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1 Introduction
The fixed point theorems for nonexpansive mappings in the setting of CAT() space have
been studied extensively by many authors (see, for example, Refs. [–]). Nanjaras and
Panyanak [], in , obtained a �-convergence theorem for asymptotically nonexpan-
sive mappings in CAT() spaces. In , Chang et al. [] introduced the concept of to-
tal asymptotically nonexpansive mappings and proved the demiclosed principle for total
asymptotically nonexpansive mappings in CAT() spaces and obtained a �-convergence
theorem for the Krasnoselskii-Mann iteration. Recently, Sahin and Basarir [] obtained a
strong convergence theorem for asymptotically quasi-nonexpansive mappings by a mod-
ified S-iteration.
The classes of asymptotically demicontractive mappings and asymptotically hemicon-

tractive mappings were introduced in  by Liu [] in Hilbert spaces. Liu [] ob-
tained some convergence results of the Mann iterative scheme for the class of asymp-
totically demicontractive mappings. Osilike [] in  extended the results of Liu [] to
more general q-uniformly smooth Banach spaces. Zegeye et al. [] in  obtained some
strong convergence results of the Ishikawa-type iterative scheme for the class of asymp-
totically pseudocontractive mappings in the intermediate sense without resorting to the
hybrid method which was the main tool of Qin et al. []. Olaleru and Okeke [] in 
established a strong convergence of Noor-type scheme for uniformly L-Lipschitzian and
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asymptotically pseudocontractive mappings in the intermediate sense without assuming
any form of compactness.
Inspired and motivated by the recent work of Olaleru and Okeke [], Chang et al. [],

Sahin and Basarir [], the purpose of this paper is to introduce the concept of total asymp-
totically demicontractivemappings and total asymptotically hemicontractivemappings in
CAT() spaces, and prove some strong convergence theorems of Mann- and Ishikawa-
type iterative schemes for uniformly L-Lipschitzian total asymptotically demicontractive
mappings and total asymptotically hemicontractivemappings. The result presented in the
paper extend and improve the corresponding results in Chang et al. [], Sahin and Basarir
[], Liu [, ], Osilike [] and Olaleru et al. [, ].

2 Preliminaries and lemmas
Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ Y (or, more briefly,
a geodesic from x to y) is a map c : [, l]→ X such that c() = x, c(l) = y, and d(c(t), c(t′)) =
|t – t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and d(x, y) = l. The image α of c
is called a geodesic (or metric) segment joining x and y. When it is unique, this geodesic
segment is denoted by [x, y]. The space (X,d) is said to be a geodesic space if every two
points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly
one geodesic joining x and y for each x, y ∈ X. A subset Y ⊂ X is said to be convex if Y
includes every geodesic segment joining any two of its points.
Let x, y ∈ X, by [, Lemma .(iv)] for each t ∈ [, ], then there exists a unique point

z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = ( – t)d(x, y). (.)

From now on, we will use the notation ( – t)x⊕ ty to denote the unique point z satisfying
(.).
The following lemma plays an important role in our paper.

Lemma . [] A geodesic space X is a CAT() space, if and only if the following inequality
holds:

d(( – t)x⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y) (.)

for all x, y, z ∈ X and all t ∈ [, ]. In particular, if x, y, z are points in a CAT() space and
t ∈ [, ], then

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z). (.)

Let (X,d) be a metric space, C be a nonempty subset of X. Recall a mapping T : C → C
is said to be nonexpansive if

d(Tx,Ty) ≤ d(x, y), ∀x, y ∈ C.

T is said to be asymptotically nonexpansive, if there is a sequence {kn} ⊂ [,∞) with
kn →  such that

d
(
Tnx,Tny

) ≤ ( + kn)d(x, y), ∀n≥ ,x, y ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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T is said to be ({μn}, {vn},φ)-total asymptotically nonexpansive [], if there exist non-
negative sequences {μn}, {vn} with μn → , vn →  and a strictly increasing continuous
function φ : [,∞)→ [,∞) with φ() =  such that

d
(
Tnx,Tny

) ≤ d(x, y) +μnφ
(
d(x, y)

)
+ vn, ∀n≥ ,x, y ∈ C.

T is said to be quasi-nonexpansive, if F(T) �= ∅ and

d(Tx,p) ≤ d(x,p), ∀x ∈ C,p ∈ F(T).

T is said to be uniformly L-Lipschitzian, if there exists a constant L >  such that

d
(
Tnx,Tny

) ≤ Ld(x, y), ∀n≥ ,x, y ∈ C. (.)

T is said to be completely continuous, if the image of each bounded subset in C is con-
tained in a compact subset of C.
Berg and Nikolaev [] introduced the concept of quasilinearization as follows:
Let us formally denote a pair (a,b) ∈ X × X by

–→
ab and call it a vector. Then a quasilin-

earization is defined as a map 〈·, ·〉 : (X ×X)× (X ×X)→R which is defined by

〈–→ab, –→cd〉 = 

(
d(a,d) + d(b, c) – d(a, c) – d(b,d)

)
, ∀a,b, c,d ∈ X. (.)

It is easily seen that 〈–→ab, –→cd〉 = 〈–→cd, –→ab〉, 〈–→ab, –→cd〉 = –〈–→ba, –→cd〉, and 〈–→ax, –→cd〉+ 〈–→xb, –→cd〉 = 〈–→ab, –→cd〉
for all a,b, c,d,x ∈ X. We say that X satisfies the Cauchy-Schwarz inequality if

〈–→ab, –→cd〉 ≤ d(a,b)d(c,d)

for all a,b, c,d ∈ X. It is well known [, Corollary ] that a geodesically connected metric
space is a CAT() space if and only if it satisfies the Cauchy-Schwarz inequality.
By using the quasilinearization, we can define demicontractive mappings in CAT()

spaces.

Definition . Let X be a CAT() space, C be a nonempty subset of X. A mapping T :
C → C is said to be demicontractive if F(T) �= ∅ and there exists a constant k ∈ (, ] such
that

〈––→Txp, –→xp〉 ≤ d(x,p) – kd(x,Tx), ∀x ∈ C,p ∈ F(T). (.)

It is easy to show that (.) is equivalent to

d(Tx,p) ≤ d(x,p) + ( – k)d(x,Tx). (.)

Remark . From the definitions, we may conclude that each quasi-expansive mapping
is a demicontractive mapping with k = 

 .

Definition . Let X be a CAT() space, C be a nonempty subset of X. A mapping T :
C → C with F(T) �= ∅ is said to be:

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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() an asymptotically demicontractive mapping if there exist a constant k ∈ [, ) and a
nonnegative sequence {μn} ⊂ [,∞) with μn →  such that

d(Tnx,p
) ≤ ( +μn)d(x,p) + kd(x,Tnx

)
,

for all n≥ , x ∈ C, p ∈ F(T);
() an asymptotically demicontractive mapping in the intermediate sense if there exist a

constant k ∈ [, ) and nonnegative sequences {μn}, {vn} ⊂ [,∞) with μn → ,
vn →  such that

d(Tnx,p
) ≤ ( +μn)d(x,p) + kd(x,Tnx

)
+ vn,

for all n≥ , x ∈ C, p ∈ F(T);
() a ({μn}, {vn},φ)-total asymptotically demicontractive mapping if there exist a

constant k ∈ [, ) and nonnegative sequences {μn}, {vn} ⊂ [,∞) with μn → ,
vn → , and a strictly increasing continuous function φ : [,∞)→ [,∞) with
φ() =  such that

d(Tnx,p
) ≤ d(x,p) +μnφ

(
d(x,p)

)
+ kd(x,Tnx

)
+ vn, (.)

for all n≥ , x ∈ C, p ∈ F(T);
() a ({μn}, {vn},φ)-total asymptotically hemicontractive mapping if there exist

nonnegative sequences {μn}, {vn} ⊂ [,∞) with μn → , vn →  and a strictly
increasing continuous function φ : [,∞)→ [,∞) with φ() =  such that

d(Tnx,p
) ≤ d(x,p) +μnφ

(
d(x,p)

)
+ d(x,Tnx

)
+ vn, (.)

for all n≥ , x ∈ C, p ∈ F(T).

Remark . From the definitions, it is easy to see that each asymptotically demicontrac-
tivemapping is an asymptotically demicontractivemapping in the intermediate sense with
sequence {vn = }, and each asymptotically demicontractive mapping in the intermediate
sense is a total asymptotically demicontractive mapping with φ(t) = t.

Let C be a nonempty bounded closed convex subset of a complete CAT() space X and
T : C → C be a completely continuous and uniformly L-Lipschitzian and total asymp-
totically demicontractive or hemicontractive mapping with F(T) �= ∅. We introduce the
Mann-type iteration process,

x = x ∈ C,

xn+ = αnTnxn ⊕ ( – αn)xn, n≥ ,
(.)

and the Ishikawa-type iteration process,

x = x ∈ C,

yn = βnTnxn ⊕ ( – βn)xn,

xn+ = αnTnyn ⊕ ( – αn)xn, n≥ ,

(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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where {αn}, {βn} are the sequences in [, ]. Under suitable conditions, we prove that se-
quences {xn} generated by (.) and (.) converges strongly to a fixed point of T . The
results presented in the paper extend and improve some recent results announced in the
current literature.
The following lemmas will be useful in this study.

Lemma . [] Let {an}∞n=, {bn}∞n= be sequences of nonnegative real numbers satisfying
an+ ≤ an+bn, an ≥ , ∀n≥ ,

∑∞
n= bn <∞ andwe have a subsequence {ank }∞k=, converging

to . Then we have

lim
n→∞an = . (.)

3 Main results
Theorem . Let C be a nonempty bounded closed convex subset of a complete CAT()
space X and T : C → C be a completely continuous, uniformly L-Lipschitzian and
({μn}, {vn},φ)-total asymptotically demicontractive mapping with F(T) �= ∅. Let {xn} be
the sequence defined by (.). If the following conditions are satisfied:

(i)
∑∞

n= μn < ∞,
∑∞

n= vn < ∞;
(ii) there exist positive constantsM andM∗, such that φ(t) ≤M∗t for all t ≥M;
(iii) ε ≤ αn ≤  – k – ε, ∀n≥  for some ε >  and k ∈ [, ),

then {xn} converges strongly to a fixed point of T .

Proof Fix p ∈ F(T), using (.), we obtain

d(Tnxn,p
) ≤ d(xn,p) +μnφ

(
d(xn,p)

)
+ kd(xn,Tnxn

)
+ vn. (.)

Since φ is an increasing function, we have the result that φ(t) ≤ φ(M) if t ≤M and φ(t) ≤
M∗t if t ≥M. In either case, we obtain

φ
(
d(xn,p)

) ≤ φ(M) +M∗d(xn,p). (.)

From (.), (.), and Lemma ., we have

d(xn+,p) = d(αnTnxn ⊕ ( – αn)xn,p
)

≤ αnd(Tnxn,p
)
+ ( – αn)d(xn,p) – αn( – αn)d(Tnxn,xn

)
≤ αn

{
d(xn,p) +μnφ

(
d(xn,p)

)
+ kd(xn,Tnxn

)
+ vn

}
+ ( – αn)d(xn,p) – αn( – αn)d(Tnxn,xn

)
≤ αn

{(
 +μnM∗)d(xn,p) + kd(xn,Tnxn

)
+μnφ(M) + vn

}
+ ( – αn)d(xn,p) – αn( – αn)d(Tnxn,xn

)
=

(
 + αnμnM∗)d(xn,p) + αnμnφ(M) + αnvn

– αn( – k – αn)d(Tnxn,xn
)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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Now, we show that limn→∞ d(Tnxn,xn) = . In fact, by condition (iii), we have αn ≥ ε > ,
 – k – αn ≥ ε. Hence αn( – k – αn) ≥ ε > . It follows from (.) that

d(xn+,p) ≤ d(xn,p) + αnμnM∗d(xn,p) + αnμnφ(M)

– εd(Tnxn,xn
)
+ αnvn. (.)

Since C is bounded, there exists a constant K >  such that d(xn,p) ≤ K , ∀n ≥ . It
follows from (.) that

d(xn+,p) ≤ d(xn,p) +
(
M∗K + φ(M)

)
μn – εd(Tnxn,xn

)
+ vn. (.)

Hence,

εd(Tnxn,xn
) ≤ d(xn,p) – d(xn+,p) +

(
M∗K + φ(M)

)
μn + vn. (.)

From (.), we have

m∑
n=

εd(Tnxn,xn
) ≤

m∑
n=

[
d(xn,p) – d(xn+,p) +

(
M∗K + φ(M)

)
μn + vn

]

= d(x,p) – d(xm+,p) +
(
M∗K + φ(M)

) m∑
n=

μn +
m∑
n=

vn

≤ K +
(
M∗K + φ(M)

) ∞∑
n=

μn +
∞∑
n=

vn. (.)

Since (M∗K + φ(M))
∑∞

n= μn +
∑∞

n= vn < ∞, it follows that

lim
n→∞d

(
Tnxn,xn

)
= . (.)

Using (.), (.), and Lemma ., we have

d(xn+,xn) = d
(
αnTnxn ⊕ ( – αn)xn,xn

)
= αnd

(
Tnxn,xn

) →  (n→ ∞). (.)

Hence,

d(xn,Txn) ≤ d(xn,xn+) + d
(
xn+,Tn+xn+

)
+ d

(
Tn+xn+,Tn+xn

)
+ d

(
Tn+xn,Txn

)
≤ ( + L)d(xn+,xn) + d

(
xn+,Tn+xn+

)
+ Ld

(
Tnxn,xn

)
→  (n→ ∞). (.)

Since {xn}∞n= is bounded and T is completely continuous, there is a convergent subse-
quence {Txnr }∞r= of {Txn}∞n= such that Txnr → q as r → ∞. Since

d(xnr ,q) ≤ d(xnr ,Txnr ) + d(Txnr ,q) →  (r → ∞),

we have xnr → q as r → ∞.
Since T is continuous, we obtain Tq = q, which shows that q is a fixed point of T . The

implies that {xn}∞n= has a subsequence which converges to a fixed point of T .

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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In view of (M∗K + φ(M))
∑∞

n= μn +
∑∞

n= vn < ∞ and
∑∞

n= ε
d(Tnxn,xn) < ∞, by

Lemma ., and (.), we have limn→∞ d(xn,q) = . Hence, xn → q as n→ ∞. The proof
of Theorem . is completed. �

Theorem . Let C be a nonempty bounded closed convex subset of a complete CAT()
space X and T : C → C be a completely continuous and uniformly L-Lipschitzian and
({μn}, {vn},φ)-total asymptotically demicontractive mapping with F(T) �= ∅. Let {xn} be a
sequence defined by (.), where {αn}, {βn} ∈ [, ]. Assume that the following conditions
are satisfied:

(i)
∑∞

n= μn < ∞,
∑∞

n= vn < ∞;
(ii) there exist positive constantsM andM∗, such that φ(t) ≤M∗t for all t ≥M;
(iii) ε ≤ k ≤ αn ≤ βn ≤ b, ∀n≥  for some ε > , k ∈ [, ) and some

b ∈ (,L–[
√
 + L – ]).

Then {xn} converges strongly to a fixed point of T .

Proof Fixing p ∈ F(T), using (.), (.), (.), and Lemma ., we obtain

d(yn,p) = d(βnTnxn ⊕ ( – βn)xn,p
)

≤ βnd(Tnxn,p
)
+ ( – βn)d(xn,p) – βn( – βn)d(Tnxn,xn

)
≤ βn

{
d(xn,p) +μnφ

(
d(xn,p)

)
+ kd(xn,Tnxn

)
+ vn

}
+ ( – βn)d(xn,p) – βn( – βn)d(Tnxn,xn

)
≤ βn

{(
 +μnM∗)d(xn,p) + kd(xn,Tnxn

)
+μnφ(M) + vn

}
+ ( – βn)d(xn,p) – βn( – βn)d(Tnxn,xn

)
=

(
 + βnμnM∗)d(xn,p) + βnμnφ(M) + βnvn

– βn( – k – βn)d(Tnxn,xn
)
, (.)

d(yn,Tnyn
)
= d(βnTnxn ⊕ ( – βn)xn,Tnyn

)
≤βnd(Tnxn,Tnyn

)
+ ( – βn)d(xn,Tnyn

)
– βn( – βn)d(Tnxn,xn

)
≤ βnLd(xn, yn) + ( – βn)d(xn,Tnyn

)
– βn( – βn)d(Tnxn,xn

)
= β

nL
d(xn,Tnxn

)
+ ( – βn)d(xn,Tnyn

)
– βn( – βn)d(Tnxn,xn

)
= ( – βn)d(xn,Tnyn

)
– βn

(
 – βn – β

nL
)d(Tnxn,xn

)
. (.)

Using (.), (.), (.), and (.), we obtain

d(Tnyn,p
) ≤ d(yn,p) +μnφ

(
d(yn,p)

)
+ kd(yn,Tnyn

)
+ vn

≤ d(yn,p) +μn
[
φ(M) +M∗d(yn,p)

]
+ kd(yn,Tnyn

)
+ vn

=
(
 +μnM∗)d(yn,p) + kd(yn,Tnyn

)
+μnφ(M) + vn

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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≤ (
 +μnM∗){( + βnμnM∗)d(xn,p) + βnμnφ(M)

+ βnvn – βn( – k – βn)d(Tnxn,xn
)}

+ k
{
( – βn)d(xn,Tnyn

)
– βn

(
 – βn – β

nL
)d(Tnxn,xn

)}
+μnφ(M) + vn

=
(
 +μnM∗)( + βnμnM∗)d(xn,p) +

(
 +μnM∗)βnμnφ(M)

+
(
 +μnM∗)βnvn –

(
 +μnM∗)βn( – k – βn)d(Tnxn,xn

)
+ k( – βn)d(xn,Tnyn

)
– kβn

(
 – βn – β

nL
)d(Tnxn,xn

)
+μnφ(M) + vn. (.)

Using (.), Lemma ., and condition (iii), we obtain

d(xn+,p) = d(αnTnyn ⊕ ( – αn)xn,p
)

≤ αnd(Tnyn,p
)
+ ( – αn)d(xn,p) – αn( – αn)d(Tnyn,xn

)
≤ αn

{(
 +μnM∗)( + βnμnM∗)d(xn,p) +

(
 +μnM∗)βnμnφ(M)

× (
 +μnM∗)βnvn –

(
 +μnM∗)βn( – k – βn)d(Tnxn,xn

)
+ k( – βn)d(xn,Tnyn

)
– kβn

(
 – βn – β

nL
)d(Tnxn,xn

)
+μnφ(M) + vn

}
+ ( – αn)d(xn,p) – αn( – αn)d(Tnyn,xn

)
=

[
 + αnμnM∗( + βn

(
 +μnM∗))]d(xn,p)

– αnβn
[
k
(
 – βn – β

nL
) + (

 +μnM∗)( – k – βn)
]
d(Tnxn,xn

)
+ αn

[
k( – βn) – ( – αn)

]
d(Tnyn,xn

)
+ αn

[
 + βn

(
 +μnM∗)]φ(M)μn + αn

[
 + βn

(
 +μnM∗)]vn

≤ [
 + αnμnM∗( + βn

(
 +μnM∗))]d(xn,p)

– αnβn
[
k
(
 – βn – β

nL
) + (

 +μnM∗)( – k – βn)
]
d(Tnxn,xn

)
+

[
k( – βn) – αn( – αn)

]
d(Tnyn,xn

)
+ αn

[
 + βn

(
 +μnM∗)]φ(M)μn + αn

[
 + βn

(
 +μnM∗)]vn

≤ [
 + αnμnM∗( + βn

(
 +μnM∗))]d(xn,p)

– αnβn
[
k
(
 – βn – β

nL
) + (

 +μnM∗)( – k – βn)
]
d(Tnxn,xn

)
+ αn

[
 + βn

(
 +μnM∗)]φ(M)μn + αn

[
 + βn

(
 +μnM∗)]vn. (.)

Observe that by condition (iii), k( – βn) – αn( – αn) ≤ , so that the term d(Tnyn,xn)
can be dropped. Hence, we obtain (.).
Next, we show that limn→∞ d(Tnxn,xn) = . From (.), we have

d(xn+,p) – d(xn,p)

≤ αnμnM∗( + βn
(
 +μnM∗))d(xn,p)

– αnβn
[
k
(
 – βn – β

nL
) + (

 +μnM∗)( – k – βn)
]
d(Tnxn,xn

)
+ αn

[
 + βn

(
 +μnM∗)]φ(M)μn + αn

[
 + βn

(
 +μnM∗)]vn. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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Since μn → , {μn}∞n= is bounded. Observe that C is bounded, αn,βn ∈ [, ], φ(M),
andM∗ are constants. Now {αn[ +βn( +μnM∗)]}∞n=, {αn[ +βn( +μnM∗)]φ(M)}∞n=, and
{αnM∗( + βn( + μnM∗))d(xn,p)}∞n= are bounded. Hence, there exists a constant K > 
such that

 ≤ αn
[
 + βn

(
 +μnM∗)]( + φ(M) +M∗d(xn,p)

) ≤ K . (.)

Using (.) and (.), we obtain

d(xn+,p) – d(xn,p) ≤ K (μn + vn) – αnβn
[
k
(
 – βn – β

nL
)

+
(
 +μnM∗)( – k – βn)

]
d(Tnxn,xn

)
. (.)

By condition (iii), b ∈ (,L–[
√
 + L –]), this shows that +bL <

√
 + L. On squaring

both sides, after simplifying we obtain –b–bL
 > . Since  + μnM∗ → , there exists a

natural number N such that, for n >N ,

k
(
 – βn – β

nL
) + (

 +μnM∗)( – k – βn)

≥ (
 +μnM∗)( – k) –

(
 +μnM∗)βn – kβ

nL


≥  – b –
(
 +μnM∗)b – bL

>
 – b – bL


> . (.)

Assuming that limn→∞ d(Tnxn,xn) �= , there exist ε >  and a subsequence {xnr }∞r= of
{xn}∞n= such that

d(Tnrxnr ,xnr
) ≥ ε. (.)

Without loss of generality, we can assume that n >N . From (.), we obtain

αnβn
[
k
(
 – βn – β

nL
) + (

 +μnM∗)( – k – βn)
]
d(Tnxn,xn

)
≤ d(xn,p) – d(xn+,p) +K (μn + vn).

Hence,

r∑
l=

αnlβnl
[
k
(
 – βnl – β

nlL
) + (

 +μnlM
∗)( – k – βnl )

]
d(Tnlxnl ,xnl

)

≤
nr∑

m=n

αmβm
[
k
(
 – βm – β

mL
) + (

 +μmM∗)( – k – βm)
]
d(Tmxm,xm

)

≤
nr∑

m=n

[
d(xm,p) – d(xm+,p) +K (μm + vm)

]

= d(xn ,p) – d(xnr+,p) +
nr∑

m=n

K (μm + vm). (.)
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It follows from (.), (.), and (.) that

rε
(
 – b – bL



)
ε ≤ d(xn ,p) – d(xnr+,p) +

nr∑
m=n

K (μm + vm). (.)

Observing that
∑∞

n=K (μn + vn) < ∞ and the boundedness of C, we see that the right-
hand side of (.) is bounded, the left-hand side of (.) is positively unbounded when
r → ∞. Hence, a contraction. Therefore

lim
n→∞d

(
Tnxn,xn

)
= . (.)

Using (.) and (.), we have

d(xn+,xn) = d
(
αnTnyn ⊕ ( – αn)xn,xn

)
= αnd

(
Tnyn,xn

)
≤ d

(
Tnyn,xn

)
≤ d

(
Tnyn,Tnxn

)
+ d

(
Tnxn,xn

)
≤ Ld(yn,xn) + d

(
Tnxn,xn

)
= βnLd

(
Tnxn,xn

)
+ d

(
Tnxn,xn

)
≤ ( + L)d

(
Tnxn,xn

)
→  (n→ ∞). (.)

Observe that

d(xn,Txn) ≤ d(xn,xn+) + d
(
xn+,Tn+xn+

)
+ d

(
Tn+xn+,Tn+xn

)
+ d

(
Tn+xn,Txn

)
≤ ( + L)d(xn+,xn) + d

(
xn+,Tn+xn+

)
+ Ld

(
Tnxn,xn

)
→  (n→ ∞). (.)

Since {xn}∞n= is a bounded sequence and T is completely continuous, there is a conver-
gent subsequence {Txnr }∞r= of {Txn}∞n=. Let Txnr → q as r → ∞. Then xnr → q as r → ∞
since

d(xnr ,q) ≤ d(xnr ,Txnr ) + d(Txnr ,q) →  (r → ∞).

From the continuity of T , we obtain Tq = q, meaning that q is a fixed point of T . Hence
{xn}∞n= has a subsequence which converges to a fixed point of T .
Using (.) and (.), we see that there exists some natural number N such that, for

n >N ,

d(xn+,p) ≤ d(xn,p) +K (μn + vn).

Noticing that
∑∞

n=K (μn+vn) < ∞, it follows fromLemma . that limn→∞ d(xn,q) = .
Hence, xn → q as n→ ∞. The proof of Theorem . is completed. �
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Theorem . Let C be a nonempty bounded closed convex subset of a complete CAT()
space X and T : C → C be a completely continuous and uniformly L-Lipschitzian and
({μn}, {vn},φ)-total asymptotically hemicontractive mapping with F(T) �= ∅. Let {xn} be a
sequence defined by (.), where {αn}, {βn} ∈ [, ]. Assume that the following conditions
are satisfied:

(i)
∑∞

n= μn < ∞,
∑∞

n= vn < ∞;
(ii) there exist positive constantsM andM∗, such that φ(t) ≤M∗t for all t ≥M;
(iii) ε ≤ αn ≤ βn ≤ b, ∀n≥  for some ε > , and some b ∈ (,L–[

√
 + L – ]).

Then {xn} converges strongly to a fixed point of T .

Proof Fix p ∈ F(T), using (.), (.), (.), and Lemma ., we obtain

d(yn,p) = d(βnTnxn ⊕ ( – βn)xn,p
)

≤ βnd(Tnxn,p
)
+ ( – βn)d(xn,p) – βn( – βn)d(Tnxn,xn

)
≤ βn

{
d(xn,p) +μnφ

(
d(xn,p)

)
+ d(xn,Tnxn

)
+ vn

}
+ ( – βn)d(xn,p) – βn( – βn)d(Tnxn,xn

)
≤ βn

{(
 +μnM∗)d(xn,p) + d(xn,Tnxn

)
+μnφ(M) + vn

}
+ ( – βn)d(xn,p) – βn( – βn)d(Tnxn,xn

)
=

(
 + βnμnM∗)d(xn,p) + βnμnφ(M) + βnvn

+ β
nd

(Tnxn,xn
)
, (.)

d(yn,Tnyn
)
= d(βnTnxn ⊕ ( – βn)xn,Tnyn

)
≤ βnd(Tnxn,Tnyn

)
+ ( – βn)d(xn,Tnyn

)
– βn( – βn)d(Tnxn,xn

)
≤ βnLd(xn, yn) + ( – βn)d(xn,Tnyn

)
– βn( – βn)d(Tnxn,xn

)
= β

nL
d(xn,Tnxn

)
+ ( – βn)d(xn,Tnyn

)
– βn( – βn)d(Tnxn,xn

)
= ( – βn)d(xn,Tnyn

)
– βn

(
 – βn – β

nL
)d(Tnxn,xn

)
. (.)

Using (.), (.), (.), and (.), we obtain

d(Tnyn,p
) ≤ d(yn,p) +μnφ

(
d(yn,p)

)
+ d(yn,Tnyn

)
+ vn

≤ (
 +μnM∗)d(yn,p) + d(yn,Tnyn

)
+μnφ(M) + vn

≤ (
 +μnM∗){( + βnμnM∗)d(xn,p) + βnμnφ(M) + βnvn

+ β
nd

(Tnxn,xn
)}

+ ( – βn)d(xn,Tnyn
)

– βn
(
 – βn – β

nL
)d(Tnxn,xn

)
+μnφ(M) + vn

=
(
 +μnM∗)( + βnμnM∗)d(xn,p) +

(
 +μnM∗)βnμnφ(M)

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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+
(
 +μnM∗)βnvn +

(
 +μnM∗)β

nd
(Tnxn,xn

)
+ ( – βn)d(xn,Tnyn

)
– βn

(
 – βn – β

nL
)d(Tnxn,xn

)
+μnφ(M) + vn. (.)

Using (.), Lemma ., and condition (iii), we obtain

d(xn+,p) = d(αnTnyn ⊕ ( – αn)xn,p
)

≤ αnd(Tnyn,p
)
+ ( – αn)d(xn,p) – αn( – αn)d(Tnyn,xn

)
≤ αn

{(
 +μnM∗)( + βnμnM∗)d(xn,p) +

(
 +μnM∗)βnμnφ(M)

+
(
 +μnM∗)βnvn +

(
 +μnM∗)β

nd
(Tnxn,xn

)
+ ( – βn)d(xn,Tnyn

)
– βn

(
 – βn – β

nL
)d(Tnxn,xn

)
+μnφ(M) + vn

}
+ ( – αn)d(xn,p) – αn( – αn)d(Tnyn,xn

)
=

[
 + αnμnM∗( + βn

(
 +μnM∗))]d(xn,p)

– αnβn
[(
 – βn – β

nL
) – βn

(
 +μnM∗)]d(Tnxn,xn

)
+ αn

[
( – βn) – ( – αn)

]
d(Tnyn,xn

)
+ αn

[
 + βn

(
 +μnM∗)]φ(M)μn + αn

[
 + βn

(
 +μnM∗)]vn

≤ [
 + αnμnM∗( + βn

(
 +μnM∗))]d(xn,p)

– αnβn
[
 – βn – β

nL
 – βn

(
 +μnM∗)]d(Tnxn,xn

)
+ αn

[
 + βn

(
 +μnM∗)]φ(M)μn + αn

[
 + βn

(
 +μnM∗)]vn. (.)

Next, we show that limn→∞ d(Tnxn,xn) = . From (.), we have

d(xn+,p) – d(xn,p)

≤ αnμnM∗( + βn
(
 +μnM∗))d(xn,p)

– αnβn
[
 – βn – β

nL
 – βn

(
 +μnM∗)]d(Tnxn,xn

)
+ αn

[
 + βn

(
 +μnM∗)]φ(M)μn + αn

[
 + βn

(
 +μnM∗)]vn. (.)

Since μn → , {μn}∞n= is bounded. Observe that C is bounded, αn,βn ∈ [, ], φ(M) and
M∗ are constants. Now {αn[ + βn( + μnM∗)]}∞n=, {αn[ + βn( + μnM∗)]φ(M)}∞n=, and
{αnM∗( + βn( + μnM∗))d(xn,p)}∞n= must be bounded. Hence, there exists a constant
K >  such that

 ≤ αn
[
 + βn

(
 +μnM∗)]( + φ(M) +M∗d(xn,p)

) ≤ K . (.)

Using (.) and (.), we obtain

d(xn+,p) – d(xn,p) ≤ K (μn + vn)

– αnβn
{
 – βn – β

nL
 – βn

(
 +μnM∗)}d(Tnxn,xn

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/436
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Observe that the condition b ∈ (,L–[
√
 + L – ]) implies that b >  and b < L– ×

[
√
 + L – ]. This implies that  + bL <

√
 + L. On squaring both sides, we obtain  +

bL + bL <  + L, so we obtain L – bL – bL > , and by dividing through by L, we
obtain  – b – bL > . Hence, –b–bL

 > . Since  + μnM∗ → , there exists a natural
number N such that, for n >N ,

 – βn – β
nL

 – βn
(
 +μnM∗)

≥  – b –
(
 +μnM∗)b – bL

>
 – b – bL


> . (.)

Assuming that limn→∞ d(Tnxn,xn) �= , then there exist ε >  and a subsequence {xnr }∞r=
of {xn}∞n= such that

d(Tnrxnr ,xnr
) ≥ ε. (.)

Without loss of generality, we can assume that n >N . From (.), we obtain

αnβn
[
 – βn – β

nL
 – βn

(
 +μnM∗)]d(Tnxn,xn

)
≤ d(xn,p) – d(xn+,p) +K (μn + vn).

Hence,

r∑
l=

αnlβnl
[
 – βnl – β

nlL
 – βnl

(
 +μnlM

∗)]d(Tnlxnl ,xnl
)

≤
nr∑

m=n

αmβm
[
 – βm – β

mL
 – βm

(
 +μmM∗)]d(Tmxm,xm

)

≤
nr∑

m=n

[
d(xm,p) – d(xm+,p) +K (μm + vm)

]

= d(xn ,p) – d(xnr+,p) +
nr∑

m=n

K (μm + vm). (.)

It follows from (.), (.), and (.) that

rε
(
 – b – bL



)
ε

≤ d(xn ,p) – d(xnr+,p) +
nr∑

m=n

K (μm + vm). (.)

Observing that
∑∞

n=K (μn + vn) < ∞ and the boundedness of C, we see that the right-
hand side of (.) is bounded, the left-hand side of (.) is positively unbounded when
r → ∞. Hence, a contraction. Therefore

lim
n→∞d

(
Tnxn,xn

)
= . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/436


Liu and Chang Journal of Inequalities and Applications 2014, 2014:436 Page 14 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/436

Using (.) and (.), we have

d(xn+,xn) = d
(
αnTnyn ⊕ ( – αn)xn,xn

)
= αnd

(
Tnyn,xn

)
≤ d

(
Tnyn,xn

)
≤ d

(
Tnyn,Tnxn

)
+ d

(
Tnxn,xn

)
≤ Ld(yn,xn) + d

(
Tnxn,xn

)
= βnLd

(
Tnxn,xn

)
+ d

(
Tnxn,xn

)
≤ ( + L)d

(
Tnxn,xn

)
→  (n→ ∞). (.)

Hence,

d(xn,Txn) ≤ d(xn,xn+) + d
(
xn+,Tn+xn+

)
+ d

(
Tn+xn+,Tn+xn

)
+ d

(
Tn+xn,Txn

)
≤ ( + L)d(xn+,xn) + d

(
xn+,Tn+xn+

)
+ Ld

(
Tnxn,xn

)
→  (n→ ∞). (.)

Since {xn}∞n= is a bounded sequence and T is completely continuous, there is a conver-
gent subsequence {Txnr }∞r= of {Txn}∞n=. Let Txnr → q as r → ∞. Then xnr → q as r → ∞
since

d(xnr ,q) ≤ d(xnr ,Txnr ) + d(Txnr ,q) →  (r → ∞).

From the continuity of T , we obtain Tq = q, meaning that q is a fixed point of T . Hence
{xn}∞n= has a subsequence which converges to a fixed point of T .
Using (.) and (.), we see that there exists some natural number N such that, for

n >N ,

d(xn+,p) ≤ d(xn,p) +K (μn + vn). (.)

Notice that
∑∞

n=K (μn + vn) < ∞, it follows from Lemma . that

lim
n→∞d(xn,q) = .

Hence, xn → q as n→ ∞. The proof of Theorem . is completed. �
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