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Abstract
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vector quasi-equilibrium problem with set-valued mappings. The results are different
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1 Introduction
The generalized vector quasi-equilibrium problem is a unified model of several problems,
namely generalized vector quasi-variational inequalities, vector quasi-optimization prob-
lems, traffic network problems, fixed point and coincidence point problems, etc. (see, for
example, [, ] and the references therein). It is well known that the stability analysis of a
solution mapping for equilibrium problems is an important topic in optimization theory
and applications. Stability may be understood as lower or upper semicontinuity, conti-
nuity, and Lipschitz or Hölder continuity. There have been many papers to discuss the
stability of solution mapping for equilibrium problems when they are perturbed by pa-
rameters (also known the parametric (generalized) equilibrium problems). Last decade,
many authors intensively studied the sufficient conditions of upper (lower) semicontinuity
of various solution mappings for parametric (generalized) equilibrium problems, see [–
]. Let us begin now, Yen [] obtained the Hölder continuity of the unique solution of a
classic perturbed variational inequality by themetric projectionmethod.Mansour and Ri-
ahi [] proved the Hölder continuity of the unique solution for a parametric equilibrium
problem under the concepts of strong monotonicity and Hölder continuity. Bianchi and
Pini [] introduced the concept of strong pseudomonotonicity and got the Hölder con-
tinuity of the unique solution of a parametric equilibrium problem. Anh and Khanh []
generalized the main results of [] to two classes of perturbed generalized equilibrium
problemswith set-valuedmappings. Anh andKhanh [] further discussed the uniqueness
andHölder continuity of the solutions for perturbed equilibriumproblemswith set-valued
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mappings. Anh and Khanh [] extended the results of [] to the case of perturbed quasi-
equilibriumproblemswith set-valuedmappings and obtained theHölder continuity of the
unique solutions. Li et al. [] introduced an assumption, which is weaker than the corre-
sponding ones of [, ], and established the Hölder continuity of the set-valued solution
mappings for two classes of parametric generalized vector quasi-equilibrium problems in
general metric spaces. Li et al. [] extended the results of [] to perturbed generalized
vector quasi-equilibrium problems.
Among many approaches for dealing with the lower semicontinuity, continuity and

Hölder continuity of the solutionmapping for a parametric vector equilibrium problem in
general metric spaces, the scalarization method is of considerable interest. The classical
scalarizationmethod using linear functionals has been already used for studying the lower
semicontinuity of the solutionmapping [–] and theHölder continuity [] of the solu-
tion mapping to parametric vector equilibrium problems.Wang et al. [] established the
lower semicontinuity and upper semicontinuity of the solution set to a parametric gener-
alized strong vector equilibrium problem by using a scalarization method and a density
result. Recently, by using this method, Peng [] established the sufficient conditions for
the Hölder continuity of the solution mapping to a parametric generalized vector quasi-
equilibrium problem with set-valued mappings.
On the other hand, a useful approach for analyzing a vector optimization problem is

to reduce it to a scalar optimization problem. Nonlinear scalarization functions play an
important role in this reduction in the context of nonconvex vector optimization prob-
lems. The nonlinear scalarization function ξq, commonly known as the Gerstewitz func-
tion in the theory of vector optimization [, ], has been also used to study the lower
semicontinuity of the set-valued solution mapping to a parametric vector variational in-
equality []. Using this method, Bianchi and Pini [] obtained the Hölder continuity of
the single-valued solutionmapping to a parametric vector equilibrium problem. Recently,
Chen and Li [] studied Hölder continuity of the solution mapping for both set-valued
and single-valued cases to parametric vector equilibrium problems. The key role in their
paper is a globally Lipschitz property of the Gerstewitz function. Very recently, by us-
ing the idea in [], Chen [] obtained Hölder continuity of the unique solution to a
parametric vector quasi-equilibrium problem based on nonlinear scalarization approach
under three different kinds of monotonicity hypotheses. It is natural to raise and give an
answer to the following question.

Question Can one establish the Hölder continuity of a solution mapping to the para-
metric generalized vector quasi-equilibrium problem with set-valued mappings by using
a nonlinear scalarization method?

Motivated and inspired by Peng [] and Chen [] and research going on in this direc-
tion, in this paper we aim to give positive answers to the above question.We first establish
the sufficient conditions which guarantee the Hölder continuity of a solution mapping to
the parametric generalized vector quasi-equilibrium problem with set-valued mappings
by using a nonlinear scalarization method. We further study several kinds of the mono-
tonicity conditions to obtain the Hölder continuity of the solution mapping. The main
results of this paper are different from the corresponding results in Peng [] and Chen
[]. These results improve the corresponding ones in recent literature.
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The structure of the paper is as follows. Section  presents the parametric generalized
vector quasi-equilibrium problem and materials used in the rest of this paper. We estab-
lish, in Section , a sufficient condition for the Hölder continuity of the solution mapping
to a parametric generalized vector quasi-equilibrium problem.

2 Preliminaries
Throughout the paper, unless otherwise specified, we denote by ‖ · ‖ and d(·, ·) the norm
and the metric on a normed space and a metric space, respectively. A closed ball with
center  ∈ X and radius δ >  is denoted by B(, δ). We always consider X, �,M as metric
spaces, and Y as a linear normed space with its topological dual space Y ∗. For any y∗ ∈ Y ∗,
we define ‖y∗‖ := sup{‖〈y∗, y〉‖ : ‖y‖ = }, where 〈y∗, y〉 denotes the value of y∗ at y. Let
C ⊂ Y be a pointed, closed and convex cone with intC �= ∅, where intC stands for the
interior of C. Let

C∗ :=
{
y∗ ∈ Y ∗ :

〈
y∗, y

〉 ≥ ,∀y ∈ C
}

be the dual cone of C. Since intC �= ∅, the dual cone C∗ of C has a weak* compact base.
Let e ∈ intC. Then

B∗
e :=

{
y∗ ∈ C∗ :

〈
y∗, e

〉
= 

}
is a weak*-compact base of C∗. Clearly, Cq is a weak∗-compact base of C∗, that is, Cq is
convex and weak∗-compact such that  /∈ Cq and C∗ =

⋃
t≥ tCq.

Let q ∈ intC, the nonlinear scalarization function [, ] ξq : Y →R is defined by

ξq =min{t ∈ R : y ∈ tq –C}.

It is well known that ξq is a continuous, positively homogeneous, subadditive and con-
vex function on Y , and it is monotone (that is, y – y ∈ C ⇒ ξq(y) ≤ ξq(y)) and strictly
monotone (that is, y – y ∈ – intC ⇒ ξq(y) < ξq(y)) (see [, ]). In case, Y = Rl , C = Rl

+

and q = (, , . . . , ) ∈ intRl
+, the nonlinear scalarization function can be expressed in the

following equivalent form [, Corollary .]:

ξq(y) =max
≤i≤l

{yi}, ∀y = (y, y, . . . , yl) ∈R
l. ()

Lemma . [, Proposition .] For any fixed q ∈ intC, y ∈ Y and r ∈R,
(i) ξq < r ⇔ y ∈ rq – intC (that is, ξq(y) ≥ r ⇔ y /∈ rq – intC);
(ii) ξq(y) ≤ r ⇔ y ∈ rq –C;
(iii) ξq(y) = r ⇔ y ∈ rq – ∂C, where ∂C denotes the boundary of C;
(iv) ξq(rq) = r.

The property (i) of Lemma . plays an essential role in scalarization. From the definition
of ξq, property (iv) in Lemma . could be strengthened as

ξq(y + rq) = ξq(y) + r, ∀y ∈ Y , r ∈ R. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/425
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For any q ∈ intC, the set Cq defined by

Cq :=
{
y∗ ∈ C∗ :

〈
y∗,q

〉
= 

}
is a weak∗-compact set of Y ∗ (see [, Lemma .]). The following equivalent form of ξq

can be deduced from [, Corollary .] or [, Proposition .] ([, Proposition .]).

Proposition . [, Proposition .] Let q ∈ intC. Then, for y ∈ Y ,

ξq(y) = max
y∗∈Cq

〈
y∗, y

〉
.

Proposition . [, Proposition .] ξq is Lipschitz on Y , and its Lipschitz constant is

L := sup
y∗∈Cq

∥∥y∗∥∥ ∈
[


‖q‖ , +∞

)
.

The following example can be found in [, Example .].

Example .
(i) If Y =R and C =R+, then the Lipschitz constant of ξq is L = 

q (q > ). Indeed,
|ξq(x) – ξq(y)| = 

q |x – y| for all x, y ∈R.
(ii) If Y =R

 and C = {(y, y) ∈R
 : 

y ≤ y ≤ y}. Take q = (, ) ∈ intC, then

Cq :=
{
(y, y) ∈R : y + y = , y ∈ [–., ]

}
,

and the Lipschitz constant is L = supy∗∈Cq ‖y∗‖ = ‖(–, )‖ =√
. Hence,

∣∣ξq(y) – ξq
(
y′)∣∣ ≤ √


∥∥y – y′∥∥, ∀y, y′ ∈R

.

Now we recall some basic definitions and their properties which will be used in the
sequel.

Definition . (Classical notion) Let l ≥  and α > . A set-valued mapping G : � → X

is said to be l · α-Hölder continuous at λ on a neighborhood N(λ) of λ if and only if

G(λ) ⊆G(λ) + lBX
(
,dα(λ,λ)

)
, ∀λ,λ ∈N(λ). ()

When X is a normed space, we say that the vector-valued mapping g : � → X is l · α-
Hölder continuous at λ on a neighborhood N(λ) of λ iff

∥∥g(λ) – g(λ)
∥∥ ≤ ldα(λ,λ), ∀λ,λ ∈ N(λ). ()

Definition . Let l, l ≥  and α,α > . A set-valued mapping G : X × � → X is said
to be (l · α, l · α)-Hölder continuous at x, λ on neighborhoods N(x) and N(λ) of x
and λ if and only if

G(x,λ)⊆G(x,λ) +
(
ldα

X (x,x) + ldα
� (λ,λ)

)
BX(, ) ()

for all x,x ∈N(x), ∀λ,λ ∈N(λ).
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3 Main results
By using a nonlinear scalarization technique, we present the sufficient conditions for
Hölder continuity of the solution mapping for a parametric generalized vector quasi-
equilibrium problem.
Let N(λ) ⊂ � and N(μ) ⊂ M be neighborhoods of λ and μ, respectively, and let

K : X×� → X and F : X×X×M → Y be set-valued mappings. For each λ ∈N(λ) and
μ ∈ N(μ), we consider the following parametric generalized vector quasi-equilibrium
problem (PGVQEP):
Find x ∈ K (x,λ) such that

F(x, y,μ)⊂ Y\(– intC), ∀y ∈ K (x,λ). ()

For each λ ∈N(λ) and μ ∈N(μ), let

E(λ) :=
{
x ∈ X|x ∈ K (x,λ)

}
.

The weak solution set of () is denoted by

SW (λ,μ) :=
{
x ∈ E(λ) : F(x, y,μ)⊂ Y\(– intC),∀y ∈ K (x,λ)

}
.

For each λ ∈ N(λ), μ ∈N(μ) and fixed q ∈ intC, the ξq-solution set of () is denoted by

S(ξq,λ,μ) :=
{
x ∈ E(λ) : inf

z∈F(x,y,μ)
ξq(z) ≥ ,∀y ∈ K (x,λ)

}
.

We first establish the following lemmas which will be used in the sequel.

Lemma . For each λ ∈N(λ), μ ∈N(μ) and fixed q ∈ intC,

SW (λ,μ) = S(ξq,λ,μ).

Proof Let λ ∈ N(λ), μ ∈ N(μ) and fixed q ∈ intC. For any x ∈ SW (λ,μ), we have

x ∈ E(λ) and F(x, y,μ)⊂ Y\(– intC), ∀y ∈ K (x,λ).

Therefore, for each y ∈ K (x,λ) and each z ∈ F(x, y,μ), we have

z /∈ – intC = q– intC.

By Lemma .(i), we conclude that ξq(z) ≥ . Since z is arbitrary, we have

inf
z∈F(x,y,μ)

ξq(z) ≥  for all y ∈ K (x,λ),

which gives that SW (λ,μ)⊆ S(ξq,λ,μ).
On the other hand, for each x ∈ S(ξq,λ,μ), we have that

x ∈ E(λ) and inf
z∈F(x,y,μ)

ξq(z) ≥ , ∀y ∈ K (x,λ). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/425
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Thus, for each y ∈ K (x,λ) and each z ∈ F(x, y,μ), we have that ξq(z) ≥ . By Lemma .(i),
we can obtain z /∈ – intC. Therefore, we have z ∈ Y\(– intC), which implies that

x ∈ E(λ) and F(x, y,μ)⊂ Y\(– intC), ∀y ∈ K (x,λ).

Hence, S(ξq,λ,μ)⊆ SW (λ,μ). The proof is completed. �

Lemma . Suppose that N(λ) and N(μ) are the given neighborhoods of λ and μ,
respectively.
(a) If for each x, y ∈ E(N(λ)), F(x, y, ·) is m · γ-Hölder continuous at μ ∈M, then for

any fixed q ∈ intC, the function

ψξq (x, y, ·) = inf
z∈F(x,y,·)

ξq(z)

is Lm · γ-Hölder continuous at μ.
(b) If for each x ∈ E(N(λ)) and μ ∈N(E(μ)), F(x, ·,μ) is m · γ-Hölder continuous on

E(N(λ)), then for any fixed q ∈ intC, the function

ψξq (x, ·,μ) = inf
z∈F(x,·,μ)

ξq(z)

is Lm · γ-Hölder continuous on E(N(λ)).

Proof (a) Let x, y ∈ E(N(λ)). The m · γ-Hölder continuity of F(x, y, ·) implies that there
exists a neighborhood N(μ) of μ such that for all μ,μ ∈ N(μ),

F(x, y,μ) ⊂ F(x, y,μ) +mdγ
M(μ,μ)BY .

So, for any z ∈ F(x, y,μ), there exist z ∈ F(x, y,μ) and e ∈ BY such that

z = z +mdγ
M(μ,μ)e.

By using Proposition ., we obtain

∣∣ξq(z) – ξq(z)
∣∣ ≤ L‖z – z‖
= Lmdγ

M(μ,μ)‖e‖
≤ Lmdγ

M(μ,μ), ()

which gives that

–Lmdγ (μ,μ) ≤ ξq(z) – ξq(z).

Since z is arbitrary and ξq(z) ≥ infz∈F(x,y,μ) ξq(z), we have

–Lmdγ
M(μ,μ) ≤ inf

z∈F(x,y,μ)
ξq(z) – inf

z∈F(x,y,μ)
ξq(z).

http://www.journalofinequalitiesandapplications.com/content/2014/1/425
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Applying the symmetry between μ and μ, we arrive at

–Lmdγ
M(μ,μ) ≤ inf

z∈F(x,y,μ)
ξq(z) – inf

z∈F(x,y,μ)
ξq(z).

It follows from the last two inequalities that

∣∣ψξq (x, y,μ) –ψξq (x, y,μ)
∣∣ ≤ Lmdγ

M(μ,μ), ∀μ,μ ∈N(μ).

Therefore, we conclude that ψξq (x, y, ·) = infz∈F(x,y,·) ξq(z) is Lm · γ-Hölder continuous
at μ.
(b) It follows by a similar argument as in part (a). The proof is completed. �

Now, by using the nonlinear scalarization technique, we propose some sufficient condi-
tions for Hölder continuity of the solution mapping for (PGVQEP).

Theorem . For each fixed q ∈ intC, let S(ξq,λ,μ) be nonempty in a neighborhood
N(λ)×N(μ) of (λ,μ) ∈ � ×M. Assume that the following conditions hold.

(i) K (·, ·) is (l · α, l · α)-Hölder continuous on E(N(λ))×N(λ);
(ii) For each x, y ∈ E(N(λ)), F(x, y, ·) is m · γ-Hölder continuous at μ ∈M;
(iii) For each x ∈ E(N(λ)) and μ ∈N(μ), F(x, ·,μ) is m · γ-Hölder continuous on

E(N(λ));
(iv) F(·, ·,μ) is h · β-Hölder strongly monotone with respect to ξq, that is, there exist

constants h > , β >  such that for every x, y ∈ E(N(λ)), x �= y,

hdβ

X(x, y)≤ d
(

inf
z∈F(x,y,μ)

ξq(z),R+

)
+ d

(
inf

z∈F(y,x,μ)
ξq(z),R+

)
;

(v) β = αγ, h > mLlγ , where L := supλ∈Cq ‖λ‖ ∈ [ 
‖q‖ , +∞) is the Lipschitz constant

of ξq on Y .
Then, for every (λ,μ) ∈ N(λ) × N(μ), the solution x(λ,μ) of (PVQGEP) is unique, and
x(λ,μ) as a function of λ and μ satisfies the Hölder condition: for all (λ,μ), (λ,μ) ∈
N(λ)×N(μ),

dX
(
x(λ,μ),x(λ,μ)

) ≤
(

mLlγ
h – mLlγ

) 
β

dαγ/β
� (λ,λ)

+
(

mL
h – mLlγ

) 
β

dγ/β
M (μ,μ),

where x(λi,μi) ∈ SW (λi,μi), i = , .

Proof Let (λ,μ), (λ,μ) ∈N(λ)×N(μ). The proof is divided into the following three
steps based on the fact that

dX
(
x(λ,μ),x(λ,μ)

) ≤ dX
(
x(λ,μ),x(λ,μ)

)
+ dX

(
x(λ,μ),x(λ,μ)

)
,

where x(λi,μi) ∈ SW (λi,μi), i = , .

http://www.journalofinequalitiesandapplications.com/content/2014/1/425
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Step : We prove that

d := dX
(
x(λ,μ),x(λ,μ)

) ≤
(

mL
h – mLlγ

) 
β

dγ/β
M (μ,μ) ()

for all x(λ,μ) ∈ SW (λ,μ) and x(λ,μ) ∈ SW (λ,μ).
If x(λ,μ) = x(λ,μ), then we are done. So, we assume that x(λ,μ) �= x(λ,μ). Since

x(λ,μ) ∈ K (x(λ,μ),λ) and x(λ,μ) ∈ K (x(λ,μ),λ), by the l · α-Hölder continuity
of K (·,λ), there exist x ∈ K (x(λ,μ),λ) and x ∈ K (x(λ,μ),λ) such that

dX
(
x(λ,μ),x

) ≤ ldα
X

(
x(λ,μ),x(λ,μ)

)
= ldα

 ()

and

dX
(
x(λ,μ),x

) ≤ ldα
X

(
x(λ,μ),x(λ,μ)

)
= ldα

 . ()

Since x(λ,μ) ∈ SW (λ,μ) and x(λ,μ) ∈ SW (λ,μ), by Lemma ., we obtain

ψξq

(
x(λ,μ),x,μ

)
:= inf

z∈F(x(λ,μ),x,μ)
ξq(z) ≥  ()

and

ψξq

(
x(λ,μ),x,μ

)
:= inf

z∈F(x(λ,μ),x,μ)
ξq(z) ≥ . ()

By virtue of (iv), we have

hdβ
 = hdβ

X
(
x(λ,μ),x(λ,μ)

)
≤ d

(
ψξq

(
x(λ,μ),x(λ,μ),μ

)
,R+

)
+ d

(
ψξq

(
x(λ,μ),x(λ,μ),μ

)
,R+

)
.

By combining () and () with the last inequality, we have

hdβ
 ≤ ∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x,μ

)∣∣
+

∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x,μ

)∣∣
≤ ∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x,μ

)∣∣
+

∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x(λ,μ),μ

)∣∣
+

∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x,μ

)∣∣
≤ Lmdγ

X
(
x(λ,μ),x

)
+ Lmdγ

M(μ,μ) + Lmdγ
X

(
x(λ,μ),x

)
≤ Lmlγ dαγ

X
(
x(λ,μ),x(λ,μ)

)
+ Lmdγ

M(μ,μ) + Lmlγ dαγ
X

(
x(λ,μ),x(λ,μ)

)
= Lmlγ dαγ

X
(
x(λ,μ),x(λ,μ)

)
+ Lmdγ

M(μ,μ). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/425
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Whence, assumption (iv) implies that

dX
(
x(λ,μ),x(λ,μ)

) ≤
(

Lm

h – Lmlγ

) 
β

dγ/β
M (μ,μ).

Step : We prove that

d := dX
(
x(λ,μ),x(λ,μ)

) ≤
(

Lmlγ
h – Lmlγ

) 
β

dαγ/β
� (λ,λ) ()

for all x(λ,μ) ∈ SW (λ,μ) and x(λ,μ) ∈ SW (λ,μ).
If x(λ,μ) = x(λ,μ), then we are done. So, we assume that x(λ,μ) �= x(λ,μ).

Since x(λ,μ) ∈ K (x(λ,μ),λ) and x(λ,μ) ∈ K (x(λ,μ),λ), by the l · α-Hölder
continuity of K (x(λ,μ), ·) and K (x(λ,μ), ·), there exist x′

 ∈ K (x(λ,μ),λ) and x′
 ∈

K (x(λ,μ),λ) such that

dX
(
x(λ,μ),x′


) ≤ ldα

� (λ,λ) ()

and

dX
(
x(λ,μ),x′


) ≤ ldα

� (λ,λ). ()

Again, by the Hölder continuity of K (·, ·), there exist x′′
 ∈ K (x(λ,μ),λ) and x′′

 ∈
K (x(λ,μ),λ) such that

dX
(
x′
,x

′′

) ≤ ldα

X
(
x(λ,μ),x(λ,μ)

)
= ldα

 ()

and

dX
(
x′
,x

′′

) ≤ ldα

X
(
x(λ,μ),x(λ,μ)

)
= ldα

 . ()

Since x(λ,μ) ∈ SW (λ,μ) and x(λ,μ) ∈ SW (λ,μ), by Lemma ., we obtain the fol-
lowing:

ψξq

(
x(λ,μ),x′′

 ,μ
)
:= inf

z∈F(x(λ,μ),x′′
 ,μ)

ξq(z) ≥  ()

and

ψξq

(
x(λ,μ),x′′

,μ
)
:= inf

z∈F(x(λ,μ),x′′
,μ)

ξq(z) ≥ . ()

By virtue of (iv), we have

hdβ
 = hdβ

X
(
x(λ,μ),x(λ,μ)

)
≤ d

(
ψξq

(
x(λ,μ),x(λ,μ),μ

)
,R+

)
+ d

(
ψξq

(
x(λ,μ),x(λ,μ),μ

)
,R+

)
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/425
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By combining () and () with the last inequality, we have

hdβ
 ≤ ∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x′′

 ,μ
)∣∣

+
∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x′′

,μ
)∣∣

≤ ∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x′

,μ
)∣∣

+
∣∣ψξq

(
x(λ,μ),x′

,μ
)
–ψξq

(
x(λ,μ),x′′

 ,μ
)∣∣

+
∣∣ψξq

(
x(λ,μ),x(λ,μ),μ

)
–ψξq

(
x(λ,μ),x′

,μ
)∣∣

+
∣∣ψξq

(
x(λ,μ),x′

,μ
)
–ψξq

(
x(λ,μ),x′′

,μ
)∣∣

≤ Lmdγ
X

(
x(λ,μ),x′


)
+ Lmdγ

X
(
x′
,x

′′

)

+ Lmdγ
X

(
x(λ,μ),x′

,
)
+ Lmdγ

X
(
x′
,x

′′

)
. ()

By virtue of (), (), () and (), we get

hdβ

X
(
x(λ,μ),x(λ,μ)

)
≤ Lmlγ dαγ

� (λ,λ) + Lmlγ dαγ
X

(
x(λ,μ),x(λ,μ)

)
+ Lmlγ dαγ

� (λ,λ) + Lmlγ dαγ
X

(
x(λ,μ),x(λ,μ)

)
= Lmlγ dαγ

� (λ,λ) + Lmlγ dαγ
X

(
x(λ,μ),x(λ,μ)

)
. ()

Whence, condition (v) implies that

dβ

X
(
x(λ,μ),x(λ,μ)

) ≤
(

Lmlγ
h – Lmlγ

) 
β

dαγ
� (λ,λ).

Step : Let x(λ,μ) ∈ SW (λ,μ) and x(λ,μ) ∈ SW (λ,μ). It follows from () and ()
that

d
(
x(λ,μ),x(λ,μ)

)
≤ d

(
x(λ,μ),x(λ,μ)

)
+ d

(
x(λ,μ),x(λ,μ)

)
≤

(
mL

h – mLlγ

) 
β

dγ/β
M (μ,μ) +

(
Lmlγ

h – Lmlγ

) 
β

dαγ/β
� (λ,λ).

Thus,

ρ
(
SW (λ,μ),SW (λ,μ)

)
= sup

x(λ,μ)∈SW (λ,μ),x(λ,μ)∈SW (λ,μ)
dX

(
x(λ,μ),x(λ,μ)

)

≤
(

mL
h – mLlγ

) 
β

dγ/β
M (μ,μ) +

(
Lmlγ

h – Lmlγ

) 
β

dαγ/β
� (λ,λ).

Taking λ = λ and μ = μ, we see that the diameter of S(λ,μ) is , that is, this set is a
singleton {x(λ,μ)}. This implies that the (PGVQEP) has a unique solution in a neighbor-
hood of (λ,μ). The proof is completed. �
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Definition . Let F : X × X ×M → Y be a set-valued mapping. A set-valued mapping
F(·, ·,μ) �→ Y is said to be
(A) h · β-Hölder strongly monotone with respect to ξq if there exist q ∈ intC and h > ,

β >  such that for every x, y ∈ E(N(λ)) with x �= y,

inf
z∈F(x,y,μ)

ξq(z) + inf
z∈F(y,x,μ)

ξq(z) + hdβ

X(x, y)≤ ;

(B) h · β-Hölder strongly pseudomonotone with respect to q ∈ intC and h > , β >  such
that for every x, y ∈ E(N(λ)) with x �= y,

z /∈ – intC, ∃z ∈ F(x, y,μ) ⇒ z′ + hdβ

X(x, y)q ∈ –C, ∃z′ ∈ F(y,x,μ).

(C) quasi-monotone on E(N(λ)) if ∀x, y ∈ E(N(λ)) with x �= y,

z ∈ – intC, ∃z ∈ F(x, y,μ) ⇒ z′ /∈ – intC, ∃z′ ∈ F(y,x,μ).

The following proposition provides the relation amongmonotonicity conditions defined
above.

Proposition .
(i) (A) ⇒ (iv).
(ii) (B) and (C) ⇒ (iv).

Proof (i) From the definition of (A), we have

hdβ

X(x, y) ≤ – inf
z∈F(x,y,μ)

ξq(z) – inf
z∈F(y,x,μ)

ξq(z)

≤ d
(

inf
z∈F(x,y,μ)

ξq(z),R+

)
+ d

(
inf

z∈F(y,x,μ)
ξq(z),R+

)
.

(ii) Assume that F satisfies definitions (B) and (C). We consider two cases.
Case . z /∈ – intC, ∃z ∈ F(x, y,μ), then there exists z′ ∈ F(y,x,μ) such that z′ +

hdβ

X(x, y)q ∈ –C. From Lemma ., we have

ξq
(
z′) + hdβ

X(x, y) = ξq
(
z′ + hdβ

X(x, y)q
) ≤ ,

which implies that infz∈F(y,x,μ) ξq(z) ≤ ξq(z′) ≤ –hdβ

X(x, y). Hence,

hdβ

X(x, y)≤ – inf
z∈F(y,x,μ)

ξq(z) ≤ d
(

inf
z∈F(x,y,μ)

ξq(z),R+

)
+ d

(
inf

z∈F(y,x,μ)
ξq(z),R+

)
.

Case . z ∈ – intC, ∃z ∈ F(x, y,μ), then there exists z′ ∈ F(y,x,μ) such that z /∈ – intC. By
a similar argument as in the previous case, we have the desired result. �

Remark . The converse of Proposition . does not hold in general, even in the special
case X = Y = R and C = R+. See, for example, Examples . and . in []. Therefore,
Theorem . still holds when condition (iv) is replaced by condition (A) or conditions (B)
and (C). We can immediately obtain the following two theorems.

Theorem . Theorem . still holds when condition (iv) is replaced by condition (A).
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Theorem . Theorem . still holds when condition (iv) is replaced by conditions (B)
and (C).

Let f : X × X × M → Y be a vector-valued mapping. Then (PGVQEP) becomes the
following parametric vector quasi-equilibrium problem (PVQEP):
Find x ∈ K (x,λ) such that

f (x, y,μ) /∈ – intC, ∀y ∈ K (x,λ). ()

Remark . In the case of a vector-valued mapping, condition (iv) in Theorem . and
condition (ii′′) coincide. Also, condition (A) and conditions (B) and (C) are the same as
conditions (ii) and (ii′) in [], respectively. It is obvious that Theorems ., . and .
extend Theorems ., . and . in [], respectively, in the case that the vector-valued
mapping f (·, ·, ·) is extended to a set-valued one.

4 Applications
Since the parametric generalized vector quasi-equilibrium problem (PGVQEP) contains
as special casesmany optimization-related problems, including quasi-variational inequal-
ities, traffic equilibrium problems, quasi-optimization problems, fixed point and coinci-
dence point problems, complementarity problems, vector optimization, Nash equilibria,
etc., we can derive from Theorem . a direct consequence for such special cases. We
discuss now only some applications of our results.

4.1 Quasi-variational inequalities
In this section, we assume that X is a normed space. Let K : X × � ⇒ X and T : X ×M⇒
B∗(X,Y ) be set-valued mappings, where B∗(X,Y ) denotes the space of all bounded linear
mappings of X into Y . Setting F(x, y,μ) = 〈T(x,μ), y – x〉 := ⋃

t∈T(x,μ)〈t, y – x〉 in (), we
obtain parametric generalized vector quasi-variational inequalities (PGVQVI) in the case
of set-valued mappings as follows:

Find x ∈ K (x,λ) such that
〈
T(x,μ), y – x

〉 ⊆ Y\ – intC, ∀y ∈ K (x,λ). ()

For each λ ∈N(λ) and μ ∈N(μ), let

E(λ) :=
{
x ∈ X : x ∈ K (x,λ)

}
.

The solution set of () is denoted by

SVQVI(λ,μ) :=
{
x ∈ E(λ) :

〈
T(x,μ), y – x

〉 ⊆ Y\ – intC,∀y ∈ K (x,λ)
}
.

For each λ ∈N(λ), μ ∈N(μ) and fixed q ∈ intC, the ξq-solution set of () is

SVQVI(ξq,λ,μ) :=
{
x ∈ E(λ) : inf

z∈〈T(x,μ),y–x〉
ξq(z) ≥ ,∀y ∈ K (x,λ)

}
.

Theorem . Assume that for each fixed q ∈ intC, SVQVI(ξq,λ,μ) is nonempty in a neigh-
borhood N(λ)×N(μ) of the considered point (λ,μ) ∈ � ×M. Assume further that the
following conditions hold.

http://www.journalofinequalitiesandapplications.com/content/2014/1/425
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(i′) K (·, ·) is (l · α, l · α)-Hölder continuous on E(N(λ))×N(λ);
(ii′) For each x ∈ E(N(λ)), T(x, ·) is m · γ-Hölder continuous at μ ∈M;
(iii′) T(·, ·) is bounded in x ∈ E(N(λ)), and E(N(λ)) is bounded;
(iv′) T(·,μ) is h · β-Hölder strongly monotone with respect to ξq , i.e., there exist constants

h > , β >  such that for every x, y ∈ E(N(λ)): x �= y,

h‖x – y‖β ≤ d
(

inf
z∈〈T(x,μ),y–x〉

ξq(z),R+

)
+ d

(
inf

z∈〈T(y,μ),x–y〉
ξq(z),R+

)
;

(v′) β = α, h > MLlγ , where L := supλ∈Cq ‖λ‖ ∈ [ 
‖q‖ , +∞) is the Lipschitz constant of ξq

on Y .

Then, for every (λ,μ) ∈ N(λ) × N(μ), the solution of (PGVQVI) is unique, x(λ,μ), and
this function satisfies the Hölder condition: for all (λ,μ), (λ,μ) ∈ N(λ)×N(μ),

dX
(
x(λ,μ),x(λ,μ)

) ≤
(

MLl
h – MLlγ

) 
β

dα/β
λ (λ,λ)

+
(

NmL
h – MLlγ

) 
β

dγ/β
M (μ,μ),

where x(λi,μi) ∈ SQVI(λi,μi), i = , .

Proof We verify that all the assumptions of Theorem . are fulfilled. First, (i′), (iv′) and
(v′) are the same as (i), (iv) and (v) in Theorem .. We need only to verify conditions (ii)
and (iii). TakingM, M̃ >  such that

∥∥T(x,μ)∥∥ ≤M, ∀(x,μ) ∈ E
(
N(λ)

) ×N(μ)

and

‖x – y‖ ≤ M̃, ∀x, y ∈ E
(
N(λ)

)
.

We putm = M̃m and γ = γ. For any fixed x, y ∈ E(N(λ)), by assumption (ii′), we have

T(x,μ) ⊆ T(x,μ) +mdγ (μ,μ)BB∗(X,Y ), ∀μ,μ ∈N(μ).

Then

〈
T(x,μ), y – x

〉 ⊆ 〈
T(x,μ) +mdγ (μ,μ)BB∗(X,Y ), y – x

〉
=

〈
T(x,μ), y – x

〉
+

〈
mdγ (μ,μ)BB∗(X,Y ), y – x

〉
=

〈
T(x,μ), y – x

〉
+mdγ (μ,μ)〈BB∗(X,Y ), y – x〉

=
〈
T(x,μ), y – x

〉
+mdγ (μ,μ)

⋃
g∈BB∗(X,Y )

〈g, y – x〉

⊆ 〈
T(x,μ), y – x

〉
+mdγ (μ,μ)M̃BY .
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Hence

〈
T(x,μ), y – x

〉 ⊆ 〈
T(x,μ), y – x

〉
+mdγ (μ,μ)M̃BY .

Also, we putm =M and γ = . We need to show that

〈
T(x,μ), y – x

〉 ⊆ 〈
T(x,μ), y – x

〉
+ M̃‖y – y‖BY .

For each fixed x ∈ E(N(λ)) and μ ∈N(μ),

〈
T(x,μ), y – x

〉
=

⋃
t∈T(x,μ)

〈t, y – x〉

=
⋃

t∈T(x,μ)
〈t, y – x + y – y〉

=
⋃

t∈T(x,μ)
〈t, y – x〉 +

⋃
t∈T(x,μ)

〈t, y – y〉

⊆ 〈
T(x,μ), y – x

〉
+M‖y – y‖BY .

Hence, condition (iii) is verified, and so we obtain the result. �

For (PGVQVI), if we put Y =R, C = [,+∞), then () becomes the following paramet-
ric generalized quasi-variational inequality problem in the case of scalar-valued one:

Find x ∈ K (x,λ) such that 〈t, y – x〉 ≥ , ∀y ∈ K (x,λ),∀t ∈ T(x,μ). ()

For each λ ∈N(λ) and μ ∈N(μ), let

E(λ) :=
{
x ∈ X : x ∈ K (x,λ)

}
.

The solution set of () is denoted by

SSQVI(λ,μ) :=
{
x ∈ E(λ) : 〈t, y – x〉 ≥ ,∀y ∈ K (x,λ),∀t ∈ T(x,μ)

}
.

For each λ ∈N(λ), μ ∈N(μ) and fixed  ∈ intC, the ξq-solution set of () is

SSQVI(ξ,λ,μ) :=
{
x ∈ E(λ) : inf

z∈〈T(x,μ),y–x〉
ξ(z) ≥ ,∀y ∈ K (x,λ)

}
.

It follows from Lemma . that SSQVI(ξ,λ,μ) coincides with SSQVI(λ,μ).

Corollary . Assume that SSQVI(λ,μ) is nonempty in a neighborhood N(λ) × N(μ) of
the considered point (λ,μ) ∈ � ×M. Assume further that conditions (i′)-(iii′) and (v′) in
Corollary . hold. Replace (iv′) by (iv′′).

(iv′′) T(·,μ) is h · β-Hölder strongly monotone, i.e., there exist constants h > , β > , such
that for every x, y ∈ E(N(λ)): x �= y,

〈u – v,x – y〉 ≥ h‖x – y‖β , ∀u ∈ T(x),∀v ∈ T(y).
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Then, for every (λ,μ) ∈ N(λ) × N(μ), the solution of (PGVQVI) is unique, x(λ,μ), and
this function satisfies the Hölder condition: for all (λ,μ), (λ,μ) ∈ N(λ)×N(μ),

dX
(
x(λ,μ),x(λ,μ)

) ≤
(

Ml
h – Mlγ

) 
β

dα/β
λ (λ,λ) +

(
Nm

h – Mlγ

) 
β

dγ/β
M (μ,μ),

where x(λi,μi) ∈ SSQVI(λi,μi), i = , .

Proof It is not hard to show that (iv′′) implies (iv′). Indeed, for any x, y ∈ E(N(λ)) with
x �= y,

h‖x – y‖β ≤ 〈u – v,x – y〉
= 〈u,x – y〉 + 〈v, y – x〉
≤ sup

u∈T(x)
〈u,x – y〉 + sup

v∈T(y)
〈v, y – x〉

= sup
u∈T(x)

–〈u, y – x〉 + sup
v∈T(y)

–〈v,x – y〉

= – inf
u∈T(x)

〈u, y – x〉 – inf
v∈T(y)

〈v,x – y〉

≤ d
(

inf
u∈T(x)

〈u, y – x〉,R+

)
+ d

(
inf

v∈T(y)
〈v,x – y〉,R+

)
.

Therefore, (iv′) is satisfied. �

Remark . Corollary . extends Corollary . in [] since the mapping T is a multi-
valued mapping.

4.2 Traffic equilibrium problems
The foundation of the study of traffic network problems goes back to Wardrop [], who
stated the basic equilibrium principle in . Over the past decades, a large number of
efforts have been devoted to the study of traffic assignment models, with emphasis on
efficiency and optimality, in order to improve practicability, reduce gas emissions and
contribute to the welfare of the community. The variational inequality approach to such
problems begins with the seminal work of Smith [] who proved that the user-optimized
equilibrium can be expressed in terms of a variational inequality. Thus, the possibility of
exploiting the powerful tools of variational analysis has led to dealing with a large variety
of models, reaching valuable theoretical results and providing applications in practical sit-
uations. In this paper, we are concerned with a class of equilibrium problems which can
be studied in the framework of quasi-variational inequalities, see [, ].
Let a set N of nodes, a set L of links, a set W := (W, . . . ,Wl) of origin-destination pairs

(O/D pairs for short) be given. Assume that there are rj ≥  paths connecting the pairsWj,
j = , . . . , l, whose set is denoted by Pj. Setm := r + · · · + rl ; i.e., there are in wholem paths
in the traffic network. Let F := (F, . . . ,Fm) stand for the path flow vector. Assume that the
travel cost of the path Rs, s = , . . . ,m, is a set Ts(F) ⊂ R+. So, we have a multifunction
T :Rm

+ ⇒R
m
+ with T(F) := (T(F), . . . ,Tm(F)). Let the capacity restriction be

F ∈ A :=
{
F ∈R

m
+ : Fs ≤ �s, s = , . . . ,m

}
,
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where �s are given real numbers. Extending the Wardrop definition to the case of multi-
valued costs, we propose the following definition.
A path flow vector H is said to be a weak equilibrium flow vector if

∀Wj,∀Rq ∈ Pj,Rs ∈ Pj, there exists t ∈ T(H) such that

tq < ts ⇒Hq = �q or Hs = , ()

where j = , . . . , l and q, s ∈ {, . . . ,m} are among rj indices corresponding to Pj.
A path flow vector H is said to be a strong equilibrium flow vector if

∀Wj,∀Rq ∈ Pj,Rs ∈ Pj, for all t ∈ T(H) such that tq < ts ⇒ Hq = �q or Hs = . ()

Suppose that the travel demand ρj of theO/DpairWj, j = , . . . , l, depends on theweak (or
strong) equilibrium problem flowH . So, considering all the O/D pairs, we have a mapping
ρ :Rm

+ →R
l
+. We use the Kronecker notation

φjs =

⎧⎨
⎩ if s ∈ Pj,

 if s /∈ Pj.

Then the matrix

φ = {φjs}, j = , . . . , l, s = , . . . ,m,

is called an O/D pair/path incidence matrix. The path flow vectors meeting the travel
demands are called the feasible path flow vectors and form the constraint set, for a given
weak (or strong) equilibrium flow H ,

K (H ,λ) :=
{
F ∈ A : φF = ρ(H ,λ)

}
.

Assume further that the path costs are also perturbed, i.e., depend on a perturbation
parameter μ of a metric spaceM: Ts(F ,μ), s = , . . . ,m.
Our traffic equilibrium problem is equivalent to a quasi-variational inequality as follows

(see []).

Lemma . A path vector flow H ∈ K (H ,λ) is a weak equilibrium flow if and only if it is
a solution of the following quasi-variational inequality:

Find H ∈ K (H ,λ) such that there exists t ∈ T(H ,λ) satisfying 〈t,F –H〉 ≥ ,

∀F ∈ K (H ,λ).

Lemma . A path vector flow H ∈ K (H ,λ) is a strong equilibrium flow if and only if it is
a solution of the following quasi-variational inequality:

Find H ∈ K (H ,λ) such that for all t ∈ T(H ,λ) it satisfies 〈t,F –H〉 ≥ ,

∀F ∈ K (H ,λ).
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Corollary . Assume that solutions of the traffic network equilibrium problem exist and
all the assumptions of Corollary . are satisfied. Then, in a neighborhood of (λ,μ), the
solution is unique and satisfies the same Hölder condition as in Corollary ..

4.3 Quasi-optimization problem
For the normed linear space Y and pointed, closed and convex cone C with nonempty
interior, we denote the ordering induced by C as follows:

x ≤ y iff y – x ∈ C;

x < y iff y – x ∈ intC.

The orderings ≥ and > are defined similarly. Let g : X ×M → Y be a vector-valued map-
ping. For each (λ,μ) ∈ � × M, consider the problem of parametric quasi-optimization
problem (PQOP) finding x ∈ K (x,λ) such that

g(x,μ) = min
y∈K (x,λ)

g(y,μ). ()

Since the constraint set depends on theminimizer x, this is a quasi-optimization problem.
Setting f (x, y,μ) = g(y,μ) – g(x,μ), (PVQEP) becomes a special case of (PQOP).
The following results are derived from Theorem . (Theorem . cannot be applied

since f (x, y,μ) + f (y,x,μ) = , ∀x, y ∈ A and μ ∈M).

Theorem . For (PQOP), assume that the solution exists in a neighborhood N(λ) ×
N(μ) of the considered point (λ,μ) ∈ � × M. Assume further that the following condi-
tions hold.

(i) K (·, ·) is (l · α, l · α)-Hölder continuous on E(N(λ))×N(λ);
(ii) For each x, y ∈ E(N(λ)), F(x, y, ·) is m · γ-Hölder continuous at μ ∈M;
(iii) For each x ∈ E(N(λ)) and μ ∈N(μ), F(x, ·,μ) is m · γ-Hölder continuous on

E(N(λ));
(iv) F(·, ·,μ) is h · β-Hölder strongly monotone with respect to ξq, i.e., there exist

constants h > , β >  such that for every x, y ∈ E(N(λ)): x �= y,

hdβ

X(x, y)≤ d
(

inf
z∈F(x,y,μ)

ξq(z),R+

)
+ d

(
inf

z∈F(y,x,μ)
ξq(z),R+

)
;

(v) β = αγ, h > mLlγ , where L := supλ∈Cq ‖λ‖ ∈ [ 
‖q‖ , +∞) is the Lipschitz constant

of ξq on Y .
Then, for every (λ,μ) ∈ N(λ) × N(μ), the solution of (PVQGEP) is unique, x(λ,μ), and
this function satisfies the Hölder condition:

for all (λ,μ), (λ,μ) ∈N(λ)×N(μ),

dX
(
x(λ,μ),x(λ,μ)

) ≤
(

mLlγ
h – mLlγ

) 
β

dαγ/β
� (λ,λ)

+
(

mL
h – mLlγ

) 
β

dγ/β
M (μ,μ),

where x(λi,μi) ∈ SW (λi,μi), i = , .
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5 Conclusions
In this paper, by using a nonlinear scalarization technique, we obtain sufficient condi-
tions for Hölder continuity of the solution mapping for a parametric generalized vector
quasi-equilibrium problem in the case where the mapping F is a general set-valued one.
As applications, we derived this Hölder continuity for some quasi-variational inequalities,
traffic network problems and quasi-optimization problems.
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