x∗, y∗),
that is,

x∗ = Rλ,A
η,M(·,x∗)

[
A

(
x∗) – λN

(
x∗, v∗)], y∗ = Rρ,A

η,M(·,y∗)
[
A

(
y∗) – ρN

(
u∗, y∗)].

Hence, by Lemma ., (x∗, y∗) is a solution of the problem (.).
Next, for any u∗ ∈ F(x∗) and v∗ ∈G(y∗), let

z∗ = A
(
x∗) – λN

(
x∗, v∗), w∗ = A

(
y∗) – ρN

(
u∗, y∗),

http://www.journalofinequalitiesandapplications.com/content/2014/1/461
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x∗ = Rλ,A
η,M(·,x∗)

(
z∗), y∗ = Rρ,A

η,M(·,y∗)
(
w∗).

Then, by (.) and the proof of (.), it follows that

∥∥zn – z∗∥∥ =
∥∥A(xn) –A

(
x∗) – λ

(
N(xn, vn) –N

(
x∗, v∗))∥∥

≤ q
√

σ
q
 – qλι + qλπδ

q
 + cqλqδ

q


∥∥xn – x∗∥∥ + λκβ
∥∥yn – y∗∥∥,

∥∥wn –w∗∥∥ =
∥∥A(yn) –A

(
y∗) – ρ

(
N(xn, yn) –N

(
x∗, y∗))∥∥

≤ q
√

σ
q
 – qρι + qρπδ

q
 + cqρqδ

q


∥∥yn – y∗∥∥ + ρkβ
∥∥xn – x∗∥∥,

∥∥xn+ – x∗∥∥
≤ ( – αn)

∥∥xn – x∗∥∥ + αn
(∥∥d′

n
∥∥ +

∥∥d′′
n
∥∥)

+ ‖en‖ + αn
∥∥Rλ,A

η,M(·,xn)(zn) – x∗∥∥
≤ ( – αn)

∥∥xn – x∗∥∥ + αn
(∥∥d′

n
∥∥ +

∥∥d′′
n
∥∥)

+ ‖en‖
+ αn

∥∥Rλ,A
η,M(·,xn)(zn) – Rλ,A

η,M(·,x∗)(zn)
∥∥ + αn

∥∥Rλ,A
η,M(·,x∗)(zn) – Rλ,A

η,M(·,x∗)
(
z∗)∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αnν

∥∥xn – x∗∥∥ + αn
τ
q–


r – λm

∥∥zn – z∗∥∥
+ αn

∥∥d′
n
∥∥ +

(∥∥d′′
n
∥∥ + ‖en‖

)
,

and

∥∥yn+ – y∗∥∥
≤ ( – αn)

∥∥yn – y∗∥∥ + αn
(∥∥f ′

n
∥∥ +

∥∥f ′′
n
∥∥)

+ ‖hn‖ + αn
∥∥Rρ,A

η,M(·,yn)(wn) – y∗∥∥
≤ ( – αn)

∥∥yn – y∗∥∥ + αn
(∥∥f ′

n
∥∥ +

∥∥f ′′
n
∥∥)

+ ‖hn‖
+ αn

∥∥Rρ,A
η,M(·,yn)(wn) – Rρ,A

η,M(·,y∗)(wn)
∥∥ + αn

∥∥Rρ,A
η,M(·,y∗)(wn) – Rρ,A

η,M(·,y∗)
(
w∗)∥∥

≤ ( – αn)
∥∥yn – y∗∥∥ + αnν

∥∥yn – y∗∥∥ + αn
τ
q–


r – ρm

∥∥wn –w∗∥∥
+ αn

∥∥f ′
n
∥∥ +

(∥∥f ′′
n
∥∥ + ‖hn‖

)
.

Thus we obtain

∥∥xn+ – x∗∥∥ +
∥∥yn+ – y∗∥∥

≤ ( – αn)
(∥∥xn – x∗∥∥ +

∥∥yn – y∗∥∥)

+ αn

[
ν +

ρkβτ
q–


r – ρm
+

τ
q–


r – λm

q
√

σ
q
 – qλι + qλπδ

q
 + cqλqδ

q


]∥∥xn – x∗∥∥

+ αn

[
ν +

λκβτ
q–


r – λm
+

τ
q–


r – ρm

q
√

σ
q
 – qρι + qρπδ

q
 + cqρqδ

q


]

× ∥∥yn – y∗∥∥ + αn
(∥∥f ′

n
∥∥ +

∥∥d′
n
∥∥)

+
(∥∥f ′′

n
∥∥ + ‖hn‖ +

∥∥d′′
n
∥∥ + ‖en‖

)
≤ [

 – αn( – θ )
](∥∥xn – x∗∥∥ +

∥∥yn – y∗∥∥)

+ αn( – θ ) · 
 – θ

(∥∥f ′
n
∥∥ +

∥∥d′
n
∥∥)

+
(∥∥f ′′

n
∥∥ + ‖hn‖ +

∥∥d′′
n
∥∥ + ‖en‖

)
. (.)
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Since
∑∞

n= αn =∞, it follows from Lemma ., (.), and (.) that

∥∥xn – x∗∥∥ +
∥∥yn – y∗∥∥ → 

as n → ∞. Further, by un ∈ F(xn), u∗ ∈ F(x∗), vn ∈ G(yn), v∗ ∈ G(y∗), and the Ĥ-Lipschitz
continuity of F and G, we obtain

∥∥un – u∗∥∥ ≤ Ĥ
∥∥F(xn) – F

(
x∗)∥∥ ≤ k

∥∥xn – x∗∥∥

and

∥∥vn – v∗∥∥ ≤ Ĥ
∥∥G(yn) –G

(
y∗)∥∥ ≤ κ

∥∥yn – y∗∥∥.
Thus we know that the sequence {(xn, yn,un, vn)} converges to a solution (x∗, y∗,u∗, v∗) of
the problem (.).
Now, we prove the conclusion (). By (.), we know

⎧⎨
⎩

‖ϕn+ – x∗‖ ≤ ‖( – αn)ϕn + αnRλ,A
η,M(·,ϕn)(sn) + αndn + en – x∗‖ + εn,

‖ψn+ – y∗‖ ≤ ‖( – αn)ψn + αnRρ,A
η,M(·,ψn)(tn) + αnfn + hn – y∗‖ + εn.

(.)

As in the proof of the inequality (.), we have

∥∥( – αn)ϕn + αnRλ,A
η,M(·,ϕn)(sn) + αndn + en – x∗∥∥

+
∥∥( – αn)ψn + αnRρ,A

η,M(·,ψn)(tn) + αnfn + hn – y∗∥∥
≤ [

 – αn( – θ )
](∥∥ϕn – x∗∥∥ +

∥∥ψn – y∗∥∥)

+ αn( – θ ) · 
 – θ

(∥∥d′
n
∥∥ +

∥∥f ′
n
∥∥)

+
(∥∥d′′

n
∥∥ + ‖en‖ +

∥∥f ′′
n
∥∥ + ‖hn‖

)
. (.)

Since  < α ≤ αn, it follows from (.) and (.) that

∥∥ϕn+ – x∗∥∥ +
∥∥ψn+ – y∗∥∥

≤ [
 – αn( – θ )

](∥∥ϕn – x∗∥∥ +
∥∥ψn – y∗∥∥)

+ αn( – θ ) · 
 – θ

(∥∥d′
n
∥∥ +

∥∥f ′
n
∥∥ +

εn + εn

α

)
+

(∥∥d′′
n
∥∥ +

∥∥f ′′
n
∥∥ + ‖en‖ + ‖hn‖

)
.

Suppose that limn→∞(εn, εn) = (, ). Then, from
∑∞

n= αn = ∞ and Lemma ., it follows
that

∥∥ϕn – x∗∥∥ +
∥∥ψn – y∗∥∥ → 

as n → ∞. Further, from χn ∈ F(ϕn), u∗ ∈ F(x∗), �n ∈ G(ψn), v∗ ∈ G(y∗), and the Ĥ-
Lipschitz continuity of F and G, we have

∥∥χn – u∗∥∥ ≤ Ĥ
∥∥F(ϕn) – F

(
x∗)∥∥ ≤ k

∥∥ϕn – x∗∥∥
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and

∥∥�n – v∗∥∥ ≤ Ĥ
∥∥G(ψn) –G

(
y∗)∥∥ ≤ κ

∥∥ψn – y∗∥∥.

Hence we know that limn→∞(ϕn,ψn,χn,�n) = (x∗, y∗,u∗, v∗).
Conversely, if limn→∞(ϕn,ψn,χn,�n) = (x∗, y∗,u∗, v∗), then we have

εn =
∥∥ϕn+ –

{
( – αn)ϕn + αnRλ,A

η,M(·,ϕn)(sn) + αndn + en
}∥∥

≤ ∥∥ϕn+ – x∗∥∥ +
∥∥( – αn)ϕn + αnRλ,A

η,M(·,ϕn)(sn) + αndn + en – x∗∥∥,
εn =

∥∥ψn+ –
{
( – αn)ψn + αnRρ,A

η,M(·,ψn)(tn) + αnfn + hn
}∥∥

≤ ∥∥ψn+ – y∗∥∥ +
∥∥( – αn)ψn + αnRρ,A

η,M(·,ψn)(tn) + αnfn + hn – y∗∥∥

and

εn + εn ≤ ∥∥ϕn+ – x∗∥∥ +
∥∥ψn+ – y∗∥∥ +

[
 – αn( – θ )

](∥∥ϕn – x∗∥∥ +
∥∥ψn – y∗∥∥)

+ αn( – θ ) · 
 – θ

(∥∥d′
n
∥∥ +

∥∥f ′
n
∥∥)

+
(∥∥d′′

n
∥∥ +

∥∥f ′′
n
∥∥ + ‖en‖ + ‖hn‖

) → 

as n→ ∞. This completes the proof. �

Remark . If B and B are both -uniformly smooth Banach space and  < λ = ρ <
min{r/m, r/m} is a constant such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|ρ – ι+πδ –r(–ν)(m(–ν)+kβτ)
cδ τ –(m(–ν)+kβτ)

|
<

√
[ι+πδ –r(–ν)(m(–ν)+kβτ)]–[σ

 τ –r

 (–ν )][cδ


 τ –(m(–ν)+kβτ)]

cδ τ –(m(–ν)+kβτ)
,

|ρ – ι+πδ–r(–ν)(m(–ν)+κβτ
cδτ –(m(–ν)+κβτ)

|
<

√
[ι+πδ–r(–ν)(m(–ν)+κβτ)]–[σ

 τ –r

(–ν )][cδ


τ –(m(–ν)+κβτ)]

cδτ –(m(–ν)+κβτ)
,

ι + πδ

 – r( – ν)(m( – ν) + kβτ)

>
√
[σ 

 τ 
 – r ( – ν

 )][cδ τ 
 – (m( – ν) + kβτ)],

ι + πδ

 – r( – ν)(m( – ν) + κβτ)

>
√
[σ 

 τ 
 – r( – ν

 )][cδτ 
 – (m( – ν) + κβτ)],

cδ τ 
 > (m( – ν) + kβτ), cδτ 

 > (m( – ν) + κβτ),

then (.) holds. We note that Hilbert space and Lp (or lp) ( ≤ p < ∞) spaces are -
uniformly smooth Banach spaces.

From Theorem ., we have the following results.

Corollary . For i = , , let ηi,Ai,Mi, F ,G, andBi be the same as in Theorem .. Suppose
that N : B × B → B is ι-strong accretive with respect to A, δ-Lipschitz continuous in
the first argument, β-Lipschitz continuous in the second variable and N : B × B → B

is ι- with respect to A, δ-Lipschitz continuous in the second argument and β-Lipschitz
continuous in the first variable. If condition (.) in Theorem . holds, and there exist
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constants λ ∈ (, r/m) and ρ ∈ (, r/m) such that
⎧⎪⎨
⎪⎩

τ
q–


q
√

σ
q
 –qλι+cqλ

q δ
q


r–λm
+ ρkβτ

q–


r–ρm
+ ν < ,

τ
q–


q
√

σ
q
 –qρι+cqρq δ

q


r–ρm
+ λκβτ

q–


r–λm
+ ν < ,

where cq , cq are the constants as in Lemma ., then the iterative sequence {(xn, yn,un, vn)}
generated by Algorithm . converges strongly to a solution (x∗, y∗,u∗, v∗) of the problem
(.).Moreover, if, in addition, there exists α >  such that αn ≥ α for all n ≥ , then

lim
n→∞(ϕn,ψn,χn,�n) =

(
x∗, y∗,u∗, v∗) ⇐⇒ lim

n→∞(εn, εn) = (, ),

where (εn, εn) is defined by (.).

Corollary . For i = , , let ηi, Ai, Mi, Ni, and Bi be the same as in Theorem ., and
F : B → B be k-Lipschitz continuous and G : B → B be κ-Lipschitz continuous.Assume
that for any (x, y) ∈ B ×B, the iterative sequence {(xn, yn)} is generated by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn+ = ( – αn)xn + αnRλ,A
η,M(·,xn)(zn) + αndn + en,

yn+ = ( – αn)yn + αnRρ,A
η,M(·,yn)(wn) + αnfn + hn,

zn = A(xn) – λN(xn,G(yn)),
wn = A(yn) – ρN(F(xn), yn),

where λ,ρ >  are constants, and for all n≥ , the sequences {αn} is a sequence in (, ]with∑∞
n= αn =∞, {dn}, {en} ⊂ B, and {fn}, {hn} ⊂ B are the sequences of errors and satisfy the

following conditions:
() dn = d′

n + d′′
n and fn = f ′

n + f ′′
n , where {d′

n}, {d′′
n} ⊂ B and {f ′

n}, {f ′′
n } ⊂ B;

() limn→∞ ‖d′
n‖ =  and limn→∞ ‖f ′

n‖ = ;
()

∑∞
n= ‖d′′

n‖ <∞,
∑∞

n= ‖en‖ < ∞,
∑∞

n= ‖f ′′
n ‖ < ∞ and

∑∞
n= ‖hn‖ < ∞.

If conditions (.) and (.) in Theorem . hold, then the iterative sequence {(xn, yn)}
converges strongly to the unique solution (x∗, y∗) of the problem (.). Further, if, in addition,
there exists α >  such that αn ≥ α for all n ≥ , then

lim
n→∞(ϕn,ψn) =

(
x∗, y∗) ⇐⇒ lim

n→∞(εn, εn) = (, ),

where (εn, εn) ∈R×R is defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εn = ‖ϕn+ – {( – αn)ϕn + αnRλ,A
η,M(·,ϕn)(sn) + αndn + en}‖,

εn = ‖ψn+ – {( – αn)ψn + αnRρ,A
η,M(·,ψn)(tn) + αnfn + hn}‖,

sn = A(ϕn) – λN(ϕn,G(ψn)),
tn = A(ψn) – ρN(F(ϕn),ψn)

for any sequence {(ϕn,ψn)} ⊂ B ×B.

Proof For any λ >  and ρ > , define Pλ : B ×B → B and Qρ : B ×B → B by

⎧⎨
⎩
Pλ(x, y) = Rλ,A

η,M(·,x)[A(x) – λN(x,G(y))],

Qρ(x, y) = Rρ,A
η,M(·,y)[A(y) – ρN(F(x), y)]

(.)
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for all (x, y) ∈ B ×B. Now, define the norm ‖ · ‖∗ on B ×B by

∥∥(x, y)∥∥∗ = ‖x‖ + ‖y‖

for all (x, y) ∈ B × B. It is easy to see that (B ×B,‖ · ‖∗) is a Banach space (see []). By
(.), for any λ >  and ρ > , define Tλ,ρ : B ×B → B ×B by

Tλ,ρ(x, y) =
(
Pλ(x, y),Qρ(x, y)

)

for all (x, y) ∈ B ×B.
Thus,Tλ,ρ is a contractivemapping. In fact, for any (xi, yi) ∈ B×B and i = , , it follows

from (.) and (.) that

Pλ(x, y) = Rλ,A
η,M(·,x)

[
A(x) – λN

(
x,G(y)

)]
,

Qρ(x, y) = Rρ,A
η,M(·,y)

[
A(y) – ρN

(
F(x), y

)]
,

Pλ(x, y) = Rλ,A
η,M(·,x)

[
A(x) – λN

(
x,G(y)

)]
,

Qρ(x, y) = Rρ,A
η,M(·,y)

[
A(y) – ρN

(
F(x), y

)]
,

and

∥∥Tλ,ρ(x, y) – Tλ,ρ(x, y)
∥∥∗ ≤ ϑ

∥∥(x, y) – (x, y)
∥∥∗,

where

ϑ = max

{
τ
q–


r – λm

q
√

σ
q
 – qλι + qλπδ

q
 + cqλqδ

q
 +

ρkβτ
q–


r – ρm
+ ν,

τ
q–


r – ρm

q
√

σ
q
 – qρι + qρπδ

q
 + cqρqδ

q
 +

λκβτ
q–


r – λm
+ ν

}
.

From (.), now we know that Tλ,ρ : B ×B → B ×B is a Banach contraction mapping.
Hence, (x∗, y∗) is unique solution of the problem (.). The rest of proof is similar to that
of Theorem . and we omit the details. This completes the proof. �

Remark . If dn =  or en =  or fn =  or hn =  for all n ≥  in Algorithm . and
Corollary ., then the conclusions of Theorem . also hold. The results of Theorem .
improve and generalize the corresponding results of [, , ]. For other related works, we
refer to [–, –].

4 Conclusions
In this paper, we first introduced a systemof generalized nonlinearmixed quasi-variational
inclusions with (A,η)-accretive mappings in Banach spaces, which includes some systems
of quasi-variational inclusions and variational inequality problems as special cases. Then,
by using the new resolvent operator technique associated with (A,η)-accretive mappings,
Nadler’s fixed point theorem, and Liu’s inequality, we constructed some new Mann iter-
ative algorithms with mixed errors for the existence of solutions for generalized nonlin-
ear variational inclusion systems in q-uniformly smooth Banach spaces. Furthermore, we
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proved the convergence and stability of the iterative sequences generated by the perturbed
iterative algorithm. The results presented in this paper improve and generalize the corre-
sponding results in the literature.
By similar methods to the ones this paper, we can study the existence of solutions and

the convergence and stability to the following system of general nonlinear mixed quasi-
variational inclusions:
Find (x,x, . . . ,xm) ∈ B ×B × · · · ×Bm and ui ∈ Fi(xi) (i = , , . . . ,m) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

 ∈ N(x,u,x, . . . ,xm) +M(x,x),
 ∈ N(x,x,u, . . . ,xm) +M(x,x),
· · ·
 ∈ Nm(u,x,x, . . . ,xm) +Mm(xm,xm),

where Ni : B ×B × · · · ×Bm → Bi, Ai : Bi → Bi, and ηi : Bi ×Bi → Bi are single-valued
mappings, Fi : Bi → Bi is multi-valued mapping, Mi : Bi × Bi → Bi is an any nonlinear
mapping such that Mi(·, t) : Bi → Bi is an (Ai,ηi)-accretive mapping for all t ∈ Bi and
i = , , which are still worthy of being studied in further research.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally in this paper and they read and approved the final manuscript.

Author details
1Department of Mathematics, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P.R. China. 2Key
Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Zigong,
Sichuan 643000, P.R. China. 3Department of Mathematics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
4Department of Mathematics and the RINS, Gyeongsang National University, Chinju, 660-701, Korea.

Acknowledgements
This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under Grant No.
(31-130-35-HiCi). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Received: 19 March 2014 Accepted: 1 October 2014 Published: 21 Nov 2014

References
1. Cho, YJ, Fang, YP, Huang, NJ, Hwang, HJ: Algorithms for systems of nonlinear variational inequalities. J. Korean Math.

Soc. 41(3), 489-499 (2004)
2. Fang, YP, Huang, NJ: H-Monotone operator and resolvent operator technique for variational inclusions. Appl. Math.

Comput. 145, 795-803 (2003)
3. Fang, YP, Huang, NJ, Thompson, HB: A new system of variational inclusions with (H,η)-monotone operators in Hilbert

spaces. Comput. Math. Appl. 49(2-3), 365-374 (2005)
4. Fang, YP, Huang, NJ: Iterative algorithm for a system of variational inclusions involving H-accretive operators in

Banach spaces. Acta Math. Hung. 108(3), 183-195 (2005)
5. Huang, NJ, Fang, YP: A new class of general variational inclusions involving maximal η-monotone mappings. Publ.

Math. (Debr.) 62(1-2), 83-98 (2003)
6. Huang, NJ, Fang, YP: Fixed point theorems and a new system of multivalued generalized order complementarity

problems. Positivity 7(3), 257-265 (2003)
7. Huang, NJ: Nonlinear implicit quasi-variational inclusions involving generalizedm-accretive mappings. Arch. Inequal.

Appl. 2(4), 413-425 (2004)
8. Kassay, G, Kolumbán, J: System of multi-valued variational inequalities. Publ. Math. (Debr.) 56(1-2), 185-195 (2000)
9. Lan, HY, Cho, YJ, Verma, RU: On nonlinear relaxed cocoercive variational inclusions involving (A,η)-accretive

mappings in Banach spaces. Comput. Math. Appl. 51(9-10), 1529-1538 (2006)
10. Verma, RU: A-Monotononicity and applications to nonlinear variational inclusion problems. J. Appl. Math. Stoch. Anal.

17(2), 193-195 (2004)
11. Verma, RU: Approximation-solvability of a class of A-monotone variational inclusion problems. J. Korea Soc. Ind. Appl.

Math. 8(1), 55-66 (2004)
12. Verma, RU: Generalized system for relaxed cocoercive variational inequalities and projection methods. J. Optim.

Theory Appl. 121(1), 203-210 (2004)
13. Verma, RU: Nonlinear H-monotone variational inclusions and resolvent operator technique. Int. J. Pure Appl. Math.

Sci. 2(1), 53-57 (2005)

http://www.journalofinequalitiesandapplications.com/content/2014/1/461


Lan et al. Journal of Inequalities and Applications 2014, 2014:461 Page 18 of 18
http://www.journalofinequalitiesandapplications.com/content/2014/1/461

14. Verma, RU: Nonlinear A-monotone mixed variational inclusion problems based on resolvent operator techniques.
Math. Sci. Res. J. 9(10), 255-267 (2005)

15. Lan, HY: Stability of iterative processes with errors for a system of nonlinear (A,η)-accretive variational inclusions in
Banach spaces. Comput. Math. Appl. 56(1), 290-303 (2008)

16. Kazmi, KR, Ahmad, N, Shahzad, M: Convergence and stability of an iterative algorithm for a system of generalized
implicit variational-like inclusions in Banach spaces. Appl. Math. Comput. 218(18), 9208-9219 (2012)

17. Suwannawit, J, Petrot, N: Existence and stability of iterative algorithm for a system of random set-valued variational
inclusion problems involving (A,m,η)-generalized monotone operators. J. Appl. Math. 2012, Article ID 590676 (2012)

18. Petrot, N: A resolvent operator technique for approximate solving of generalized system mixed variational inequality
and fixed point problems. Appl. Math. Lett. 23(4), 440-445 (2010)

19. Ceng, LC, Latif, A, Al-Mazrooei, AE: Mann-type viscosity approximation methods for multivalued variational inclusions
with finitely many variational inequality constraints in Banach spaces. Abstr. Appl. Anal. 2013, Article ID 328740 (2013)

20. Adly, S, Outrata, JV: Qualitative stability of a class of non-monotone variational inclusions. Application in electronics.
J. Convex Anal. 20(1), 43-66 (2013)

21. Lan, HY, Kim, JK, Liu, ZS: Stable perturbed iteration procedures for solving new strongly nonlinear operator inclusions
in Banach spaces. Nonlinear Funct. Anal. Appl. 18(3), 433-444 (2013)

22. Guan, JL, Hu, CS: A system of generalized variational inclusions involving a new monotone mapping in Banach
spaces. Abstr. Appl. Anal. 2013, Article ID 654537 (2013)

23. Zeidler, E: Nonlinear Functional Analysis and Its Applications II: Monotone Operators. Springer, Berlin (1985)
24. Lan, HY: Generalized Yosida approximations based on relatively A-maximalm-relaxed monotonicity frameworks.

Abstr. Appl. Anal. 2013, Article ID 157190 (2013)
25. Xu, HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 16(12), 1127-1138 (1991)
26. Liu, LS: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces.

J. Math. Anal. Appl. 194(1), 114-125 (1995)
27. Nadler, SB: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)

10.1186/1029-242X-2014-461
Cite this article as: Lan et al.: Approximation methods for solutions of generalized multi-valued mixed
quasi-variational inclusion systems. Journal of Inequalities and Applications 2014, 2014:461

http://www.journalofinequalitiesandapplications.com/content/2014/1/461

	Approximation methods for solutions of generalized multi-valued mixed quasi-variational inclusion systems
	Abstract
	Keywords

	Introduction
	Preliminaries
	Approximation methods and main results
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


