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Abstract
In this paper, we show the regularity theory on an A-harmonic system and an A-Dirac
system. By the method of the removability theorem, we explain how an A-harmonic
system arises from an A-Dirac system and establish that an A-harmonic system is in
fact the real part of the corresponding A-Dirac system.
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1 Introduction
In this paper, we consider the regularity theory on an A-Dirac system,

–DÃ(x,u,Du) = f (x,u,Du), in �, (.)

and an A-harmonic system,

–divA(x,u,∇u) = f (x,u,∇u), in �. (.)

Here � is a bounded domain in Rn (n ≥ ), A(x,u,∇u) and f (x,u,∇u) are measurable
functions defined on � × Rn × RnN , N is an integer with N > , u : � → Rn is a vector
valued function. Furthermore, A(x,u,∇u) and f (x,u,∇u) satisfy the following structural
conditions with m > :
(H) A(x,u,p) are differentiable functions in p and there exists a constant C >  such

that
∣∣∣∣∂A(x,u,p)∂p

∣∣∣∣ ≤ C
(
 + |p|)m–

 for all (x,u,p) ∈ � × Rn × RnN .

(H) A(x,u,p) are uniformly strongly elliptic, that is, for some λ >  we have
(

∂A(x,u,p)
∂p

να
i

)
ν

β

j ≥ λ
(
 + |p|)m–

 |ν|.

(H) There exist β ∈ (, ) and K : [,∞) �→ [,∞)monotone nondecreasing such that

∣∣A(x,u,p) –A(x̃, ũ,p)
∣∣ ≤ K

(|u|)(|x – x̃|m + |u – ũ|m) β
m

(
 + |p|)m



for all x, x̃ ∈ �, u, ũ ∈ Rn, and p ∈ RnN . Without loss of generality, we take K ≥ .
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(H) There exist constants C and C such that

∣∣f (x,u,p)∣∣ ≤ C|p|m +C.

(H) and (H) imply

∣∣A(x,u,p) –A(x,u, ξ )
∣∣ ≤ C

(
 + |p| + |ξ |)m–

 |p – ξ |; (.)
(
A(x,u,p) –A(x,u, ξ )

)
(p – ξ ) ≥ λ

(
 + |p| + |ξ |)m–

 |p – ξ | (.)

for all x ∈ �, u ∈ Rn and p, ξ ∈ RnN , where λ >  is a constant.

Definition . We say that a function u ∈ W ,m
loc (�)∩ L∞(�) is a weak solution to (.), if

the equality

∫
�

A(x,u,∇u)∇φ dx =
∫

�

f (x,u,∇u)φ dx (.)

holds for all φ ∈W ,m
 (�) with compact support.

In this paper, we assume that the solutions of the A-harmonic system (.) and the
A-Dirac system (.) exist [] and establish the regularity result directly. In other words,
the main purpose of this paper is to show the regularity theory on an A-harmonic sys-
tem and the corresponding A-Dirac system. It means that we should know the properties
of an A-harmonic operator and an A-Dirac operator. This main context will be stated in
Section . Further discussion can be found in [–] and the references therein.
In order to prove the main result, we also need a suitable Caccioppoli estimation (see

Theorem .). Then by the technique of removable singularities, we can find that solutions
to anA-harmonic system satisfying a Lipschitz condition or in the case of a boundedmean
oscillation can be extended to Clifford valued solutions to the corresponding A-Dirac sys-
tem.
The technique of removable singularities was used in [] to remove singularities for

monogenic functions with modulus of continuity ω(r), where the sets rnω(r) and Haus-
dorffmeasure are removable. Kaufman andWu [] used themethod in the case of Hölder
continuous analytic functions. In fact, under a certain geometric condition related to the
Minkowski dimension, sets can be removable for A-harmonic functions in Hölder and
bounded mean oscillation classes []. Even in the case of Hölder continuity, a precise
removable sets condition was stated []. In [], the author showed that under a certain
oscillation condition, sets satisfying a generalizedMinkowski-type inequalitywere remov-
able for solutions to the A-Dirac system. The general result can be found in [].
Motivated by these facts, one ask: Does a similar result hold for the more general case

of the systems (.) and (.)? We will answer this question in this paper and obtain the
following result.

Theorem. Let E be a relatively closed subset of�. Suppose that u ∈ Lmloc(�)∩L∞(�) has
distributional first derivatives in�, u is a solution to the scalar part of A-Dirac system (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/443
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under the structure conditions (H)-(H) in�\E, and u is of the type of an m,k-oscillation
in � \ E. If for each compact subset K of E

∫
�\K

d(x,K )m(k–)–k <∞, (.)

then u extends to a solution of the A-Dirac system in �.

2 A-Dirac system
In this section, we would introduce theA-Dirac system. Thus the definition of theA-Dirac
operator is necessary.We first present the definitions and notations as regards the Clifford
algebra at first [].
We write Un for the real universal Clifford algebra over Rn. The Clifford algebra is gen-

erated over R by the basis of the reduced products

{e, e, . . . , ee, . . . , e · · · en}, (.)

where {e, e, . . . , en} is an orthonormal basis of Rn with the relation eiej + ejei = –δij. We
write e for the identity. The dimension of Un is n. We have an increasing tower R⊂ C ⊂
H ⊂ U ⊂ · · · . The Clifford algebra Un is a graded algebra as Un =

⊕
l U l

n, where U l
n are

those elements whose reduced Clifford products have length l.
For A ∈ Un, Sc(A) denotes the scalar part of A, that is, the coefficient of the element e.
Throughout this paper, � ⊂ Rn is a connected and open set with boundary ∂�.

A Clifford-valued function u : � → Un can be written as u =
∑

α uαeα , where each uα

is real-valued and eα are reduced products. The norm used here is given by |∑α uαeα| =
(
∑

α uα)

 , which is sub-multiplicative, |AB| ≤ C|A||B|.

The Dirac operator defined here is

D =
n∑
j=

ej
∂

∂xj
. (.)

Also D = –�. Here � is Laplace operator.
Throughout, Q is a cube in � with volume |Q|. We write σQ for the cube with the

same center as Q and with side length σ times that of Q. For q > , we write Lq(�,Un) for
the space of Clifford-valued functions in � whose coefficients belong to the usual Lq(�)
space. Also, W ,m(�,Un) is the space of Clifford valued functions in � whose coefficients
as well as their first distributional derivatives are in Lq(�). We also write Lqloc(�,Un) for⋂

Lq(�′,Un), where the intersection is over all �′ compactly contained in �. We simi-
larly write W ,m

loc (�,Un). Moreover, we write M� = {u : � → Un|Du = } for the space of
monogenic functions in �.
Furthermore, we define the Dirac Sobolev space

WD,m(�) =
{
u ∈ Un

∣∣∣
∫

�

|u|m +
∫

�

|Du|m < ∞
}
. (.)

The local space WD,m
loc is similarly defined. Notice that if u is monogenic, then u ∈ Lm(�)

if and only if u ∈WD,m(�). Also it is immediate thatW ,m(�) ⊂WD,m(�).
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With those definitions and notations and also of the A-Dirac operator, we define the
linear isomorphism θ : Rn → U 

n by

θ (ω, . . . ,ωn) =
n∑
i=

ωiei. (.)

For x, y ∈ Rn, Du is defined by θ (∇φ) =Dφ for a real-valued function φ, and we have

–Sc
(
θ (x)θ (y)

)
= 〈x, y〉, (.)

∣∣θ (x)∣∣= |x|. (.)

Here Ã(x, ξ ,η) :� × U × Un → Un is defined by

Ã(x,u,η) = θA
(
x,u, θ–η

)
, (.)

which means that (.) is equivalent to

∫
�

Sc
(
θA(x,u,∇u)θ (∇φ)

)
dx =

∫
�

Sc
(
Ã(x,u,Du)Dφ

)
dx

=
∫

�

Sc
(
f (x,u,Du)φ

)
dx. (.)

For the Clifford conjugation (ej · · · ejl) = (–)lejl · · · ej, we define a Clifford-valued inner
product as ᾱβ . Moreover, the scalar part of this Clifford inner product Sc(ᾱβ) is the usual
inner product 〈α,β〉 in Rn , when α and β are identified as vectors.
For convenience, we replace Ãwith A and recast the structure systems above and define

the operator:

A(x, ξ ,η) :� × U × Un → Un, (.)

where A preserves the grading of the Clifford algebra, x → A(x, ξ ,η) is measurable for all
ξ , η, and ξ → A(x, ξ ,η), η → A(x, ξ ,η) are continuous for a.e. x ∈ �.

Definition . AClifford valued function u ∈WD,m
loc (�,U k

n )∩L∞(�,U k
n ), for k = , , . . . ,n,

is a weak solution to system (.) under conditions (H)-(H). If for all φ ∈ W ,m
 (�,U k

n ),
then we have

∫
�

A(x,u,Du)Dφ dx =
∫

�

f (x,u,Du)φ dx. (.)

3 Proof of themain results
In this section, we will establish the main results. At first, a suitable Caccioppoli estimate
[, ] for solutions to (.) is necessary.

Theorem . Let u be weak solutions to the scalar part of system (.) with λ > CM and
where (H)-(H) are satisfied. Then for every x ∈ �, u ∈ U k

 , p ∈ U k
n , and arbitrary σ > 

http://www.journalofinequalitiesandapplications.com/content/2014/1/443
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we have
∫
Q

[(
 + |p|

)m–
 |Du – p| + |Du – p|m

]
dx

≤ C
{


(σ |Q|)/n

∫
σQ

(
 + |p|

)m–
 |u – P| dx

+


(σ |Q|)m/n

∫
σQ

|u – P|m dx +
∫

σQ
G dx

}
, (.)

where P = u(x) – u + p(x – x) and

∫
σQ

G dx = σ |Q|{[K(|u| + |p|
)(
 + |p|

)m

] 
–β

(
σ |Q|) β

n

+
(
C
 +C

 |p|m
)(

σ |Q|) 
n
}
. (.)

Proof Denote u(x) – u – p(x– x) by v(x) and  < |Q| n < σ |Q| n <min{,dist(x, ∂�)} for
σ > , consider a standard cut-off function η ∈ C∞

 (σQ(x)) satisfying  ≤ η ≤ , |∇η| <


|Q|/n , η ≡  on Q(x). Then ϕ = ηv is admissible as a test-function, and we obtain

∫
σQ

A(x,u,Du) · (Du – p)η dx

= –
∫

σQ
A(x,u,Du)ηv · ∇ηdx +

∫
σQ

f (x,u,Du) · ϕ dx.

We further have

–
∫

σQ
A(x,u,p) · (Du – p)η dx

= 
∫

σQ
A(x,u,p)ηv · ∇ηdx –

∫
σQ

A(x,u,p) ·Dϕ dx,

and
∫

σQ
A(x,u,p) ·Dϕ dx = .

Adding these equations yields

∫
σQ

(
A(x,u,Du) –A(x,u,p)

)
(Du – p)η dx

= –
∫

σQ

(
A(x,u,Du) –A(x,u,p)

)
(Du – p)ηv · ∇ηdx

–
∫

σQ

(
A(x,u,p) –A

(
x,u + p(x – x),p

)) ·Dϕ dx

–
∫

σQ

(
A

(
x,u + p(x – x),p

)
–A(x,u,p)

) ·Dϕ dx +
∫

σQ
f (x,u,Du) · ϕ dx

≤ I + II + III + IV +V , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/443
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where

I = C
∫

σQ

(
 + |Du| + |p|

)m–
 |Du – p|η|v||∇η|dx;

II = K
(|u| + |p|

)∫
σQ

|v|β |Du – p|
(
 + |p|

)m
 η dx;

III = K
(|u| + |p|

)∫
σQ

|v|β+|∇η|( + |p|
)m

 ηdx;

IV = K
(|u| + |p|

)∫
σQ

(|x – x|m +
∣∣p(x – x)

∣∣m) β
m

(
 + |p|

)m


· (η|∇η||v| + η|Du – p|
)
dx;

V =
∫

σQ

(
C|Du|m +C

)|v|η dx,

after using (.), (H), (H).
For positive ε, to be fixed later, using Young’s inequality, we have

I ≤ C
∫

σQ

(
 + |Du – p| + |p|

)m–
 |Du – p|η|v||∇η|dx

≤ C
[∫

σQ

(
 + |p|

)m–
 |Du – p|η|v||∇η|dx +

∫
σQ

|Du – p|m–η|v||∇η|dx
]

≤ Cε

∫
σQ

(
 + |p|

)m–
 |Du – p|η dx +C


ε

∫
σQ

(
 + |p|

)m–
 |v||∇η| dx

+Cε

∫
σQ

|Du – p|mη dx +C(ε)
∫

σQ
|v|m|∇η|m dx.

Using Young’s inequality twice in II , we have

II ≤ ε

∫
σQ

|Du – p|η dx +

ε
K(|u| + |p|

)(
 + |p|

)m ∫
σQ

|v|β dx

≤ ε

∫
σQ

|Du – p|η dx +

ε

∫
σQ

(


(σ |Q|)/n |v|
)

dx

+

ε

[
K

(|u| + |p|
)(
 + |p|

)m

] 
–β

(
σ |Q|)( β

–β
+n)/n

≤ ε

∫
σQ

(
 + |p|

)m–
 |Du – p|η dx +


ε

∫
σQ

(
 + |p|

)m–


(


(σ |Q|)/n
)

|v| dx

+

ε

[
K

(|u| + |p|
)(
 + |p|

)m

] 
–β

(
σ |Q|)( β

–β
+n)/n,

and similarly we see

III ≤ 


∫
σQ

|v||∇η| dx

+ K(|u| + |p|
)(
 + |p|

)m ∫
σQ

(
σ |Q|) β

n

( |v|
(σ |Q|)/n

)β

η dx

http://www.journalofinequalitiesandapplications.com/content/2014/1/443
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≤
∫

σQ

(


(σ |Q|)/n
)

|v| dx + [
K

(|u| + |p|
)(
 + |p|

)m

] 
–β

(
σ |Q|)( β

–β
+n)/n

≤ (
 + |p|

)m–


∫
σQ

(


(σ |Q|)/n
)

|v| dx

+
[
K

(|u| + |p|
)(
 + |p|

)m

] 
–β

(
σ |Q|)( β

–β
+n)/n

and

IV ≤
∫

σQ
K

(|u| + |p|
)(
 + |p|

)m

(
σ |Q|) β

n
(
 + |p|m

) β
m

(
η|Du – p| + η|∇η||v|)dx

≤
∫

σQ
K

(|u| + |p|
)(
 + |p|

)m

(
σ |Q|) β

n
(
 + |p|

)β(
η|Du – p| + η|∇η||v|)dx

≤ ε

∫
σQ

(
 + |p|

)m–
 |Du – p|η dx +

∫
σQ

(
 + |p|

)m–
 |∇η||v| dx

+
(
 +


ε

)
K(|u| + |p|

)(
 + |p|

)(m +β)(
σ |Q|) n+β

n ,

and for positive μ, to be fixed later, this yields

V =
∫

σQ
C|Du|m∣∣u – u – p(x – x)

∣∣η dx +
∫

σQ

(


(σ |Q|)/n |v|η
)(

C
(
σ |Q|) 

n η
)
dx

≤
∫

σQ
C

[
( +μ)|Du – p|m +

(
 +


μ

)
|p|m

]∣∣u – u – p(x – x)
∣∣η dx

+


εC


(
σ |Q|) n+

n +


ε
(
σ |Q|)/n

∫
σQ

|v| dx

≤ C( +μ)
(
M + p

(
σ |Q|) 

n
)∫

σQ
|Du – p|mη dx +C

(
 +


μ

)
|p|m

∫
σQ

|v|η dx

+


εC


(
σ |Q|) n+

n +

ε

∫
σQ


(σ |Q|)/n |v| dx

≤ C( +μ)
(
M + p

(
σ |Q|) 

n
)∫

σQ
|Du – p|mη dx +


ε

∫
σQ


(σ |Q|)/n |v| dx

+
ε



[
C
 +C



(
 +


μ

)

|p|m
](

σ |Q|) n+
n .

By (.), we obtain

∫
σQ

(
A(x,u,Du) –A(x,u,p)

)
(Du – p)η dx

≥ λ

∫
σQ

(
 + |Du| + |p|

)m–
 |Du – p|η dx

≥ λ

∫
σQ

(
 + |Du – p| + |p|

)m–
 |Du – p|η dx

≥ λ

{∫
σQ

(
 + |p|

)m–
 |Du – p|η dx +

∫
σQ

|Du – p|mη dx
}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/443
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Combining these estimates in (.) and noting that K ≤ K


–β (as K ≥ ), (σ |Q|) β
(–β)n ≤

(σ |Q|) βn for σ > , [( + |p|)m ]


–β ≥ ( + |p|)(m +β), and ≤ 


–β , we can estimate

[
λ – Cε – ε –C( +μ)

(
M + p

(
σ |Q|) 

n
)]

·
{∫

σQ

(
 + |p|

)m–
 |Du – p|η dx +

∫
σQ

|Du – p|mη dx
}

≤
(
C
ε
+

ε
+C(ε) + 

){


(σ |Q|)/n
∫

σQ

(
 + |p|

)m–
 |u – P| dx

+


(σ |Q|)m/n

∫
σQ

|u – P|m dx
}
+ 

(

ε
+ 


–β

)

· [K(|u| + |p|
)(
 + |p|

)m

] 
–β

(
σ |Q|) n+β

n

+
ε



[
C
 +C



(
 +


μ

)

|p|m
](

σ |Q|) n+
n .

Define ε = ε(λ,m), μ = μ(C,M,m,λ) small enough, we obtain
∫

σQ

(
 + |p|

)m–
 |Du – p|η dx +

∫
σQ

|Du – p|mη dx

≤ C
{


(σ |Q|)/n

∫
σQ

(
 + |p|

)m–
 |u – P| dx

+


(σ |Q|)m/n

∫
σQ

|u – P|m dx +
∫

σQ
G dx

}
,

where C = C(m,λ,β ,M) and
∫

σQ
G dx = σ |Q|{[K(|u|+ |p|

)(
+ |p|

)m

] 
–β

(
σ |Q|) β

n +
(
C
 +C


 |p|m

)(
σ |Q|) 

n
}
.

Now let the domain of the left-hand side be Q, then we can get the right inequality
immediately. �

In order to remove singularity of solutions to A-Dirac system, we also need the fact that
real-valued functions satisfying various regularity properties. Thus we have the following.

Definition . [] Assume that u ∈ Lloc(�,Un), q > , and that –∞ < k < . We say that u
is of the type of a q,k-oscillation in � when

sup
Q⊂�

|Q|–(qk+n)/qn inf
uQ∈MQ

(∫
Q

|u – uQ|q
)/q

< ∞. (.)

If q =  and k = , then the inequality (.) is equivalent to the usual definition of the
boundedmean oscillation; when q =  and  < k ≤ , then the inequality (.) is equivalent
to the usual local Lipschitz condition []. Further discussion of the inequality (.) can
be found in [, ]. In these cases, the supremum is finite if we choose uQ to be the average
value of the function u over the cube Q.
We remark that it follows from Hölder’s inequality that if s ≤ q and if u is of the type of

an q,k-oscillation, then u is of the type of an s,k-oscillation.

http://www.journalofinequalitiesandapplications.com/content/2014/1/443
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The following lemma shows that Definition . is independent of the expansion factor
of the sphere.

Lemma . [] Suppose that F ∈ Lloc(�,R), F >  a.e., r ∈ R and σ,σ > . If

sup
σQ⊂Q

|Q|r
∫
Q
F <∞,

then

sup
σQ⊂Q

|Q|r
∫
Q
F < ∞. (.)

Then we proceed to prove the main result, Theorem ..

Proof of Theorem . Let Q be a cube in the Whitney decomposition of � \ E. The de-
composition consists of closed dyadic cubes with disjoint interiors which satisfy
(a) � \ E =

⋃
Q∈W Q,

(b) |Q|/n ≤ d(Q, ∂�) ≤ |Q|/n,
(c) (/)|Q|/n ≤ |Q|/n ≤ |Q|/n when Q ∩Q is not empty.
Here d(Q, ∂�) is the Euclidean distance between Q and the boundary of � [].
If A⊂ Rn and r > , then we define the r-inflation of A as

A(r) =
⋃

B(x, r). (.)

LetQ be a cube in theWhitney decomposition of � \E. Using the Caccioppoli estimate
(.), we have

∫
Q

[(
 + |p|

)m–
 |Du – p| + |Du – p|m

]
dx

≤ C
{


(σQ)/n

∫
σQ

(
 + |p|

)m–
 |u – P| dx

+


(σQ)m/n

∫
σQ

|u – P|m dx +
∫

σQ
G dx

}
,

with (.)

∫
σQ

G dx ≤ C|σQ| n+βn H( + |uQ| + |p|
)
, (.)

where

H(t) =
[
K̃ (t)( + t)

m

] 
–β , K̃ (t) =max

{
K (t),C,C

}
,

and choose |Q| small enough such that

|Q| β
n H

(
 + |uQ| + |p|

) ≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/443
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By the definition of the q,k-oscillation condition, we have
∫
Q

[(
 + |p|

)m–
 |Du – p| + |Du – p|m

]
dx

≤ C|Q|– 
n |Q| k+nn +C|Q|–m

n |Q|(mk+n)/n +C|Q|
≤ C|Q|a. (.)

Here a = (n+mk–m)/n. Since the problem is local (use a partition of unity), we show that
(.) holds whenever φ ∈ W ,m

 (B(x, r)) with x ∈ E and r >  sufficiently small. Choose
r = (/

√
n)min{,d(x, ∂�)} and let K = E ∩ B̄(x, r). Then K is a compact subset of E.

Also letW be those cubes in theWhitney decomposition of�\Ewhichmeet B = B(x, r).
Notice that each cube Q ∈W lies in � \K . Let γ =m(k – ) – k. First, since γ ≥ –, from
[] we havem(K ) =m(E) = . Also since na – n≥ γ , using (.) and (.), we obtain

∫
B(x,r)

[(
 + |p|

)m–
 |Du – p| + |Du – p|m

]
dx

≤ C
∑
Q∈W

|Q|a ≤ C
∑
Q∈W

d(Q,K )na

≤ C
∑
Q∈W

∫
Q
d(x,K )na–n dx ≤ C

∫
K ()\K

d(x,K )na–n dx

≤ C
∫
K ()\K

d(x,K )γ dx < ∞. (.)

Hence u ∈WD,m
loc (�).

Next let B = B(x, r) and assume that ψ ∈ C∞
 (B). Also letWj, j = , , . . . , be those cubes

Q ∈W with l(Q)≤ –j.
Consider the scalar functions

φj =max
{(
–j – d(x,K )

)
j, 

}
. (.)

Thus each φj, j = , , . . . , is Lipschitz, equal to  on K and as suchψ(–φj) ∈W ,m(B\E)
with compact support. Hence

∫
B

[
A(x,u,Du)Dψ – f (x,u,Du)ψ

]
dx

=
∫
B\E

[
A(x,u,Du)D

(
ψ( – φj)

)
– f (x,u,Du)ψ( – φj)

]
dx

+
∫
B

[
A(x,u,Du)D(ψφj) – f (x,u,Du)ψφj

]
dx. (.)

Let

J =
∫
B\E

[
A(x,u,Du)D

(
ψ( – φj)

)
– f (x,u,Du)ψ( – φj)

]
dx,

J =
∫
B

[
A(x,u,Du)D(ψφj) – f (x,u,Du)ψφj

]
dx.

Since u is a solution in B \ E, J = .
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Next we estimate J as

J =
∫
B
A(x,u,Du)ψDφj dx +

∫
B
φjA(x,u,Du)Dψ dx –

∫
B
f (x,u,Du)ψφj dx

= J ′ + J ′′ + J ′′′ . (.)

Noting that there exists a constant C such that |ψ | ≤ C < ∞,

∣∣J ′∣∣ ≤ C
∑
Q∈Wj

∫
B

∣∣A(x,u,Du)∣∣|Dφj|dx.

Recalling that |Q| β
n K (t) ≤ , we have

∫
B

∣∣A(x,u,Du)∣∣|Dφj|dx

≤
∫
B

∣∣A(x,u,Du) –A(x,u,p)
∣∣|Dφj|dx

+
∫
B

∣∣A(x,u,p) –A(x,u,p)
∣∣|Dφj|dx

≤ C
∫
B

(
 + |Du| + |p|

)m–
 |Du – p||Dφj|dx

+C
∫
B
K

(|u|)(|x – x|m + |u – u|m
) β
m

(
 + |p|

)m
 |Dφj|dx

≤ C
∫
B

((
 + |p|

)m–
 + |Du – p|m–)|Du – p||Dφj|dx

+C
∫
B
K

(|u|)(|x – x|β + |u – u|β
)(
 + |p|

)m
 |Dφj|dx

≤ C
∫
B

(
 + |p|

)m–
 |Du – p||Dφj|dx +C

∫
B
|Du – p|m–|Dφj|dx

+C
∫
B
K

(|u|)|x – x|β
(
 + |p|

)m
 |Dφj|dx

+C
∫
B
K

(|u|)|u – u|β
(
 + |p|

)m
 |Dφj|dx

≤ C
∫
B

[(
 + |p|

)m–
 |Du – p| + |Du – p|m

]
dx

+C
∫
B

[(
 + |p|

)m–
 |Dφj| + |Dφj|m

]
dx

+C
∫
B
K

(|u|)|Q| β
n
(
 + |p|

)m
 |Dφj|dx

+C
∫
B
K

(|u|)|Q| β
n
(
 + |p|

)m
 |Dφj|dx

≤ C|Q|a +C
∫
B

[|Dφj| + |Dφj|m
]
dx +C

∫
B
|Dφj|dx +C

∫
B
|Dφj|dx

≤ C|Q|a +C
∫
B

(
j + mj)dx +C

∫
B
j dx. (.)
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Now for x ∈ Q ∈ Wj, d(x,K ) is bounded above and below by a multiple of |Q|/n and for
Q ∈Wj, |Q|/n ≤ –j. Hence

∣∣J ′∣∣ ≤ C
∑
Q∈Wj

(|Q|a + |Q|–m
n |Q| +C|Q|– 

n |Q| + |Q|– 
n |Q|n)

≤ C
∑
Q∈Wj

|Q|a ≤ C
∫

⋃
Wj

d(x,K )m(k–)–k . (.)

Since
⋃

Wj ⊂ � \K and |⋃Wj| →  as j → ∞, it follows that J ′ →  as j → ∞.
For

∣∣J ′′ ∣∣ ≤ C
∑
Q∈Wj

∫
B
φjA(x,u,Du)Dψ dx.

Similarly, we get

∫
B
φjA(x,u,Du)Dψ dx

≤
∫
B

(
A(x,u,Du) –A(x,u,p)

)
Dψ dx +

∫
B

(
A(x,u,p) –A(x,u,p)

)
Dψ dx

≤ C
∫
B

(
 + |Du| + |p|

)m–
 |Du – p|dx

+C
∫
B
K

(|u|)(|x – x|m + |u – u|m
) β
m

(
 + |p|

)m
 |Dψ |dx

≤ C
∫
B

((
 + |p|

)m–
 + |Du – p|m–)|Du – p||Dψ |dx

+C
∫
B
K

(|u|)(|x – x|β + |u – u|β
)(
 + |p|

)m
 |Dψ |dx

≤ C
∫
B

(
 + |p|

)m–
 |Du – p||Dψ |dx +C

∫
B
|Du – p|m–|Dψ |dx

+C
∫
B
K

(|u|)|x – x|β
(
 + |p|

)m
 |Dψ |dx

+C
∫
B
K

(|u|)|u – u|β
(
 + |p|

)m
 |Dψ |dx

≤ C
∫
B

[(
 + |p|

)m–
 |Du – p| + |Du – p|m

]
dx

+C
∫
B

[(
 + |p|

)m–
 |Dψ | + |Dψ |m]

dx

+C
∫
B
|Dψ |dx +C

∫
B
K

(|u|)|Q| β
n |Dψ |dx

≤ C|Q|a +C
∫
B

(|Dψ | + |Dψ |m)
dx +C

∫
B
|Dψ |dx

≤ C|Q|a +C
∫
B
dx.
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Thus,

∣∣J ′′ ∣∣ ≤ C
∑
Q∈Wj

(|Q|a + |Q|) ≤ C
∑
Q∈Wj

|Q|a ≤ C
∫

⋃
Wj

d(x,K )m(k–)–k . (.)

Since u ∈ W ,D
loc (�) and |⋃Wj| →  as j → ∞, we have J ′′ →  as j → ∞. In order to

estimate J ′′′ , we should use (H):

J ′′′ =
∫
B
f (x,u,Du)ψφj dx ≤ C

∫
B
|Du – p|m dx +C

∫
B
|p|m dx = J ′ + J ′′ . (.)

Similar to the estimate of (.), using the Caccioppoli inequality (.) and the inequality
(.), we get

J ′ ≤ C
∑
Q∈Wj

∫
Q

|Du – p|m dx ≤ C
∑
Q∈Wj

|Q| (n+mk–m)
n

≤ C
∫

⋃
Wj

d(x,K )n+mk–m dx≤ C
∫

⋃
Wj

d(x,K )m(k–)–k dx.

→  (j → ∞),

and

J ′′ ≤ C
∑
Q∈Wj

∫
Q
dx = C

∑
Q∈Wj

|Q|

≤ C
∫

⋃
Wj

d(x,K )n dx ≤ C
∫

⋃
Wj

d(x,K )n+mk–m dx

≤ C
∫

⋃
Wj

d(x,K )m(k–)–k dx

→  (j → ∞).

Hence J → .
Combining estimates J and J in (.), we prove Theorem .. �
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