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Abstract
In this paper, we obtain an inequality for the normalized Casorati curvature of slant
submanifolds in quaternionic space forms by using T Oprea’s optimization method.
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1 Introduction
The Casorati curvature of an n-dimensional submanifold M of a Riemannian manifold,
usually denoted by C , is an extrinsic invariant defined as the normalized square of the
length of the second fundamental form of the submanifold. In [], Decu et al. introduced
the normalized δ-Casorati curvatures δc(n – ) and δ̂c(n – ) by

[
δc(n – )

]
x =



Cx +

n + 
n(n – )

inf
{
C(L) | L a hyperplane of TxM

}
()

and

[
δ̂c(n – )

]
x = Cx –

n – 
n

sup
{
C(L) | L a hyperplane of TxM

}
,

where x ∈ M, and established some inequalities involving these invariants for subman-
ifolds in real space forms. Later, Slesar et al. proved two inequalities relating the above
normalized Casorati curvatures for a slant submanifolds in a quaternionic space form in
[]. However, it was pointed out that the coefficient n+

n(n–) in () is inappropriate andmust
be replaced by n+

n [, ]. Following [, ], we define the normalized δ-Casorati curvature
δC(n – ) by

[
δC(n – )

]
x =



Cx +

n + 
n

inf
{
C(L) | L a hyperplane of TxM

}
. ()

By using TOprea’s optimization method on Riemannian submanifolds, we establish the
following inequalities in terms of δC(n – ) for θ -slant proper submanifolds of a quater-
nionic space form.
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Theorem  Let Mn, n ≥ , be θ -slant proper submanifold of a quaternionic space form
Mm(c). Then the normalized δ-Casorati curvature δC(n – ) satisfies

ρ ≤ δC(n – ) +
c


(
 +


n – 

cos θ

)
, ()

where ρ is the normalized scalar curvature of Mn.Moreover, the equality case holds if and
only if Mn is an invariantly quasi-umbilical submanifold with trivial normal connection
in Mm(c), such that with respect to suitable orthonormal tangent frame {ξ, . . . , ξn} and
normal orthonormal frame {ξn+, . . . , ξm}, the shape operators Ar = Aer , r ∈ {n+ , . . . , m},
take the following forms:

An+ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a   · · ·  
 a  · · ·  
  a · · ·  
...

...
...

. . .
...

...
   · · · a 
   · · ·  a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, An+ = · · · = Am = .

2 Preliminaries
Let (Mn, g) be an n-dimensional submanifold in an (n+ p)-dimensional Riemannian man-
ifold (Mn+p, g). The Levi-Civita connections onMn+p andMn will be denoted by ∇ and ∇ ,
respectively. For all X,Y ∈ C∞(TM), N ∈ C∞(TM⊥), the Gauss and Weingarten formulas
can be expressed by

∇XY =∇XY + h(X,Y ), ∇XN = –ANX +∇⊥
X N ,

where h is the second fundamental form ofM, ∇ is the normal connection and the shape
operator AN ofM is given by

g(ANX,Y ) = g
(
h(X,Y ),N

)
.

The submanifoldM is said to be totally geodesic if h = . Besides,M is called invariantly
quasi-umbilical if there exist pmutually orthogonal unit normal vectors ξn+, . . . , ξn+p such
that the shape operators with respect to all directions ξr have an eigenvalue of multiplicity
n –  and that for each ξr the distinguished eigendirection is the same [–].
InMn+p we choose a local orthonormal frame e, . . . , en, en+, . . . , en+p, such that, restrict-

ing ourselves to Mn, e, . . . , en are tangent to Mn. We write hrij = g(h(ei, ej), er). Then the
mean curvature vector H is given by

H =
n+p∑
r=n+

(

n

n∑
i=

hrii

)
er ,

and the squared norm of h over dimension n is denoted by C and is called the Casorati
curvature of the submanifoldM. Therefore we have

C =

n

n+p∑
r=n+

n∑
i,j=

(
hrij

).

http://www.journalofinequalitiesandapplications.com/content/2014/1/452


Zhang and Zhang Journal of Inequalities and Applications 2014, 2014:452 Page 3 of 6
http://www.journalofinequalitiesandapplications.com/content/2014/1/452

Let K (ei ∧ ej),  ≤ i < j ≤ n, denote the sectional curvature of the plane section spanned
by ei and ej. Then the scalar curvature ofMn is given by

τ =
∑
i<j

K (ei ∧ ej),

and the normalized scalar curvature ρ is defined by

ρ =
τ

n(n – )
.

Suppose L is an l-dimensional subspace ofTxM, x ∈M, l ≥  and {e, . . . , el} an orthonor-
mal basis of L. Then the scalar curvature τ (L) of the l-plane L is given by

τ (L) =
∑

≤μ<ν≤l

K (eμ ∧ eν),

and the Casorati curvature C(L) of the subspace L is defined as

C(L) = 
r

n+p∑
r=n+

n∑
i,j=

(
hrij

).
For more details of slant submanifolds in quaternionic space forms, we refer to [, ].

3 Optimizationmethod on Riemannian submanifolds
Let (N, g) be a Riemannian manifold, N be a Riemannian submanifold of it, g be the
metric induced on N by g and f :N →R be a differentiable function.
Following [–] we considered the constrained extremum problem

min
x∈N

f (x), ()

then we have the following.

Lemma  ([]) If x ∈N is the solution of the problem (), then
(i) (grad f )(x) ∈ T⊥

xN;
(ii) the bilinear form

A : TxN × TxN →R;

A(X,Y ) =Hessf (X,Y ) + g
(
h(X,Y ), (grad f )(x)

)
is positive semidefinite, where h is the second fundamental form of N in N.

In [], the above lemma was successfully applied to improve an inequality relating δ()
obtained in []. Later, Chen extended the improved inequality to the general inequalities
involving δ-invariants δ(n, . . . ,nk) []. More details of δ-invariants can be found in [–
]. Besides, the first author gave another proof of the inequalities relating the normalized
δ-Casorati curvature δ̂c(n – ) for submanifolds in real space forms by using T Oprea’s
optimization method [].
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4 Proof of Theorem 1
From the Gauss equation we can easily obtain (see () in [])

τ =
c


[
n(n – ) + n cos θ

]
+ n‖H‖ – nC. ()

We define now the following function, denoted by Q, which is a quadratic polynomial
in the components of the second fundamental form:

Q =


n(n – )C +



(n + )(n – )C(L) – τ +

c


[
n(n – ) + n cos θ

]
. ()

Without loss of generality, by assuming that L is spanned by e, . . . , en–, one gets

Q =
n + 


m∑
α=n+

[ n∑
i,j=

(
hα
ij
)] +

n + 


m∑
α=n+

[ n–∑
i,j=

(
hα
ij
)] –

m∑
α=n+

( n∑
i=

hα
ii

)

, ()

here we used () and ().
From () we have

Q =
m∑

α=n+

n–∑
i=

[
n
(
hα
ii
) + (n + )

(
hα
in
)]

+
m∑

α=n+

[
(n + )

∑
≤i<j≤n–

(
hα
ij
) – 

∑
≤i<j≤n

hα
iih

α
jj +

n – 


(
hα
nn

)]

≥
m∑

α=n+

n–∑
i=

n
(
hα
ii
) + m∑

α=n+

[
–

∑
≤i<j≤n

hα
iih

α
jj +

n – 


(
hα
nn

)]. ()

For α = n + , . . . , m, let us consider the quadratic form

fα :Rn →R,

fα
(
hα
, . . . ,h

α
nn

)
=

n–∑
i=

n
(
hα
ii
) – 

∑
≤i<j≤n

hα
iih

α
jj +

n – 


(
hα
nn

)

and the constrained extremum problem

min fα

subject to � : hα
 + · · · + hα

nn = kα ,

where kα is a real constant.
The partial derivatives of the function fα are

∂fα
∂hα


= nhα

 – 
n∑
i=

hα
ii , ()

∂fα
∂hα


= nhα

 – hα
 – 

n∑
i=

hα
ii , ()

. . . ,
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∂fα
∂hα

n–,n–
= nhα

n–,n– – 
n–∑
i=

hα
ii – hα

nn, ()

∂fα
∂hα

nn
= –

n–∑
i=

hα
ii + (n – )hα

nn. ()

For an optimal solution (hα
,hα

, . . . ,hα
nn) of the problem in question, the vector grad fα is

normal at �, that is, it is collinear with the vector (, , . . . , ). From (), (), (), and (),
it follows that a critical point of the considered problem has the form

(
hα
,h

α
, . . . ,h

α
n–,n–,h

α
nn

)
=

(
tα , tα , . . . , tα , tα

)
. ()

As
∑n

i= hα
ii = kα , by using () we have

hα
 = hα

 = · · · = hα
n–,n– =


n + 

kα , hα
nn =


n + 

kα . ()

We fix an arbitrary point x ∈�. The -formA : Tx�× Tx� →R has the expression

A(X,Y ) =Hess fα(X,Y ) +
〈
h′(X,Y ), (grad fα)(x)

〉
,

where h′ is the second fundamental form of� inRn and 〈 , 〉 is the standard inner-product
on Rn. In the standard frame of Rn, the Hessian of fα has the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n – – · · · – –
– n – · · · – –
– – n · · · – –
...

...
...

. . .
...

...
– – – · · · n –
– – – · · · – n – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As � is totally geodesic in Rn, considering a vector X tangent to � at the arbitrary point
x on �, that is, verifying the relation

∑n
i=Xi = , we have

A(X,X) = (X,X,X, . . . ,Xn–,Xn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n – – · · · – –
– n – · · · – –
– – n · · · – –
...

...
...

. . .
...

...
– – – · · · n –
– – – · · · – n – 

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X

X

X
...

Xn–

Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (n + )
n–∑
i=

X
i + (n + )X

n – (X +X + · · · +Xn)

= (n + )
n–∑
i=

X
i + (n + )X

n

≥ .
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Thus the point (hα
,hα

, . . . ,hα
nn) given by () is a global minimum point, here we used

Lemma . Inserting () in () we have

Q≥ . ()

From (), (), and () we can derive inequality (). The equality case of () holds if and
only if we have the equality in all the previous inequalities. Thus

hα
ij = , i �= j,∀α;

hα
nn = hα

 = hα
 = · · · = hα

n–,n–, ∀α.
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