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Abstract

In this paper, we show the sharp maximal function estimates for the Toeplitz type
operators related to the strongly singular integral operators. As an application, we
obtain the boundedness of the operators on weighted Lebesgue and Triebel-Lizorkin
spaces.
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1 Introduction and Preliminaries
As a development of singular integral operators [1, 2], their commutators have been well
studied. In [3-5], the authors prove that the commutators generated by the singular in-
tegral operators and BMO functions are bounded on L?(R") for 1 < p < co. Chanillo [6]
proves a similar result when singular integral operators are replaced by the fractional in-
tegral operators. In [7-9], the boundedness for the commutators generated by the singu-
lar integral operators and Lipschitz functions on Triebel-Lizorkin and L(R") (1 < p < 00)
spaces are obtained. In [10, 11], the boundedness for the commutators generated by the
singular integral operators and the weighted BMO and Lipschitz functions on L”(R")
(1 < p < 00) spaces are obtained. In [12, 13], some Toeplitz type operators related to the sin-
gular integral operators and strongly singular integral operators are introduced, and the
boundedness for the operators generated by BMO and Lipschitz functions is obtained. In
this paper, we will study the Toeplitz type operators related to the strongly singular integral
operator and the weighted Lipschitz functions.

First, let us introduce some notation. Throughout this paper, Q will denote a cube of
R" with sides parallel to the axes. For any locally integrable function f, the sharp maximal
function of f is defined by

M) = sup o / 1) —fol

where we write fo = |Q|™ /. Q f(x)dx. It is well known that [1, 2]

M*(f)(x) ~sup1n£@/b‘(y —c| y.
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1] / ol

For n > 0, set M, (f)(x) = M(|f|)"().
ForO<n<land1l <r<oo,set

1 . 1/r
My, 09 =su0( i [0 )

The A, weight is defined by [1]

p-1
Ap:{weLllOC(R”) sup( Ql/ (x)dx)<|Q|/w(x)_”(p_l)dx) <oo},

l<p<oo,
and

A={well

loc

(R") : M(w)(x) < Cw(x), a.e.}.

The A(p, q) weight is defined by [14], for 1 < p,gq < oo,

g ;4 (v-1Ip
= q -pl(p-1)
Alp,q) = {w>0 sup(|Q|/w(x) dx) (|Q|/w(x) dx> <oo}.

Given a non-negative weight function w, for 1 < p < oo, the weighted Lebesgue space
L?(w) is the space of functions f such that

1/p
W llpow) = (/Rn [f () [ w(x) dx) < 00.

For 8 > 0, p > 1 and the non-negative weight function w, let Pf "*(w) be the weighted
homogeneous Triebel-Lizorkin space [9].

For 0 < 8 <1 and the non-negative weight function w, the weighted Lipschitz space
Lips(w) is the space of functions b such that

e / 16() - bo| dy < oo

(Q)1+ﬂ/n
Remark (1) For b € Lipg(w), w € A; and x € Q, it is well known that
|bq — bakg| < CKIBIILip,ewx)w(2FQ)™".

(2) Let b € Lipg(w) and w € A;. By [15], we know that the spaces Lipg(w) coincide and

the norms ||b||Lip 5(w) Are equivalent with respect to different values of 1 < p < co.

Definition Let T:S — §' be a bounded linear operator. T is called a strongly singular
integral operator if it satisfies the following conditions:
(i) T extends to a bounded operator on L?(R");
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(ii) there exists a function K(x,y) continuous away from the diagonal on R” x R" such
that

‘K(x,y) —K(x,z)’ + ’K(y,x)—K(z,x)‘ <Cly—z|°|x — 2"

if2]y—z|® <|x—z| forsome0<8 <1,0<e<1,and
(Tf,2) = [xn Jrn K(x%,9)f ()g(x) dy dx for f,g € S with disjoint support;

(iii) for some (1—¢&)n/2 < B <n/2, T and T* extend to a bounded operator from L7(R")
into L2(R"), where 1/q = 1/2 + B/n.

Let b be a locally integrable function on R”. The Toeplitz type operator related to T is
defined by

m
Ty=» TY'M,T*,
k=1

where T*! are strongly singular integral operators or +I (the identity operator), T%? are
bounded linear operators on LP(R") for 1 < p < 00, k =1,...,m, My(f) = bf.

Note that the commutator [b, T1(f) = bT(f) — T(bf) is a particular case of the Toeplitz
type operators T. The Toeplitz type operators T}, are non-trivial generalizations of the
commutator. It is well known that commutators are of great interest in harmonic analy-
sis and have been widely studied by many authors [4, 5]. In [16-19], the boundedness of
the strongly singular integral operator is obtained. In [20], a sharp function estimate of the
strongly singular integral operator is obtained. In [21], the boundedness of the strongly sin-
gular integral operators and their commutators is obtained. In [13], the Toeplitz type oper-
ators related to the strongly singular integral operators are introduced, and the bounded-
ness for the operators generated by BMO and Lipschitz functions is obtained. Our works
are motivated by these papers. The main purpose of this paper is to prove sharp maximal
inequalities for the Toeplitz type operators Tj,. As applications, we obtain the weighted
L?-norm inequality and the Triebel-Lizorkin space boundedness for the Toeplitz type op-
erators 1.

We need the following preliminary lemmas.

Lemmal ([16]) Let T be a strongly singular integral operator. Then T is bounded on L? (w)
Jorwe A, withl < p < oo, and when (1-¢)n+28)/28 <u<2,0<u/v<6,T is bounded
from L*(R") into L"(R").

Lemma 2 ([15]) For any cube Q,b € Lipg(w), 0 < B <1, and w € A;, we have

suglb(x) — bo| < ClIbllLipsmw(Q) QI
X€

Lemma 3 ([9]) For0<B<1,1<p<o0,andw € A, we have

1
s g J el

U o~

~
~

1
supinf ——— / (x) —c|dx
Q> ¢ |Q|l+ﬁ/” Qlf ’ L2 (w)
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Lemma 4 ([1]) Let 0 < p < 00 and w € U\, Ar- Then, for any smooth function f for
which the left-hand side is finite,

M) xFwx)dx < C | M*(F)(x)Pw(x)dx.
RY R

Lemma 5 ([14]) Suppose that 0 <n<n,1<s<p<n/n,1/q=1/p—-n/n, and w € A(p,q).
Then

”M’/'S(f)HLq(wq) = C”f||L”(wP)~

2 Theorems and proofs
We shall prove the following theorems.

Theorem1 Letw € A;,0< B <1,b € Lipg(w),and ((1-&)n+2B)/2p <s<n/B.Ifg € L(R")
(1<p<oo)and Ti(g) =0, then there exists a constant C > 0 such that, for any f € C3°(R")

and x € R",
MH(To()) (&) < ClblILin, W@ "> " My (T (f)) R
k=1

Theorem 2 Let w € Ay, 0 < B <min(1,3/¢), (1 - e)n +2B)/2B < s <n/p, and b € Lipg(w).
Ifg e IP(R") (1 < p < o0) and T1(g) = 0, then there exists a constant C > 0 such that, for any
feCPR") and x € R,

QB?’E ceR”

. 1 LB e 3
sup inf W/|Tb(f)(x)—c|dxf CllbllLipyyw @™ > " M(T*(f)) @)
Q k=1

Theorem3 Letw e A;,0< B <1,1/q=1/p—B/n,andb € Lipg(w).Ifg € LF(R") (1 < p < 00)
and Ty(g) = 0, then T}, is bounded from L (w) to LI(wA/P=a0+8/m),

Theorem4 Letw € A;,0 < B <min(1,8/¢),1<p <n/mp,1/q=1/p—B/n,and b € Lipg(w).
Ifg e [P(R") (1< p <o0)and T1(g) = 0, then T}, is bounded from LP (w) to Ff'oo(wq/p‘q(“ﬁ/”)).

Proof of Theorem 1 1t suffices to prove for f € Ci°(R") and some constant C, that the
following inequality holds:

ﬁ /Q| Tp()) = Co|dx < ClIbllLipy W@ Y~ My s (TH(F)) ).

k=1

Without loss of generality, we may assume T*! are T (k = 1,...,m). Fix a cube Q = Q(xo, d)
and X € Q. We have the following two cases.
Case 1. d > 1. Write

Tp(f) (%) = Toob (1)) = To-b0) 1o ) ®) + To-bg)xaq) ) =fi(x) + f2(%).
Then

ol fQ 7)) ol e < o fQ o) s+ /Q 36) = foxo)| i = Fy + I
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For I;, by Holder’s inequality, boundedness of T, and Lemma 2, we obtain
1 k,1 k,2
@ Q| T M(b—bQ)XZQ T5°(f)(x) | dx

1/s
(e e

1/s
=< C|Q|_l/s </2Q|M(b—bQ)X2Q Tk,z(f)(x)r dx)
1/s
< CIQI‘”S( f (|bG) = bo| IT“(fxx)i)sdx)
2Q
1/s
< CIQI™ sup |b(x) ~ by ( f IT"’Z(f)(x)Isdx>
x€2Q Q

w2 148/ 1/s
SC|Q|_1/s||b”Lipﬁ(w)%|Q|1/s ﬁl"(w/| T(f) ()| d )

1+B/n
< ClIbllLipgow (VT(QQ|)> Mps(T() @)

< CllbllLipy W@ Mp (T (1) ),

thus

21
I < Z @ / |Tk’1M(b—bQ)X2Q Tk’ZV)(x)| dx
k=1 Q
< CllbllLip, W@ Y " My (T (f)) @)
k=1

For I, by d >1 and 2|x — x¢|® < |y — x| for x € Q and y € (2Q)¢, we obtain, for x € Q,
| T Mp-bo)x00 T ()®) = T M) 00 T () (0|

=/, C|b0’)—b2Q||K(x’y)—K(xo»y)HTk'z(f)U/)Wy

xI

[ee]

<cdy / | | (27d)_"_8/8|b(y)—b2f+1Q||Tk'2(f)()’)|dy
Yd<|y-xg|<V*ld

+Cd* Y (Pd) " byag - bag / | T%2(F)(y)| dy

j=1 Vd<|y-xo|<V*ld

< ClIbllLipyomd”™"
o) i 1+B/n 1/s
e (WQ) 1 ;
S i) ey (R S
; |w+1Q| |w+1Q|1—sﬁ/n 2/*1Q| ’

+ C”b”Lipﬁ (w)d675/8
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00 o isle (2j+1Q) Bin 1 s
xZI:JZ s/ w(x)(m;%l@ ) <|2/+1Q|1_Sﬂ/n/ |T52(F)0)| )
-
= Cllblipy o w@" "M o(T(F)) R),

thus
= QI g Z| T Mip-bg) e T () = T Mip-bg) 50 T () (%0) | dix
k=1

< ClbllLipsnw@ "~ My (T () ().
k=1

Case 2. d < 1. Set Q = Q(x,d*) and write

Tp(F)x) = To-n (F)*) = To-bq) 1y ) *) + Tlo-bgx p0 ) X) = 1) + fo ().

elols

Then

i 10 sl < g [ ol a1 [ ) it a1

For I3, since ((1—&)n + 28)/28 < s < 00, there exists g such that r <5, 0 < r/g < ¢,and T is

bounded from L"(R") into L9(R"). By using the same argument as in the proof of I;, we get
€ / | T* Mp-bg) 0, T (F) ()| dix
1Rl Jq x
1 k,1 k,2 q d Ha
al |T Mp-bgri T ()W) dt
1/r
<ClQ™ (/ |(B(x) — bag) (%) dx)
Rﬂ
1/r
< CIQI”"( [ (1569 = b+ s~ b2 7200 dx)
2Q

1/r
< ClIbllLipy 11 (W(Q Q1™ + w@W(Q ﬁ/")(/ | T%2(f)(x \’dx)

n(e/r— ~ W(Q) pin 1 : s Vs
SC”b”Lipﬂ(w)d (ef l/q)w(x)( |Q| ) (|Q|1—sﬁ/n /é|Tk2(f)(x)| dx)

< CllbllLipy W@ "My (T (1)) ),

thus
71
hsY o fQ [T M-y T
=1

< ClIblluips W@y~ My (T () ().
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For I, by using the same argument as in the proof of I, we get, for x € Q,

| T M-boyrpe T )0 = T Mgy e T () 50)|

=/ C\b@) - bag|Ke.) - Koo )| | 72100
<c | or-ello) 2

<30y [ 160)-bgl| 70|

j=1
+Cd® Y (2Pd) " by — byg / | T*2(F)(y)| dy
j=1
L Gl (2d) " by - gl f |T42()0) | dy
j=1
0 ) 2j+1é) 1+B8/n 1 1/s
< ClbllLipy 2"‘”5(7‘”( _ ) <7 / T*? Sd)
=l anﬁ(); 1) g gl T DO D
+ ClIblLipsm)

. (2]+1Q) Bin 1 s 1/s
X le s (W2/+1Q| ) (|2j+1é|1sﬁ/n ,/2/+1Q|Tk72(f)(y)| dy)

A [} e - W(Q) Bln 1 . s 1/s
+C||b||L1pﬁ(w)221 W(x)< |é| ) (|Qj+1é|15ﬁ/n /2;*1(_2|T (f)(y)‘ dy>

j1

< ClbllLipy W@ " Mp (T (1)) ),

thus

L= @ Q Mi-b)xage T (@) = T"Mip-bg) 50 T () 0) | dix

< ClbllLipy W@ "y~ My (T (1)) ().
k=1

These complete the proof of Theorem 1.

Proof of Theorem 2 1t suffices to prove for f € C§°(R") and some constant Cy that the

following inequality holds:

1 s “ s
Qi /Q | To(F)(@) — Co| dx < CllBlILipy ey w @' " Y~ M (T*(f)) &)
k=1

Without loss of generality, we may assume 7! are T (k = 1,...,m). Fix a cube Q = Q(xo, d)

and X € Q. We have the following two cases.
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Case 1. d > 1. Similar to the proof of Theorem 1, we have

Tp(F)*) = To-bo (F)*) = To-bg) a0 ) ®) + Tio-bo gy ) =A%) + fo(x)

and
W /Q’ Ty(f)(x) - fa(xo) | dx

1 1
= QA fQW’“)‘d’” 1QIAn /Qlfz(x) —foxo)| dx = I + IIo.

By using the same argument as in the proof of Theorem 1, we get

m

C s s 1/s
m=>y o feuz%lb(x)—bzath Y (/ZQITk'Z(f)(x)I dx)

k=1

m W(Q))hﬁ/n( 1 / . s )1/5
SEH Iyt ( Q) 12Q| 2Q| ()| dx

< CllblILipy W@ P>~ M(TE()) (&),
k=1

1
I = 1o / /Wib(y) = bag||K(x,9) = K(xo0,9)|| T** () ()| dy dx

|Q|1+ﬂ/n//(2Q)c’ (y - 2Q| |f+5/8|Tk2(f)()’)|d)’dx

<cd® Y (2d)"" b(y) - byuo| | T (1) )| &
S0 [0 =basollr ol

+Cd* (D)™ ‘”S|b2,+1Q-b2Q|f | T%2(F)(5)| dy

j=1

< C||b||Lipﬁ(w)d678/8

i+1 1+8/n 1 1/s
oj(B-51¢) (W(ZI Q)) < 4 k2 S 4 )
) Z 71Q| 1G] Jyagl T DO Y

+ ClbllLipgmd® ™"

o0 j+1 Bin /s
0(B-51¢) (5 (W@ Q)) ( 41 k2 s d)

< ClIbllLip, W@ Y " M (TF () (&).
k=1

Case 2. d < 1. Set Q = Q(xo,d"), where p = (§ — B)/(8/¢ — B) < &, and write

Ty(f)(x) = Thpo (f)(x) = T(b—bQ)Xzé (x) + T(b‘hQ)X(z@c () =AAx) + fo(x)

Page 8 of 11
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and
1
|Q|1W/Q|Tb(f)(x) —fo(xo)| dx
1 1
= W/QW’CW’“ W/Qlfz(x) — fo(xo)| dx = I3 + IL,.

By using the same argument as in the proof of Theorem 1, for ((1 —&)n +28)/2 <s < oo,
there exists g such that r <s, 0 < 7/q < ¢, and T is bounded from L"(R") into L7(R"), and
we get

113_ /|Tk (b-boxyy T ()] dx
k=1

i (1 /]T" b Tk2(f }qu>l/q
lIF\1Q D
" 1/r
=¢ Zd‘ﬂ‘”“’( / | (bx) - sz)ﬁ<x)|’dx)
k=1 R
1/r
<CZ”"/"(/ (16@) ~ by’ +|b2Q—b2Q|){Tk’z(f)(x)|rdx>

m 1/r
<O Wbl @1+ wiw @) | el )

Bin 1/s
C b . dp (n/s+B)-B-nlq (W(Q)) ( Tk2 d )
< Zn gy w15 |Q|/| (| d

< CllblLipy W& >~ M (T () ()
k=1

m

1
I = kX:I: W/Q/(z@)a|b(y) — byg|K(x,9) = K(%0,)|| T*(F)(9)| dy dx
|Q|1+ﬂ/n// |60 - b2Q| |n+8/s| k2(f)0’|dydx

Zd(;ﬁzzldp nB/a/

k=1 j=1 7

|b(y) - b2/+1Q||T ")|dy

+1

O3 AP S @) g - 2Q|/ |T42(F) ()| dy

k=1 j=1
: CZd‘H Z(zjdp)—nfa/swzé _ ngI / ) ‘Tk’z(f)(yﬂ dy
k=1 j=1 71
+ 1+8/n 1/s
j(B=51¢) w(2*1Q) 1 / 2 s
B CZ ltipy o Z (—WHQ' 555 Lo T 0

m
+C Y blILipson
k-1
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i i1 A\ Bln Vs
9/ (B-51¢) (5 (W(2’ ~Q)) < 1 ) - ‘ )
<2 () (g [ 7000

m 00 pd Bln 1/s
S Sy e e B e I IR
k=1 j=1 741Q

Ql 2+1Q|
< CllblLipyw@" " >~ M(TH () ).
k=1
This completes the proof of Theorem 2. d

Proof of Theorem 3 Choose 1 < s < p in Theorem 1, notice that w??-71+#/" ¢ A and
wl’? e A(p, q), and we have, by Lemmas 1, 4, and 5,

” Tb(f)||Lq(Wq/pfq<1+ﬁ/n)) = ”M(Tb(f)) ”Lq(wq/pfq(hﬁ/n))

= C”M#(Tb(f)) ”Lq(wq/p—q(1+ﬁ/n))

m
< C”b”Lipﬁ(w) Z HM/S,S(T](’Z(f))WHﬂ/n HLq(Wq/p—q(Hﬂ/n))
k=1

= ClbllLipgn Y Mps(T ) | 1oy
k=1

< Clblipson Y_IT*F) o)
k=1
=< ClI®llLips ) If 122 -
This completes the proof of Theorem 3. d

Proof of Theorem 4 Choose 1 < s < p in Theorem 2. By using Lemma 3, we obtain
” T,(f) ” Ff"’o(wq/p—q(lﬂﬁ/n))

m
S C“b“Lipﬂ(W) Z ”1\45(7—']('2 (f))wl+ﬂ/n ||Lq(wq/p7q(1+ﬁ/n))
k=1

= ClbliLipgm Y [Ms(T** ()| aquarey
k=1

< Clbluipgon DN TP 1o
k=1

=< CllblILipy o If o)
This completes the proof of the theorem. 0

Remark A typical example of strongly singular integral operators is a class of multiplier
operators whose symbol is given by exp(i|&|¢)/|€|° for 0 < & <1 and § > 0 [18-20, 22].
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