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Abstract
According to the notion of the Lp-mixed geominimal surface area of multiple convex
bodies which were introduced by Ye et al., we define the concept of the Lp-dual
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1 Introduction
LetKn denote the set of convex bodies (compact, convex subsets with nonempty interiors)
in Euclidean space Rn. For the set of convex bodies containing the origin in their interiors
and the set of convex bodies whose centroids lie at the origin in R

n, we write Kn
o and Kn

c ,
respectively. Sn

o and Sn
c , respectively, denote the set of star bodies (about the origin) and

the set of star bodies whose centroids lie at the origin in R
n. Let Fn

o denote the set of Kn
o

that have a positive continuous curvate function. Let Sn– denote the unit sphere in R
n

and V (K ) the n-dimensional volume of the body K . For the standard unit ball B in R
n, its

volume is written by ωn = V (B).
The notion of Lp-geominimal surface area was given by Lutwak in []. For K ∈ Kn

o , and
p ≥ , the Lp-geominimal surface area, Gp(K ), of K is defined by

ω
p
n
n Gp(K ) = inf

{
nVp(K ,L)V

(
L∗) p

n : L ∈Kn
o
}
.

Here Vp(K ,L) denotes Lp-mixed volume of K ,L ∈Kn
o (see [, ]) and L∗ denotes the polar

of L. For the case p = , Gp(K ) is just the classical geominimal surface area which was
introduced by Petty []. Some affine isoperimetric inequalities related to the classical and
Lp-geominimal surface areas can be found in [–]. Recently, the Lp-geominimal surface
area was successfully extended to any real p (p �= –n) by Ye in []. Especially, Ye et al. []
studied the Lp-mixed geominimal surface area for multiple convex bodies. For p > , they
defined the Lp-mixed geominimal surface areas for K, . . . ,Kn ∈Fn

o as

G()
p (K, . . . ,Kn) = inf

L∈Kn
o

{
nVp(K, . . . ,Kn;L, . . . ,L)

n
n+p V

(
L∗) p

n+p
}
;

G()
p (K, . . . ,Kn) = inf

Li∈Kn
o

{
nVp(K, . . . ,Kn;L, . . . ,Ln)

n
n+p

n∏
i=

V
(
L∗
i
) p
(n+p)n

}
.
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Here Q∗ denotes the polar body of Q, and Vp(K, . . . ,Kn;L, . . . ,Ln) denotes a type of
Lp-mixed volume of K, . . . ,Kn ∈Fn

o , L, . . . ,Ln ∈Kn
o (see []).

Wang and Qi in [] introduced the Lp-dual geominimal surface area as follows: For
K ∈ Sn

o , and p≥ , the Lp-dual geominimal surface area, G̃–p(K ), of K is defined by

ω
– p
n

n G̃–p(K ) = inf
{
nṼ–p(K ,L)V

(
L∗)– p

n : L ∈Kn
c
}
. (.)

Here Ṽ–p(K ,L) denotes the Lp-dual mixed volume of K ,L ∈ Sn
o (see Section ).

Note that we extend L from an origin-symmetric convex body to L ∈ Kn
c in definition

(.). Actually, we can prove that the results of [] all are correct under this extension.
In this paper, we first define the Lp-dual mixed geominimal surface area formultiple star

bodies with the same idea in mind as [].

Definition . For K, . . . ,Kn ∈ Sn
o , p ≥ , the Lp-dual mixed geominimal surface areas,

G̃(j)
–p(K, . . . ,Kn) (j = , ), of K, . . . ,Kn, are defined by

ω
– p
n

n G̃()
–p(K, . . . ,Kn) = inf

L∈Kn
c

{
nṼ–p(K, . . . ,Kn;L, . . . ,L)V

(
L∗)– p

n
}
; (.)

ω
– p
n

n G̃()
–p(K, . . . ,Kn) = inf

Li∈Kn
c

{
nṼ–p(K, . . . ,Kn;L, . . . ,Ln)

n∏
i=

V
(
L∗
i
)– p

n

}
. (.)

Here Ṽ–p(K, . . . ,Kn;L, . . . ,Ln) denotes a type of Lp-dual mixed volume of the star bodies
K, . . . ,Kn, L, . . . ,Ln (see (.)).

Comparing the definitions (.) and (.), we easily obtain

G̃()
–p(K, . . . ,Kn) ≤ G̃()

–p(K, . . . ,Kn). (.)

When K = · · · = Kn = K in (.), then

G̃()
–p(K , . . . ,K) = G̃–p(K ). (.)

Further, we establish some inequalities for the Lp-dual mixed geominimal surface area.
Our results can be stated as follows.

Theorem . If K, . . . ,Kn ∈ Sn
o , p ≥ , ≤m ≤ n, then

[
G̃()

–p(K, . . . ,Kn)
]m ≤

m–∏
i=

G̃()
–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

); (.)

[
G̃()

–p(K, . . . ,Kn)
]m ≤

m–∏
i=

G̃()
–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

). (.)

Equality holds in inequality (.) if and only if Ki (i = n–m+, . . . ,n) all are dilates of each
other. Equality holds in inequality (.) if and only if there exist constants c, c, . . . , cm (not
all zero) such that, for all u ∈ Sn–,

cρ
n+p
Kn (u)ρ–p

Ln (u) = cρ
n+p
Kn–

(u)ρ–p
Ln– (u) = · · · = cmρ

n+p
Kn–m+

(u)ρ–p
Ln–m+

(u).
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In particular, ifm = n, then we have the following.

Corollary . If K, . . . ,Kn ∈ Sn
o , p≥ , then

[
G̃()

–p(K, . . . ,Kn)
]n ≤ [

G̃()
–p(K, . . . ,Kn)

]n ≤ G̃–p(K) · · · G̃–p(Kn). (.)

Equality holds in the second inequality of (.) if and only if Ki (i = , , . . . ,n) all are dilates
of each other.

Using Corollary ., we may get the following Blaschke-Santalö type inequality.

Corollary . If K, . . . ,Kn ∈Kn
c , n≥ p≥ , then

G̃()
–p(K, . . . ,Kn)G̃()

–p
(
K∗
 , . . . ,K

∗
n
) ≤ G̃()

–p(K, . . . ,Kn)G̃()
–p

(
K∗
 , . . . ,K

∗
n
) ≤ nω

n. (.)

Equality holds in the second inequality of (.) if and only if Ki (i = , , . . . ,n) all are balls
centered at the origin.

Theorem . If K, . . . ,Kn ∈Kn
c , p ≥ , then

G̃()
–p(K, . . . ,Kn) ≤ nω

n+p
n

n

n∏
i=

V
(
K∗
i
) –(n+p)

n .

Theorem . If K, . . . ,Kn ∈ Sn
o , ≤ p < q, then

(
G̃()

–p(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+p

) 
p

≤
(

G̃()
–q(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+q

) 
q
; (.)

(
G̃()

–p(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+p

) 
p

≤
(

G̃()
–q(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+q

) 
q
. (.)

Equality holds in (.) and (.) if and only if each Ki ∈Kn
c (i = , , . . . ,n).

2 Notations and backgroundmaterials
2.1 Radial function and polar set
If K is a compact star-shaped (with respect to the origin) in R

n, then its radial function,
ρK = ρ(K , ·) :Rn \ {} → [,∞), is defined by (see [, ])

ρ(K ,u) =max{λ ≥  : λu ∈ K}, u ∈ Sn–.

If ρK is positive and continuous, K will be called a star body (with respect to the origin).
Two star bodiesK and L are said to be dilates (of one another) if ρK (u)/ρL(u) is independent
of u ∈ Sn–.
If E is a nonempty subset in R

n, the polar set, E∗, of E is defined by (see [, ])

E∗ =
{
x ∈ R

n : x · y≤ , y ∈ E
}
.
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For K ∈ Kn
o and its polar body, the well-known Blaschke-Stantalö inequality can be

stated (see []): If K ∈Kn
c , then

V (K )V
(
K∗) ≤ ω

n, (.)

with equality if and only if K is an ellipsoid centered at the origin.

2.2 Dual mixed volume
The dualmixed volume of star bodies was introduced by Lutwak (see []). ForK, . . . ,Kn ∈
Sn
o , the dual mixed volume, Ṽ (K, . . . ,Kn), of K, . . . ,Kn is given by

Ṽ (K,K, . . . ,Kn) =

n

∫
Sn–

ρK (u)ρK (u) · · ·ρKn (u)du. (.)

The classical Alexander-Fenchel inequality for the dual mixed volume (see [, ]) as-
serts that the integer m satisfies  ≤m ≤ n such that

Ṽ (K, . . . ,Kn)m ≤
m–∏
i=

Ṽ (K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸
m

),

with equality if and only if Kn–m+, . . . ,Kn are all dilations of each other.
In particular, ifm = n, one has the Minkowski inequality

Ṽ (K,K, . . . ,Kn)n ≤ V (K)V (K) · · ·V (Kn), (.)

with equality if and only if K, . . . ,Kn are all dilations of each other.

2.3 Lp-Dual mixed volume
Lutwak in [] introduced the Lp-dual mixed volume. For K ,L ∈ Sn

o , p ≥ , the Lp-dual
mixed volume, Ṽ–p(K ,L), of K and L is defined by

Ṽ–p(K ,L) =

n

∫
Sn–

ρ
n+p
K (u)ρ–p

L (u)du. (.)

Associated with (.), for all K, . . . ,Kn ∈ Sn
o , L, . . . ,Ln ∈ Sn

o , and p≥ , we define

Ṽ–p(K, . . . ,Kn;L, . . . ,Ln) =

n

∫
Sn–

n∏
i=

[
ρ
n+p
Ki

(u)ρ–p
Li (u)

] 
n du. (.)

From (.) and (.), we easily get

Ṽ–p(K, . . . ,Kn;K, . . . ,Kn) = Ṽ (K, . . . ,Kn). (.)

If K = · · · = Kn = K and L = · · · = Ln = L in (.), then (.) and (.) yield

Ṽ–p(K , . . . ,K ;L, . . . ,L) = Ṽ–p(K ,L).
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3 Results and proofs
In this section, we will prove Theorems .-. and Corollaries .-..

Proof of Theorem . We first prove inequality (.) is true.
Let ρ,ρ, . . . ,ρm be nonnegative bounded Borel functions on Sn–. By the Hölder in-

equality (see []), we have (see [])

(

n

∫
Sn–

ρ(u)ρ(u) · · ·ρm(u)du
)m

≤
m–∏
i=

(

n

∫
Sn–

ρ(u)
[
ρi+(u)

]m du
)
, (.)

with equality if and only if there exist constants b, . . . ,bm ≥  (not all zero) such that
bρm

 (u) = · · · = bmρm
m(u) for all u ∈ Sn–.

For i = , . . . ,m – , we let

ρ(u) =
[
ρ
n+p
K

(u)ρ–p
L (u) · · ·ρ

n+p
Kn–m (u)ρ

–p
Ln–m (u)

] 
n ,

ρi+(u) =
[
ρ
n+p
Kn–i

(u)ρ–p
Ln–i (u)

] 
n .

In association with (.), we get

Ṽ–p(K, . . . ,Kn;L, . . . ,Ln)m

=
(

n

∫
Sn–

ρ(u)ρ(u) · · ·ρm(u)du
)m

≤
m–∏
i=

(

n

∫
Sn–

ρ(u)
[
ρi+(u)

]m du
)

=
m–∏
i=

Ṽ–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸
m

;L, . . . ,Ln–m,Ln–i, . . . ,Ln–i︸ ︷︷ ︸
m

). (.)

Combining with (.), (.), we get

[
ω
– p
n

n G̃()
–p(K, . . . ,Kn)

]m
= inf

Li∈Kn
c

{
nṼ–p(K, . . . ,Kn;L, . . . ,Ln)

n∏
i=

V
(
L∗
i
)– p

n

}m

≤
m–∏
i=

inf
Li∈Kn

c

[
nV–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

;L, . . . ,Ln–m,Ln–i, . . . ,Ln–i︸ ︷︷ ︸
m

)

×V
(
L∗
n–i

)–mp
n

n–m∏
i=

V
(
L∗
i
)– p

n

]

=
m–∏
i=

ω
– p
n

n G̃()
–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

)

= ω
–mp

n
n

m–∏
i=

G̃()
–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

),
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i.e.,

[
G̃()

–p(K, . . . ,Kn)
]m ≤

m–∏
i=

G̃()
–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

).

This gives (.).
According to the equality condition of inequality (.), we see that equality holds in in-

equality (.) if and only if

cρ
n+p
Kn (u)ρ–p

Ln (u) = cρ
n+p
Kn–

(u)ρ–p
Ln– (u) = · · · = cmρ

n+p
Kn–m+

(u)ρ–p
Ln–m+

(u)

for all u ∈ Sn–, where ci = bn/mi (i = , , . . . ,m).
Now we complete the proof of (.). For i = , . . . ,m – , we let

ρ(u) =
[
ρ
n+p
K

(u)ρ–p
L (u) · · ·ρn+p

Kn–m (u)ρ
–p
L (u)

] 
n ,

ρi+(u) =
[
ρ
n+p
Kn–i

(u)ρ–p
L (u)

] 
n .

In association with (.) and (.), we get

Ṽ–p(K, . . . ,Kn;L, . . . ,L)m

≤
m–∏
i=

Ṽ–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸
m

;L, . . . ,L,L, . . . ,L︸ ︷︷ ︸
m

). (.)

Similar to the proof of (.), combining with (.) and (.), we obtain

[
ω
– p
n

n G̃()
–p(K, . . . ,Kn)

]m
= inf

L∈Kn
c

{
nṼ–p(K, . . . ,Kn;L, . . . ,L)V

(
L∗)– p

n
}m

≤
m–∏
i=

inf
L∈Kn

c

{
nṼ–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

;L, . . . ,L,L, . . . ,L︸ ︷︷ ︸
m

)V
(
L∗)– p

n
}

≤
m–∏
i=

ω
– p
n

n G̃()
–p(K, . . . ,Kn–m,Kn–i, . . . ,Kn–i︸ ︷︷ ︸

m

).

According to the equality condition of inequality (.), we see that equality holds in in-
equality (.) if and only if

cρ
n+p
Kn (u)ρ–p

L (u) = cρ
n+p
Kn–

(u)ρ–p
L (u) = · · · = cmρ

n+p
Kn–m+

(u)ρ–p
L (u)

for all u ∈ Sn–, where ci = bn/mi (i = , , . . . ,m). This means that

cρ
n+p
Kn (u) = cρ

n+p
Kn–

(u) = · · · = cmρ
n+p
Kn–m+

(u)

for all u ∈ Sn–, i.e., Ki (i = n –m + , . . . ,n) all are dilates of each other. �
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Proof of Corollary . Letm = n in (.), and together with (.) and (.), we easily obtain

[
G̃()

–p(K, . . . ,Kn)
]n ≤ [

G̃()
–p(K, . . . ,Kn)

]n
≤

n–∏
i=

G̃()
–p(Kn–i, . . . ,Kn–i)

≤ G̃–p(K)G̃–p(K) · · · G̃–p(Kn).

This gives (.).
From the equality condition of (.), we easily find that equality holds in the second

inequality of (.) if and only if there exist constants c, c, . . . , cn (not all zero) such that,
for all u ∈ Sn–, cρ

n+p
Kn (u)ρ–p

L (u) = cρ
n+p
Kn–

(u)ρ–p
L (u) = · · · = cnρ

n+p
K

(u)ρ–p
L (u). This means all

Ki (i = , , . . . ,n) are dilates of each other. �

In order to prove Corollary ., we give the following lemma.

Lemma . ([]) If K ∈Kn
c , n≥ p≥ , then

G̃–p(K )G̃–p
(
K∗) ≤ nω

n, (.)

with equality if and only if K is a ball centered at the origin.

Proof of Corollary . Corollary ., for K and K∗, immediately yields

[
G̃()

–p(K, . . . ,Kn)
]n ≤ [

G̃()
–p(K, . . . ,Kn)

]n ≤ G̃–p(K) · · · G̃–p(Kn), (.)[
G̃()

–p
(
K∗
 , . . . ,K

∗
n
)]n ≤ [

G̃()
–p

(
K∗
 , . . . ,K

∗
n
)]n ≤ G̃–p

(
K∗

) · · · G̃–p

(
K∗
n
)
. (.)

Combining with (.), (.), and (.), we obtain

[
G̃()

–p(K, . . . ,Kn)
]n[G̃()

–p
(
K∗
 , . . . ,K

∗
n
)]n

≤ [
G̃()

–p(K, . . . ,Kn)
]n[G̃()

–p
(
K∗
 , . . . ,K

∗
n
)]n

≤ G̃–p(K)G̃–p
(
K∗

) · · · G̃–p(Kn)G̃–p

(
K∗
n
) ≤ [

nω
n
]n,

i.e.,

G̃()
–p(K, . . . ,Kn)G̃()

–p
(
K∗
 , . . . ,K

∗
n
) ≤ G̃()

–p(K, . . . ,Kn)G̃()
–p

(
K∗
 , . . . ,K

∗
n
) ≤ nω

n.

This yields (.).
By the equality conditions of inequality (.) and the second inequality of (.), we know

that equality holds in the second inequality of (.) if and only if K, . . . ,Kn all are balls
centered at the origin. �

Proof of Theorem . From (.), it follows that, for any Li ∈Kn
c ,

G̃()
–p(K, . . . ,Kn) ≤ nω

p
n
n Ṽ–p(K, . . . ,Kn;L, . . . ,Ln)

n∏
i=

V
(
L∗
i
) –p
n .
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Since K, . . . ,Kn ∈ Kn
c , taking K, . . . ,Kn for L, . . . ,Ln, and using (.), (.), and (.), we

get

G̃()
–p(K, . . . ,Kn) ≤ nω

p
n
n Ṽ–p(K, . . . ,Kn;K, . . . ,Kn)

n∏
i=

V
(
K∗
i
)– p

n

= nω
p
n
n Ṽ (K, . . . ,Kn)

n∏
i=

V
(
K∗
i
)– p

n

≤ nω
p
n
n
[
V (K) · · ·V (Kn)

] 
n

n∏
i=

V
(
K∗
i
)– p

n

= nω
p
n
n
[
V (K) · · ·V (Kn)V

(
K∗

) · · ·V (

K∗
n
)] 

n
n∏
i=

V
(
K∗
i
)– (n+p)

n

≤ nω
n+p
n

n

n∏
i=

V
(
K∗
i
)– (n+p)

n .

This gives the proof of Theorem .. �

Proof of Theorem . Using the Hölder inequality, (.), and (.), we get

Ṽ–p(K, . . . ,Kn;L, . . . ,Ln) =

n

∫
Sn–

n∏
i=

[
ρ
n+p
Ki

(u)ρ–p
Li (u)

] 
n du

=

n

∫
Sn–

( n∏
i=

[
ρ
n+q
Ki

(u)ρ–q
Li (u)

] 
n

) p
q
( n∏

i=

[
ρn
Ki
(u)

] 
n

) q–p
q

du

≤ Ṽ–p(K, . . . ,Kn;L, . . . ,Ln)
p
q Ṽ (K, . . . ,Kn)

q–p
q ,

that is,

(
Ṽ–p(K, . . . ,Kn;L, . . . ,Ln)

Ṽ (K, . . . ,Kn)

) 
p

≤
(
Ṽ–q(K, . . . ,Kn;L, . . . ,Ln)

Ṽ (K, . . . ,Kn)

) 
q
. (.)

According to the equality condition in theHölder inequality, we know that equality holds
in (.) if and only if there exist constants ci >  (i = , , . . . ,n) such that ρ(Ki,u) = ciρ(Li,u)
for any u ∈ Sn–, i.e., for each i = , , . . . ,n, Ki and Li both are dilates.
From definition (.) and inequality (.), we have

ω–
n

(
G̃()

–p(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+p

) 
p

= inf
Li∈Kn

c

{(
Ṽ–p(K, . . . ,Kn;L, . . . ,Ln)

Ṽ (K, . . . ,Kn)

) n
p 
Ṽ (K, . . . ,Kn)

( n∏
i=

V
(
L∗
i
)– p

n

) n
p
}

= inf
Li∈Kn

c

{(
Ṽ–p(K, . . . ,Kn;L, . . . ,Ln)

Ṽ (K, . . . ,Kn)

) n
p 
Ṽ (K, . . . ,Kn)

n∏
i=

V
(
L∗
i
)– 

n

}

≤ inf
Li∈Kn

c

{(
Ṽ–q(K, . . . ,Kn;L, . . . ,Ln)

Ṽ (K, . . . ,Kn)

) n
q 
Ṽ (K, . . . ,Kn)

n∏
i=

V
(
L∗
i
)– 

n

}
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= inf
Li∈Kn

c

{(
Ṽ–q(K, . . . ,Kn;L, . . . ,Ln)

Ṽ (K, . . . ,Kn)

) n
q 
Ṽ (K, . . . ,Kn)

( n∏
i=

V (Li)
– q
n

) n
q
}

= ω–
n

(
G̃()

–q(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+q

) 
q
,

i.e.,

(
G̃()

–p(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+p

) 
p

≤
(

G̃()
–q(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+q

) 
q
.

This is just (.). Because of each Li ∈ Kn
c in inequality (.), together with the equality

condition of (.), we see that equality holds in (.) if and only if each Ki ∈Kn
c .

In order to prove (.), (.) can be written

(
Ṽ–p(K, . . . ,Kn;L, . . . ,L)

Ṽ (K, . . . ,Kn)

) 
p

≤
(
Ṽ–q(K, . . . ,Kn;L, . . . ,L)

Ṽ (K, . . . ,Kn)

) 
q
. (.)

In the same way as (.), from definition (.) and (.), we get

(
G̃()

–p(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+p

) 
p

≤
(

G̃()
–q(K, . . . ,Kn)n

nnṼ (K, . . . ,Kn)n+q

) 
q
.

From the equality condition in (.), we see that equality holds in (.) if and only if each
Ki ∈Kn

c . �
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