Remarks on inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms

Pan Zhang and Liang Zhang*

Correspondence
zhliang43@163.com
School of Mathematics and Computer Science, Anhui Normal University, Huajing South Road, Yijiang District, Wuhu, Anhui 241000, P.R. China

Abstract

In this paper, we obtain an inequality for the normalized Casorati curvature of slant submanifolds in quaternionic space forms by using T Oprea's optimization method. MSC: 53C40; 53D12

Keywords: inequalities; Casorati curvatures; quaternionic space forms

1 Introduction

The Casorati curvature of an n-dimensional submanifold M of a Riemannian manifold, usually denoted by \mathcal{C}, is an extrinsic invariant defined as the normalized square of the length of the second fundamental form of the submanifold. In [1], Decu et al. introduced the normalized δ-Casorati curvatures $\delta_{c}(n-1)$ and $\hat{\delta}_{c}(n-1)$ by

$$
\begin{equation*}
\left[\delta_{c}(n-1)\right]_{x}=\frac{1}{2} \mathcal{C}_{x}+\frac{n+1}{2 n(n-1)} \inf \left\{\mathcal{C}(L) \mid L \text { a hyperplane of } T_{x} M\right\} \tag{1}
\end{equation*}
$$

and

$$
\left[\hat{\delta}_{c}(n-1)\right]_{x}=2 \mathcal{C}_{x}-\frac{2 n-1}{2 n} \sup \left\{\mathcal{C}(L) \mid L \text { a hyperplane of } T_{x} M\right\},
$$

where $x \in M$, and established some inequalities involving these invariants for submanifolds in real space forms. Later, Slesar et al. proved two inequalities relating the above normalized Casorati curvatures for a slant submanifolds in a quaternionic space form in [2]. However, it was pointed out that the coefficient $\frac{n+1}{2 n(n-1)}$ in (1) is inappropriate and must be replaced by $\frac{n+1}{2 n}[3,4]$. Following [3, 4], we define the normalized δ-Casorati curvature $\delta_{C}(n-1)$ by

$$
\begin{equation*}
\left[\delta_{C}(n-1)\right]_{x}=\frac{1}{2} \mathcal{C}_{x}+\frac{n+1}{2 n} \inf \left\{\mathcal{C}(L) \mid L \text { a hyperplane of } T_{x} M\right\} . \tag{2}
\end{equation*}
$$

By using T Oprea's optimization method on Riemannian submanifolds, we establish the following inequalities in terms of $\delta_{C}(n-1)$ for θ-slant proper submanifolds of a quaternionic space form.

[^0]Theorem 1 Let M^{n}, $n \geq 3$, be θ-slant proper submanifold of a quaternionic space form $\bar{M}^{4 m}(c)$. Then the normalized δ-Casorati curvature $\delta_{C}(n-1)$ satisfies

$$
\begin{equation*}
\rho \leq \delta_{C}(n-1)+\frac{c}{4}\left(1+\frac{9}{n-1} \cos ^{2} \theta\right) \tag{3}
\end{equation*}
$$

where ρ is the normalized scalar curvature of M^{n}. Moreover, the equality case holds if and only if M^{n} is an invariantly quasi-umbilical submanifold with trivial normal connection in $\bar{M}^{4 m}(c)$, such that with respect to suitable orthonormal tangent frame $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ and normal orthonormal frame $\left\{\xi_{n+1}, \ldots, \xi_{4 m}\right\}$, the shape operators $A_{r}=A_{e_{r}}, r \in\{n+1, \ldots, 4 m\}$, take the following forms:

$$
A_{n+1}=\left(\begin{array}{cccccc}
a & 0 & 0 & \cdots & 0 & 0 \\
0 & a & 0 & \cdots & 0 & 0 \\
0 & 0 & a & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & a & 0 \\
0 & 0 & 0 & \cdots & 0 & 2 a
\end{array}\right), \quad A_{n+2}=\cdots=A_{4 m}=0
$$

2 Preliminaries

Let $\left(M^{n}, g\right)$ be an n-dimensional submanifold in an $(n+p)$-dimensional Riemannian manifold $\left(\bar{M}^{n+p}, \bar{g}\right)$. The Levi-Civita connections on \bar{M}^{n+p} and M^{n} will be denoted by $\bar{\nabla}$ and ∇, respectively. For all $X, Y \in C^{\infty}(T M), N \in C^{\infty}\left(T M^{\perp}\right)$, the Gauss and Weingarten formulas can be expressed by

$$
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N,
$$

where h is the second fundamental form of $M, \bar{\nabla}$ is the normal connection and the shape operator A_{N} of M is given by

$$
g\left(A_{N} X, Y\right)=\bar{g}(h(X, Y), N) .
$$

The submanifold M is said to be totally geodesic if $h=0$. Besides, M is called invariantly quasi-umbilical if there exist p mutually orthogonal unit normal vectors $\xi_{n+1}, \ldots, \xi_{n+p}$ such that the shape operators with respect to all directions ξ_{r} have an eigenvalue of multiplicity $n-1$ and that for each ξ_{r} the distinguished eigendirection is the same [1-4].
In \bar{M}^{n+p} we choose a local orthonormal frame $e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{n+p}$, such that, restricting ourselves to $M^{n}, e_{1}, \ldots, e_{n}$ are tangent to M^{n}. We write $h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right)$. Then the mean curvature vector H is given by

$$
H=\sum_{r=n+1}^{n+p}\left(\frac{1}{n} \sum_{i=1}^{n} h_{i i}^{r}\right) e_{r},
$$

and the squared norm of h over dimension n is denoted by \mathcal{C} and is called the Casorati curvature of the submanifold M. Therefore we have

$$
\mathcal{C}=\frac{1}{n} \sum_{r=n+1}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
$$

Let $K\left(e_{i} \wedge e_{j}\right), 1 \leq i<j \leq n$, denote the sectional curvature of the plane section spanned by e_{i} and e_{j}. Then the scalar curvature of M^{n} is given by

$$
\tau=\sum_{i<j} K\left(e_{i} \wedge e_{j}\right),
$$

and the normalized scalar curvature ρ is defined by

$$
\rho=\frac{2 \tau}{n(n-1)} .
$$

Suppose L is an l-dimensional subspace of $T_{x} M, x \in M, l \geq 2$ and $\left\{e_{1}, \ldots, e_{l}\right\}$ an orthonormal basis of L. Then the scalar curvature $\tau(L)$ of the l-plane L is given by

$$
\tau(L)=\sum_{1 \leq \mu<\nu \leq l} K\left(e_{\mu} \wedge e_{\nu}\right),
$$

and the Casorati curvature $\mathcal{C}(L)$ of the subspace L is defined as

$$
\mathcal{C}(L)=\frac{1}{r} \sum_{r=n+1}^{n+p} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
$$

For more details of slant submanifolds in quaternionic space forms, we refer to $[2,4]$.

3 Optimization method on Riemannian submanifolds

Let $\left(N_{2}, \bar{g}\right)$ be a Riemannian manifold, N_{1} be a Riemannian submanifold of it, g be the metric induced on N_{1} by \bar{g} and $f: N_{1} \rightarrow \mathbb{R}$ be a differentiable function.
Following [5-7] we considered the constrained extremum problem

$$
\begin{equation*}
\min _{x \in N_{1}} f(x) \tag{4}
\end{equation*}
$$

then we have the following.

Lemma 1 ([5]) If $x_{0} \in N_{1}$ is the solution of the problem (4), then
(i) $(\operatorname{grad} f)\left(x_{0}\right) \in T_{x_{0}}^{\perp} N_{1}$;
(ii) the bilinear form

$$
\begin{aligned}
& \mathcal{A}: T_{x_{0}} N_{1} \times T_{x_{0}} N_{1} \rightarrow \mathbb{R} \\
& \mathcal{A}(X, Y)=\operatorname{Hess}_{f}(X, Y)+\bar{g}\left(h(X, Y),(\operatorname{grad} f)\left(x_{0}\right)\right)
\end{aligned}
$$

is positive semidefinite, where h is the second fundamental form of N_{1} in N_{2}.

In [6], the above lemma was successfully applied to improve an inequality relating $\delta(2)$ obtained in [8]. Later, Chen extended the improved inequality to the general inequalities involving δ-invariants $\delta\left(n_{1}, \ldots, n_{k}\right)$ [9]. More details of δ-invariants can be found in [1015]. Besides, the first author gave another proof of the inequalities relating the normalized δ-Casorati curvature $\hat{\delta}_{c}(n-1)$ for submanifolds in real space forms by using T Oprea's optimization method [16].

4 Proof of Theorem 1

From the Gauss equation we can easily obtain (see (12) in [2])

$$
\begin{equation*}
2 \tau=\frac{c}{4}\left[n(n-1)+9 n \cos ^{2} \theta\right]+n^{2}\|H\|^{2}-n \mathcal{C} . \tag{5}
\end{equation*}
$$

We define now the following function, denoted by \mathcal{Q}, which is a quadratic polynomial in the components of the second fundamental form:

$$
\begin{equation*}
\mathcal{Q}=\frac{1}{2} n(n-1) \mathcal{C}+\frac{1}{2}(n+1)(n-1) \mathcal{C}(L)-2 \tau+\frac{c}{4}\left[n(n-1)+9 n \cos ^{2} \theta\right] . \tag{6}
\end{equation*}
$$

Without loss of generality, by assuming that L is spanned by e_{1}, \ldots, e_{n-1}, one gets

$$
\begin{equation*}
\mathcal{Q}=\frac{n+1}{2} \sum_{\alpha=n+1}^{4 m}\left[\sum_{i, j=1}^{n}\left(h_{i j}^{\alpha}\right)^{2}\right]+\frac{n+1}{2} \sum_{\alpha=n+1}^{4 m}\left[\sum_{i, j=1}^{n-1}\left(h_{i j}^{\alpha}\right)^{2}\right]-\sum_{\alpha=n+1}^{4 m}\left(\sum_{i=1}^{n} h_{i i}^{\alpha}\right)^{2}, \tag{7}
\end{equation*}
$$

here we used (5) and (6).
From (7) we have

$$
\begin{align*}
\mathcal{Q}= & \sum_{\alpha=n+1}^{4 m} \sum_{i=1}^{n-1}\left[n\left(h_{i i}^{\alpha}\right)^{2}+(n+1)\left(h_{i n}^{\alpha}\right)^{2}\right] \\
& +\sum_{\alpha=n+1}^{4 m}\left[2(n+1) \sum_{1 \leq i<j \leq n-1}\left(h_{i j}^{\alpha}\right)^{2}-2 \sum_{1 \leq i<j \leq n} h_{i i}^{\alpha} h_{i j}^{\alpha}+\frac{n-1}{2}\left(h_{n n}^{\alpha}\right)^{2}\right] \\
\geq & \sum_{\alpha=n+1}^{4 m} \sum_{i=1}^{n-1} n\left(h_{i i}^{\alpha}\right)^{2}+\sum_{\alpha=n+1}^{4 m}\left[-2 \sum_{1 \leq i<j \leq n} h_{i i}^{\alpha} h_{j j}^{\alpha}+\frac{n-1}{2}\left(h_{n n}^{\alpha}\right)^{2}\right] . \tag{8}
\end{align*}
$$

For $\alpha=n+1, \ldots, 4 m$, let us consider the quadratic form

$$
\begin{aligned}
& f_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}, \\
& f_{\alpha}\left(h_{11}^{\alpha}, \ldots, h_{n n}^{\alpha}\right)=\sum_{i=1}^{n-1} n\left(h_{i i}^{\alpha}\right)^{2}-2 \sum_{1 \leq i<j \leq n} h_{i i}^{\alpha} h_{i j}^{\alpha}+\frac{n-1}{2}\left(h_{n n}^{\alpha}\right)^{2}
\end{aligned}
$$

and the constrained extremum problem
$\min f_{\alpha}$

$$
\text { subject to } \digamma: h_{11}^{\alpha}+\cdots+h_{n n}^{\alpha}=k^{\alpha},
$$

where k^{α} is a real constant.
The partial derivatives of the function f_{α} are

$$
\begin{align*}
\frac{\partial f_{\alpha}}{\partial h_{11}^{\alpha}} & =2 n h_{11}^{\alpha}-2 \sum_{i=2}^{n} h_{i i}^{\alpha}, \tag{9}\\
\frac{\partial f_{\alpha}}{\partial h_{22}^{\alpha}} & =2 n h_{22}^{\alpha}-2 h_{11}^{\alpha}-2 \sum_{i=3}^{n} h_{i i}^{\alpha}, \tag{10}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial f_{\alpha}}{\partial h_{n-1, n-1}^{\alpha}}=2 n h_{n-1, n-1}^{\alpha}-2 \sum_{i=1}^{n-2} h_{i i}^{\alpha}-2 h_{n n}^{\alpha}, \tag{11}\\
& \frac{\partial f_{\alpha}}{\partial h_{n n}^{\alpha}}=-2 \sum_{i=1}^{n-1} h_{i i}^{\alpha}+(n-1) h_{n n}^{\alpha} . \tag{12}
\end{align*}
$$

For an optimal solution $\left(h_{11}^{\alpha}, h_{22}^{\alpha}, \ldots, h_{n n}^{\alpha}\right)$ of the problem in question, the vector grad f_{α} is normal at \digamma, that is, it is collinear with the vector ($1,1, \ldots, 1$). From (9), (10), (11), and (12), it follows that a critical point of the considered problem has the form

$$
\begin{equation*}
\left(h_{11}^{\alpha}, h_{22}^{\alpha}, \ldots, h_{n-1, n-1}^{\alpha}, h_{n n}^{\alpha}\right)=\left(t^{\alpha}, t^{\alpha}, \ldots, t^{\alpha}, 2 t^{\alpha}\right) \tag{13}
\end{equation*}
$$

As $\sum_{i=1}^{n} h_{i i}^{\alpha}=k^{\alpha}$, by using (13) we have

$$
\begin{equation*}
h_{11}^{\alpha}=h_{22}^{\alpha}=\cdots=h_{n-1, n-1}^{\alpha}=\frac{1}{n+1} k^{\alpha}, \quad h_{n n}^{\alpha}=\frac{2}{n+1} k^{\alpha} . \tag{14}
\end{equation*}
$$

We fix an arbitrary point $x \in \digamma$. The 2-form $\mathcal{A}: T_{x} \digamma \times T_{x} \digamma \rightarrow \mathbb{R}$ has the expression

$$
\mathcal{A}(X, Y)=\operatorname{Hess} f_{\alpha}(X, Y)+\left\langle h^{\prime}(X, Y),\left(\operatorname{grad} f_{\alpha}\right)(x)\right\rangle,
$$

where h^{\prime} is the second fundamental form of \digamma in \mathbb{R}^{n} and \langle,$\rangle is the standard inner-product$ on \mathbb{R}^{n}. In the standard frame of \mathbb{R}^{n}, the Hessian of f_{α} has the matrix

$$
\left(\begin{array}{cccccc}
2 n & -2 & -2 & \cdots & -2 & -2 \\
-2 & 2 n & -2 & \cdots & -2 & -2 \\
-2 & -2 & 2 n & \cdots & -2 & -2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-2 & -2 & -2 & \cdots & 2 n & -2 \\
-2 & -2 & -2 & \cdots & -2 & n-1
\end{array}\right)
$$

As \digamma is totally geodesic in \mathbb{R}^{n}, considering a vector X tangent to \digamma at the arbitrary point x on \digamma, that is, verifying the relation $\sum_{i=1}^{n} X_{i}=0$, we have

$$
\begin{aligned}
\mathcal{A}(X, X) & =\left(X_{1}, X_{2}, X_{3}, \ldots, X_{n-1}, X_{n}\right)\left(\begin{array}{cccccc}
2 n & -2 & -2 & \cdots & -2 & -2 \\
-2 & 2 n & -2 & \cdots & -2 & -2 \\
-2 & -2 & 2 n & \cdots & -2 & -2 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-2 & -2 & -2 & \cdots & 2 n & -2 \\
-2 & -2 & -2 & \cdots & -2 & n-1
\end{array}\right)\left(\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
\vdots \\
X_{n-1} \\
X_{n}
\end{array}\right) \\
& =2(n+1) \sum_{i=1}^{n-1} X_{i}^{2}+(n+1) X_{n}^{2}-2\left(X_{1}+X_{2}+\cdots+X_{n}\right)^{2} \\
& =2(n+1) \sum_{i=1}^{n-1} X_{i}^{2}+(n+1) X_{n}^{2} \\
& \geq 0 .
\end{aligned}
$$

Thus the point $\left(h_{11}^{\alpha}, h_{22}^{\alpha}, \ldots, h_{n n}^{\alpha}\right)$ given by (14) is a global minimum point, here we used Lemma 1. Inserting (14) in (8) we have

$$
\begin{equation*}
\mathcal{Q} \geq 0 \tag{15}
\end{equation*}
$$

From (2), (6), and (15) we can derive inequality (3). The equality case of (3) holds if and only if we have the equality in all the previous inequalities. Thus

$$
\begin{aligned}
& h_{i j}^{\alpha}=0, \quad i \neq j, \forall \alpha ; \\
& h_{n n}^{\alpha}=2 h_{11}^{\alpha}=2 h_{22}^{\alpha}=\cdots=2 h_{n-1, n-1}^{\alpha}, \quad \forall \alpha .
\end{aligned}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank to Professor Weidong Song, who has always been generous with his time and advice.
Received: 8 August 2014 Accepted: 27 October 2014 Published: 10 Nov 2014

References

1. Decu, S, Haesen, S, Verstraelen, L: Optimal inequalities involving Casorati curvatures. Bull. Transilv. Univ. Brasov Ser. B 14(49), suppl., 85-93 (2007)
2. Slesar, V, Sahin, B, Vilcu, GE: Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms. J. Inequal. Appl. 2014, Article ID 123 (2014)
3. Lee, CW, Yoon, DW, Lee, JW: Optimal inequalities for the Casorati curvatures of submanifolds of real space forms endowed with semi-symmetric metric connections. J. Inequal. Appl. 2014, Article ID 327 (2014)
4. Lee, JW, Vîlcu, GE: Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms (2014). arXiv:1405.5192v1 [math.DG]
5. Oprea, T: Optimization methods on Riemannian submanifolds. An. Univ. Bucur., Mat. 54, 127-136 (2005)
6. Oprea, T: Chen's inequality in the Lagrangian case. Colloq. Math. 108, 163-169 (2007)
7. Oprea, T: Ricci curvature of Lagrangian submanifolds in complex space forms. Math. Inequal. Appl. 13(4), 851-858 (2010)
8. Chen, B-Y, Dillen, F, Verstraelen, L, Vrancken, L: Totally real submanifolds of $\mathbb{C} P^{n}$ satisfying a basic equality. Arch. Math. 63, 553-564 (1994)
9. Chen, B-Y, Dillen, F: Optimal general inequalities for Lagrangian submanifolds in complex space forms. J. Math. Anal. Appl. 379(1), 229-239 (2011)
10. Chen, B-Y: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 60, 568-578 (1993)
11. Al-Solamy, FR, Chen, B-Y, Deshmukh, S: Two optimal inequalities for anti-holomorphic submanifolds and their applications. Taiwan. J. Math. 18, 199-217 (2014)
12. Vilcu, GE: On Chen invariant and inequalities in quaternionic geometry. J. Inequal. Appl. 2013, Article ID 66 (2013)
13. Gülbahar, M, Klliç, E, Keles, S: Chen-like inequalities on lightlike hypersurfaces of a Lorentzian manifold. J. Inequal. Appl. 2013, Article ID 266 (2013)
14. Zhang, P, Zhang, L, Song, W: Chen's inequalities for submanifolds of a Riemannian manifold of quasi-constant curvature with a semi-symmetric metric connection. Taiwan. J. Math. (2014). doi:10.11650/tjm.18.2014.4045
15. Zhang, P: Remarks on Chen's inequalities for submanifolds of a Riemannian manifold of nearly quasi-constant curvature. Vietnam J. Math. (2014). doi:10.1007/s 10013-014-0096-9
16. Zhang, P: Inequalities for Casorati curvatures of submanifolds in real space forms (2014). arXiv:1408.4996 [math.DG]

10.1186/1029-242X-2014-452

Cite this article as: Zhang and Zhang: Remarks on inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms. Journal of Inequalities and Applications 2014, 2014:452

[^0]: o2014 Zhang and Zhang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

