
Kiran et al. Journal of Inequalities and Applications 2014, 2014:458
http://www.journalofinequalitiesandapplications.com/content/2014/1/458

RESEARCH Open Access

Generalization of Mizoguchi-Takahashi type
contraction and related fixed point theorems
Quanita Kiran1*, Muhammad Usman Ali2 and Tayyab Kamran2,3

*Correspondence:
quanita.kiran@seecs.nust.edu.pk
1School of Electrical Engineering
and Computer Sciences, National
University of Sciences and
Technology, H-12, Islamabad,
Pakistan
Full list of author information is
available at the end of the article

Abstract
In this paper, we introduce a new notion to generalize a Mizoguchi-Takahashi type
contraction. Then, using this notion, we obtain a fixed point theorem for multivalued
maps. Our results generalize some results by Minak and Altun, Kamran and those
contained therein.
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1 Introduction and preliminaries
The notions of α-ψ-contractive and α-admissible mappings were introduced by Samet
et al. []. They proved some fixed point results for such mappings in complete metric
spaces. These notions were generalized by Karapınar and Samet []. Asl et al. [] ex-
tended these notions to multifunctions and introduced the notions of α∗-ψ-contractive
and α∗-admissible mappings. Afterwards Ali and Kamran [] further generalized the no-
tion of α∗-ψ-contractive mappings and obtained some fixed point theorems for multival-
ued mappings. Some interesting extensions of results by Samet et al. [] are available in
[–]. Nadler initiated a fixed point theorem formultivaluedmappings. Some extensions
of Nadler’s result can also be found in [–]. Mizoguchi and Takahashi [] extended
the Nadler fixed point theorem. Recently, Minak and Altun generalized Mizoguchi and
Takahashi’s theorem by introducing a function α : X × X → [,∞). In this paper, we in-
troduce the notion of α∗-Mizoguchi-Takahashi type contraction. By using this notion, we
generalize some fixed point theorems presented byMinak and Altun [], Kamran [] and
those contained therein.
We denote by CL(X) the class of all nonempty closed subsets of X and by CB(X) the

class of all nonempty closed and bounded subsets ofX. ForA ∈ CL(X) orCB(X) and x ∈ X,
d(x,A) = inf{d(x,a) : a ∈ A}, and H is a generalized Hausdorff metric induced by d. Now
we recollect some basic definitions and results for the sake of completeness.
If, for x ∈ X, there exists a sequence {xn} in X such that xn ∈ Txn–, then O(T ,x) =

{x,x,x, . . .} is said to be an orbit of T : X → CL(X) at x. A mapping h : X →R is said to
be T-orbitally lower semicontinuous at ξ ∈ X, if {xn} is a sequence in O(T ,x) and xn → ξ

implies h(ξ )≤ lim infh(xn). The following definition is due to Asl et al. [].
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Definition . [] Let (X,d) be a metric space, α : X × X → [,∞) and T : X → CL(X).
Then T is α∗-admissible if for each x, y ∈ X with α(x, y) ≥  ⇒ α∗(Tx,Ty) ≥ , where
α∗(Tx,Ty) = inf{α(a,b) : a ∈ Tx,b ∈ Ty}.

Minak and Altun [] generalized Mizoguchi and Takahashi’s theorem in the following
way.

Theorem . [] Let (X,d) be a complete metric space, T : X → CB(X) be a mapping
satisfying

α∗(Tx,Ty)H(Tx,Ty) ≤ φ
(
d(x, y)

)
d(x, y) for each x, y ∈ X,

where φ : [,∞) → [, ) such that lim supr→t+ φ(r) <  for each t ∈ [,∞). Also assume
that

(i) T is α∗-admissible;
(ii) there exists x ∈ X with α(x,x)≥  for some x ∈ Tx;
(iii) (a) T is continuous,

or
(b) if {xn} is a sequence in X with xn → x as n→ ∞ and α(xn,xn+)≥  for each

n ∈N∪ {}, then we have α(xn,x)≥  for each n ∈N∪ {}.
Then T has a fixed point.

Kamran in [] generalized Mizoguchi and Takahashi’s theorem in the following way.

Theorem . [] Let (X,d) be a complete metric space and T : X → CL(X) be a mapping
satisfying

d(y,Ty) ≤ φ
(
d(x, y)

)
d(x, y) for each x ∈ X and y ∈ Tx,

where φ : [,∞)→ [, ) such that lim supr→t+ φ(r) <  for each t ∈ [,∞). Then,
(i) for each x ∈ X , there exists an orbit {xn} of T and ξ ∈ X such that limn xn = ξ ;
(ii) ξ is a fixed point of T if and only if the function h(x) := d(x,Tx) is T-orbitally lower

semicontinuous at ξ .

2 Main results
We begin this section with the following definition.

Definition . Let (X,d) be ametric space, T : X → CL(X) is said to be an α∗-Mizoguchi-
Takahashi type contraction if there exist two functions α : X × X → [,∞) and φ :
[,∞)→ [, ) satisfying lim supr→t+ φ(r) <  for every t ∈ [,∞) such that

α∗(Tx,Ty)d(y,Ty) ≤ φ
(
d(x, y)

)
d(x, y) for each x ∈ X and y ∈ Tx. (.)

Before moving toward our main results, we prove some lemmas.

Lemma . Let (X,d) be a metric space, {Ak} be a sequence in CL(X), {xk} be a sequence
in X such that xk ∈ Ak–. Let φ : [,∞) → [, ) be a function satisfying lim supr→t+ φ(r) < 
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for every t ∈ [,∞). Suppose that {d(xk–,xk)} is a nonincreasing sequence such that

d(xk ,Ak) ≤ φ
(
d(xk–,xk)

)
d(xk–,xk), (.)

d(xk ,xk+) ≤ d(xk ,Ak) + φnk
(
d(xk–,xk)

)
, (.)

where n < n < · · · , k,nk ∈ N. Then {xk} is a Cauchy sequence in X.

Proof The proof runs on the same lines as the proof of [, Lemma .]. We include
its details for completeness. Let dk := d(xk–,xk). Since dk is a nonincreasing sequence
of nonnegative real numbers, therefore limk→∞ dk = c ≥ . By hypothesis, for t = c, we
get lim supt→c+ φ(t) < . Therefore, there exists k such that k ≥ k implies that φ(dk) < h,
where lim supt→c+ φ(t) ≤ h < . From (.) and (.), we have

dk+ ≤ φ(dk)dk + φnk (dk)

≤ φ(dk)φ(dk–)dk– + φ(dk)φnk– (dk–) + φnk (dk)

· · ·

≤
k∏
i=

φ(di)d +
k–∑
m=

k∏
i=m+

φ(di)φnm (dm) + φnk (dk)

≤
k∏
i=

φ(di)d +
k–∑
m=

k∏
i=max{k,m+}

φ(di)φnm (dm) + φnk (dk). (.)

We have deleted some factors of φ from the product in (.) using the fact that φ < . Let
S denote the second term on the right-hand side of (.),

S ≤ (k – )hk–k+
k–∑
m=

φnm (dm) +
k–∑
m=k

hk–mφnm (dm)

≤ (k – )hk–k+
k–∑
m=

φnm (dm) +
k–∑
m=k

hk–m+nm

≤ Chk +
k–∑
m=k

hk–m+nm

≤ Chk + hk+nk–k + hk+nk––(k–) + · · · + hk+nk––(k–)

≤ Chk +
k+nk––(k–)∑
m=k+nk–k

hm

= Chk +
hk+nk–k+ – hk+nk––k+

 – h

< Chk + hk
hnk–k+

 – h
= Chk ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/458


Kiran et al. Journal of Inequalities and Applications 2014, 2014:458 Page 4 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/458

where C is a generic positive constant. Now, it follows from (.) that

dk+ ≤
k∏
i=

φ(di)d +Chk + φnk (dk)

< hk–k+
k–∏
i=

φ(di)d +Chk + hnk

< Chk +Chk + k

= Chk ,

C again being a generic constant. Now, for k ≥ k,m ∈N,

d(xk ,xk+m) ≤
k+m∑
i=k+

di

<
k+m∑
i=k+

Chi–

= C
hk+ – hk+m

 – h
≤ hk ,

which shows that {xk} is a Cauchy sequence in X. �

Lemma . Let (X,d) be a metric space, T : X → CL(X) be an α∗-Mizoguchi-Takahashi
type contraction. Let {xk} be an orbit of T at x such that α∗(Txk–,Txk) ≥  and

d(xk ,xk+) ≤ d(xk ,Txk) + φnk
(
d(xk–,xk)

)
, (.)

where xk ∈ Txk–, n < n < · · · and k,nk ∈ N and {d(xk–,xk)} is a nonincreasing sequence.
Then {xk} is a Cauchy sequence in X.

Proof Given that {xk} is an orbit of T at x, i.e., xk ∈ Txk– for each k ∈ N, with
α∗(Txk–,Txk) ≥  for each k ∈ N, as T is an α∗-Mizoguchi-Takahashi type contraction.
From (.), we have

d(xk ,Txk) ≤ α∗(Txk–,Txk)d(xk ,Txk)

≤ φ
(
d(xk–,xk)

)
d(xk–,xk).

From (.), we have

d(xk ,xk+) ≤ d(xk ,Txk) + φnk
(
d(xk–,xk)

)
.

Since all the conditions of Lemma . are satisfied, {xk} is a Cauchy sequence in X. �

Theorem . Let (X,d) be a complete metric space, T : X → CL(X) be an α∗-Mizoguchi-
Takahashi type contraction and α∗-admissible. Suppose that there exist x ∈ X and x ∈
Tx such that α(x,x)≥ . Then,
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(i) there exists an orbit {xn} of T and x∗ ∈ X such that limxn = x∗;
(ii) x∗ is a fixed point of T if and only if h(x) = d(x,Tx) is T-orbitally lower

semicontinuous at x∗.

Proof By hypothesis, we have x ∈ X and x ∈ Tx with α(x,x) ≥ . Thus, for x ∈ Tx,
we can choose a positive integer n such that

φn
(
d(x,x)

) ≤ [
 – φ

(
d(x,x)

)]
d(x,x). (.)

There exists x ∈ Tx such that

d(x,x)≤ d(x,Tx) + φn
(
d(x,x)

)
. (.)

As T is α∗-admissible, we have α∗(Tx,Tx) ≥ . From (.) and (.) it follows that

d(x,x) ≤ d(x,Tx) + φn
(
d(x,x)

)

≤ α∗(Tx,Tx)d(x,Tx) + φn
(
d(x,x)

)

≤ φ
(
d(x,x)

)
d(x,x) +

[
 – φ

(
d(x,x)

)]
d(x,x)

= d(x,x).

Now we can choose a positive integer n > n such that

φn
(
d(x,x)

) ≤ [
 – φ

(
d(x,x)

)]
d(x,x). (.)

There exists x ∈ Tx such that

d(x,x)≤ d(x,Tx) + φn
(
d(x,x)

)
. (.)

As T is α∗-admissible, then α(x,x) ≥ α∗(Tx,Tx) ≥  implies α∗(Tx,Tx) ≥ . Using
(.) and (.) we have that

d(x,x) ≤ d(x,Tx) + φn
(
d(x,x)

)

≤ α∗(Tx,Tx)d(x,Tx) + φn
(
d(x,x)

)

≤ φ
(
d(x,x)

)
d(x,x) +

[
 – φ

(
d(x,x)

)]
d(x,x)

= d(x,x).

By repeating this process for all k ∈N, we can choose a positive integer nk such that

φnk
(
d(xk–,xk)

) ≤ [
 – φ

(
d(xk–,xk)

)]
d(xk–,xk). (.)

There exists xk ∈ Txk– such that

d(xk ,xk+) ≤ d(xk ,Txk) + φnk
(
d(xk–,xk)

)
. (.)
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Also, by α∗-admissibility of T , we have α∗(Txk–,Txk) ≥  for each k ∈ N. From (.) and
(.) it follows that

d(xk ,xk+) ≤ d(xk ,Txk) + φnk
(
d(xk–,xk)

)

≤ α∗(Txk–,Txk)d(xk ,Txk) + φnk
(
d(xk–,xk)

)

≤ φ
(
d(xk–,xk)

)
d(xk–,xk) +

[
 – φ

(
d(xk–,xk)

)]
d(xk–,xk)

= d(xk–,xk),

which implies that {d(xk ,xk+)} is a nonincreasing sequence of nonnegative real numbers.
Thus, by Lemma ., {xk} is a Cauchy sequence in X. Since X is complete, there exists
x∗ ∈ X such that xk → x∗ as k → ∞. Since xk ∈ Txk–, it follows from (.) that

d(xk ,Txk) ≤ α∗(Txk–,Txk)d(xk ,Txk)

≤ φ
(
d(xk–,xk)

)
d(xk–,xk)

< d(xk–,xk).

Letting k → ∞, in the above inequality, we have

lim
k→∞

d(xk ,Txk) = . (.)

Suppose that h(x) = d(x,Tx) is T-orbitally lower semicontinuous at x∗, then

d
(
x∗,Tx∗) = h

(
x∗) ≤ lim inf

k
h(xk) = lim inf

k
d(xk ,Txk) = .

By the closedness of T it follows that x∗ ∈ Tx∗. Conversely, suppose that x∗ is a fixed point
of T , then h(x∗) =  ≤ lim infk h(xk). �

Example . LetX = { 
n : n ∈N}∪{}∪ (,∞) be endowedwith the usualmetric d. Define

T : X → CL(X) by

Tx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{} if x = ,

{ 
n+ ,


n+ } if x = 

n : ≤ n≤ ,

{ 
n , } if x = 

n : n > ,

[x,∞) if x > ,

and α : X ×X → [,∞) by

α(x, y) =

⎧⎨
⎩
 if x, y ∈ { 

n : n ∈N} ∪ {},
 otherwise.

Define φ : [,∞) → [, ) by

φ(t) =

⎧⎨
⎩


 if  ≤ t ≤ 

 ,

 if t > 

 .
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One can check that for each x ∈ X and y ∈ Tx, we have

α∗(Tx,Ty)d(y,Ty) ≤ φ
(
d(x, y)

)
d(x, y).

Also, T is α∗-admissible and for x =  we have x = 
 ∈ Tx with α(x,x) = . Moreover,

all the other conditions of Theorem . are satisfied. Therefore T has a fixed point. Note
that Theorem  of Minak and Altun [] is not applicable here; see, for example, x = 

 and
y = 

 . Further Theorem . of Kamran [] is also not applicable; see, for example, x = 
and y =  ∈ Tx.

The proofs of the following theorems run on the same lines as the proof of Theorem ..

Theorem . Let (X,d) be a complete metric space, T : X → CL(X) be an α∗-admissible
mapping such that

α∗(y,Ty)d(y,Ty) ≤ φ
(
d(x, y)

)
d(x, y) for each x ∈ X and y ∈ Tx, (.)

where φ : [,∞) → [, ) satisfying lim supr→t+ φ(r) <  for every t ∈ [,∞). Suppose that
there exist x ∈ X and x ∈ Tx such that α(x,x)≥ . Then,

(i) there exists an orbit {xn} of T and x∗ ∈ X such that limxn = x∗;
(ii) x∗ is a fixed point of T if and only if h(x) = d(x,Tx) is T-orbitally lower

semicontinuous at x∗.

Theorem . Let (X,d) be a complete metric space, T : X → CL(X) be an α∗-admissible
mapping such that

α(x, y)d(y,Ty)≤ φ
(
d(x, y)

)
d(x, y) for each x ∈ X and y ∈ Tx, (.)

where φ : [,∞) → [, ) satisfying lim supr→t+ φ(r) <  for every t ∈ [,∞). Suppose that
there exist x ∈ X and x ∈ Tx such that α(x,x)≥ . Then,

(i) there exists an orbit {xn} of T and x∗ ∈ X such that limxn = x∗;
(ii) x∗ is a fixed point of T if and only if h(x) = d(x,Tx) is T-orbitally lower

semicontinuous at x∗.

Corollary . [] Let (X,d) be a complete metric space and T : X → CL(X) be amapping
satisfying

d(y,Ty) ≤ φ
(
d(x, y)

)
d(x, y) for each x ∈ X and y ∈ Tx,

where φ : [,∞)→ [, ) such that lim supr→t+ φ(r) <  for each t ∈ [,∞). Then,
(i) for each x ∈ X , there exists an orbit {xn} of T and ξ ∈ X such that limn xn = ξ ;
(ii) ξ is a fixed point of T if and only if the function h(x) := d(x,Tx) is T-orbitally lower

semicontinuous at ξ .

Proof Define α : X × X → [,∞) by α(x, y) =  for each x, y ∈ X. Then the proof follows
from Theorem . as well as from Theorem ., and from Theorem .. �
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3 Application
From Definition ., we get the following definition by considering only those x ∈ X and
y ∈ Tx for which we have α∗(Tx,Ty)≥ .

Definition . Let (X,d) be a metric space, T : X → CL(X) is said to be a modified
α∗-Mizoguchi-Takahashi type contraction if there exist two functions α : X ×X → [,∞)
and φ : [,∞)→ [, ) satisfying lim supr→t+ φ(r) <  for every t ∈ [,∞) such that for each
x ∈ X and y ∈ Tx,

α∗(Tx,Ty) ≥  ⇒ d(y,Ty) ≤ φ
(
d(x, y)

)
d(x, y). (.)

Lemma . Let (X,d) be a metric space, T : X → CL(X) be a modified α∗-Mizoguchi-
Takahashi contraction. Let {xk} be an orbit of T at x such that α∗(Txk–,Txk) ≥  and

d(xk ,xk+) ≤ d(xk ,Txk) + φnk
(
d(xk–,xk)

)
, (.)

where xk ∈ Txk–, n < n < · · · and k,nk ∈ N and {d(xk–,xk)} is a nonincreasing sequence.
Then {xk} is a Cauchy sequence in X.

Proof Given that {xk} is an orbit of T at x, i.e., xk ∈ Txk– for each k ∈ N, with
α∗(Txk–,Txk) ≥  for each k ∈ N, as T is a modified α∗-Mizoguchi-Takahashi contrac-
tion. From (.), we have

d(xk ,Txk) ≤ φ
(
d(xk–,xk)

)
d(xk–,xk).

From (.), we have

d(xk ,xk+) ≤ d(xk ,Txk) + φnk
(
d(xk–,xk)

)
.

Since all the conditions of Lemma . are satisfied, {xk} is a Cauchy sequence in X. �

Working on the same lines as the proof of Theorem . is done, one may obtain the
proof of the following result.

Theorem . Let (X,d) be a complete metric space, T : X → CL(X) be a modified
α∗-Mizoguchi-Takahashi contraction and α∗-admissible. Suppose that there exist x ∈ X
and x ∈ Tx such that α(x,x) ≥ . Then,

(i) there exists an orbit {xn} of T and x∗ ∈ X such that limxn = x∗;
(ii) x∗ is a fixed point of T if and only if h(x) = d(x,Tx) is T-orbitally lower

semicontinuous at x∗.
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