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Abstract
In this paper, we obtain expressions of the mean curvature integrals of two outer
parallel bodies, where the outer parallel bodies are in the distance ρ of a projection
body in different space (Rn and Lr[O]). These mean curvature integrals are the
generalizations of Santaló’s results. As corollaries, we establish mean values of the
mean curvature integrals and Minkowski quermassintegrals of two outer parallel
bodies, respectively.
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1 Introduction
The mean curvature integral is a basic concept in integral geometry. It connects many
geometric invariants, such as area, the Euler-Poincaré characteristic, the degree of the
spherical Gauss map, the Gauss-Kronecker curvature and so on. Also it has close relation
to the Minkowski quermassintegral of convex body. Meanwhile, the mean curvature in-
tegral plays an important role in Chern fundamental kinematic formula. It is well known
that kinematic formulas are very important and classical in integral geometry.
Under the assumptions that Rn is the n-dimensional Euclidean space and Lr[O] is an

r-dimensional linear subspace through a fixed point O, Santaló [] investigated the ith
mean curvature integral M(n)

i of a flattened convex body K in R
n and established the ex-

pression of M(n)
i in terms of M(r)

j , where M(r)
j is the jth mean curvature integral of K in

Lr[O]. On the basis of [], Chen and Yang [] investigated M(n)
i of a flattened convex body

K in space forms and gave the expression of it in terms ofM(r)
j , whereM(r)

j is the jth mean
curvature integral of K in r-dimensional geodesic submanifold, their work extends the re-
sult of Santaló in []. In [], Zhou and Jiang investigated M(n)

i of the projection body K (r)
ρ

as a flattened convex body of Rn.
In this paper, we investigate the ith mean curvature integralM(n)

i of ∂(K ′
r)(n)ρ and ∂(K ′

r)(r)ρ ,
naturally, where (K ′

r)(n)ρ and (K ′
r)(r)ρ are the outer parallel bodies of K ′

r in R
n and Lr[O], re-

spectively. We give the expressions of M(n)
i in terms of M(r)

j . Besides, we obtain the mean
value ofM(n)

i . Our main results are the following theorems.
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Theorem  Let K be a convex body with C boundary ∂K in R
n. Let (K ′

r)(n)ρ be the outer
parallel body of K ′

r in the distance ρ inRn,where K ′
r is the orthogonal projection of K on the

r-dimensional linear subspace Lr[O] ⊆ R
n. Denote by M(n)

i (∂(K ′
r)(n)ρ ) (i = , , . . . ,n – ) the

mean curvature integrals of (K ′
r)(n)ρ and by M(r)

i (∂K ′
r) (i = , , . . . , r – ) the mean curvature

integrals of K ′
r in Lr[O]. Then:

() If i ≥ n – r, then

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
=

n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–i. (.)

() If i ≤ n – r – , then

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
=

(
n – i – 

n – r – i – 

)(
n – 

n – r – 

)–

On–r–Vr
(
K ′
r
)
ρn–r–i–

+
n–∑

q=n–r

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–i, (.)

where Vr(K ′
r) denotes the r-dimensional volume of K ′

r .

Theorem  Let K be a convex body with C boundary ∂K in R
n. Let (K ′

r)(r)ρ be the outer
parallel body of K ′

r in the distance ρ in Lr[O], where K ′
r is the orthogonal projection of K on

the r-dimensional linear subspace Lr[O] ⊆ R
n. Denote by M(n)

i (∂(K ′
r)(r)ρ ) (i = , , . . . ,n – )

the mean curvature integrals of (K ′
r)(r)ρ as a flattened convex body of Rn and by M(r)

i (∂K ′
r)

(i = , , . . . , r – ) the mean curvature integrals of K ′
r as a convex body of Lr[O]. Then:

() If i≥ n – r, then

M(n)
i

(
∂
(
K ′
r
)(r)
ρ

)
=

( r–
i–n+r

)
(n–

i
) Oi

Oi–n+r

n–i–r–∑
q=

(
n – i – r – 

q

)
M(r)

i–n+r+q
(
∂
(
K ′
r
))

ρq. (.)

() If i = n – r – , then

M(n)
n–r–

(
∂
(
K ′
r
)(r)
ρ

)

=
(

n – 
n – r – 

)–

On–r–

[
Vr

(
K ′
r
)
+

r–∑
q=

ρq+

q + 

(
r – 
q

)
M(r)

q
(
∂
(
K ′
r
))]

. (.)

() If i < n – r, then

M(n)
i

(
∂
(
K ′
r
)(r)
ρ

)
= , (.)

where Vr(K ′
r) denotes the r-dimensional volume of K ′

r .

Especially, letting ρ → , Theorem  reduces to Lemma  (in Section ) proved by San-
taló in  (see [, , ]). In fact, the main result of [] and Theorem  are similar in
nature, but the coefficient in [] is a little inappropriate. Note that the results of [, , ]
play an important role in integral geometry and differential geometry and are widely used
(see [, –]).
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2 Preliminaries
A set in the Euclidean space Rn is called convex if and only if it contains, with each pair
of its points, the entire line segment joining them. A convex set with nonempty interior is
called a convex body. The boundary ∂K of a convex body K is a convex hypersurface.
Let K be a convex body in R

n, then ∂K is an (n – )-dimensional convex hypersurface.
Assuming that ∂K is of class C and P is a point of ∂K , we choose e, . . . , en– to be the
principal curvature directions at the point P. Further, we suppose that k, . . . ,kn– are the
principal curvatures at the point P, which correspond to the principal curvature direc-
tions.
Consider the Gauss map G : p →N(p), whose differential

dGP : x′(t) →N ′(t)
(
x() = P

)
(.)

satisfies Rodrigues’ equations,

dGp(ei) = –kiei, i = , . . . ,n – . (.)

Then we have the mean curvature

H =


n – 
(k + · · · + kn–) = –


n – 

trace(dGP), (.)

along with the Gauss-Kronecker curvature,

K = k · · ·kn– = (–)n– det(dGP). (.)

The ith order mean curvature is the ith order elementary symmetric function of the prin-
cipal curvatures. We denote by Hi the ith order mean curvature normalized such that

n–∏
i=

( + tki) =
n–∑
i=

Hiti. (.)

Thus, H =H is the mean curvature and Hn– is the Gauss-Kronecker curvature.
The ith order mean curvature integralM(n)

i of ∂K at P is defined by

M(n)
i (∂K ) =

∫
∂K

Hi dσ =
(
n – 
i

)– ∫
∂K

{kj , . . . ,kji}dσ , i = , . . . ,n – , (.)

where {kj , . . . ,kji} denotes the ith elementary symmetric function of the principal curva-
tures and dσ is the area element of ∂K . As a particular case, let M(n)

 (∂K ) = F be the area
of ∂K , for completeness. Moreover, we have M(n)

n– =On–, where On– denotes the area of
the (n – )-dimensional unit sphere and its value is given by the formula

On– =
πn/

�(n/)
. (.)

For instance, if n = , and K is a plane convex figure inR
, thenM()

 = F(K ) andM()
 = π .

If n = , and K is a convex body in R
, thenM()

 = F(K ),M()
 = π andM()

 is the integral
of mean curvature of ∂K . See [, ] for a detailed description.

http://www.journalofinequalitiesandapplications.com/content/2014/1/415


Zeng et al. Journal of Inequalities and Applications 2014, 2014:415 Page 4 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/415

On the other hand, we consider all the (n – r)-dimensional linear subspaces Ln–r[O]
through a fixed point O. Let K ′

n–r be the orthogonal projection of K onto Ln–r[O], denote
by V (K ′

n–r) the volume of K ′
n–r and by dLn–r[O] the densities of the Grassmann manifold

Gn–r,r . Then the mean value of the projected volumes E(V (K ′
n–r)) is

E
(
V

(
K ′
n–r

))
=

Ir(K )
m(Gn–r,r)

=
Or– · · ·OO

On– · · ·On–r
Ir(K ), r = , , . . . ,n – , (.)

where Grassmann manifold Gn–r,r is the set of unoriented r-planes of Rn through a fixed
point, m(Gn–r,r) is the volume of Gn–r,r given by

m(Gn–r,r) =m(Gr,n–r) =
∫
Gr,n–r

dLr[O] =
On– . . .On–r

Or– · · ·OO
(.)

and

Ir(K ) =
∫
Gn–r,r

V
(
K ′
n–r

)
dLn–r[O] =

∫
Gr,n–r

V
(
K ′
n–r

)
dLr[O]. (.)

For completeness, we define

I(K ) = V (K ) (the n-dimensional volume of K ). (.)

The Minkowski quermassintegral is introduced by Minkowski and is defined by

W (n)
r (K ) =

(n – i)On–

nOn–r–
E
(
V

(
K ′
n–r

))

=
(n – r)Or– · · ·O

nOn– · · ·On–r–
Ir(K ), r = , , . . . ,n – . (.)

In particular, we putW (n)
 (K ) = I(K ) = V (K ),W (n)

n (K ) = On–
n .

The outer parallel body Kρ in the distance ρ of a convex figure K is the union of all
solid spheres of radius ρ the centers of which are points of K . Then we have the following
Steiner formula for the outer parallel body Kρ (ρ ≥ ):

V (Kρ) =
n∑
i=

(
n
i

)
W (n)

i (K )ρ i. (.)

As a consequence of the Steiner formula we have

W (n)
i (Kρ) =

n–i∑
j=

(
n – i
j

)
W (n)

i+j (K )ρ j, i = , , . . . ,n. (.)

Moreover, we have the relation between the mean curvature integrals of ∂K and the
Minkowski quermassintegrals of K (see [, , ]), that is, the Cauchy formula

M(n)
i (∂K ) = nW (n)

i+(K ), i = , , . . . ,n – . (.)
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Note that the Minkowski quermassintegrals W (n)
i are well defined for any convex figure,

whereasM(n)
j makes sense only if ∂K is of class C.

Let K be a convex body in the r-dimensional linear subspace Lr[O] ⊆ R
n, and M(r)

q (∂K )
the mean curvature integrals of K as a convex surface of Lr[O]. Consider K as a flattened
convex body of Rn, Santaló obtained the following lemma with respect to the mean cur-
vature integral in  (see [, , ]).

Lemma  Let Rn be the n-dimensional Euclidean space and Lr[O] be the r-dimensional
linear subspace through a fixed point O in R

n. Let K be a convex body of the dimension r
in Lr[O]. Then K can be considered both as a convex body in Lr[O] and as a flattened convex
body in R

n. Then the qth mean curvature integral M(n)
q (∂K ) satisfies the conditions:

() If q ≥ n – r, then

M(n)
q (∂K ) =

( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r(∂K ). (.)

() If q = n – r – , then

M(n)
n–r–(∂K ) =

(
n – 

n – r – 

)–

On–r–Vr(K ), (.)

where Vr(K ) denotes the r-dimensional volume of K .
() If q < n – r – , then

M(n)
q (∂K ) = . (.)

Later, Jiang and Zeng [] investigated the integral of M(n)
i of ∂(K ′

r)(r)ρ on the Grassmann
manifold Gr,n–r and obtained the mean value of these mean curvature integrals.

Lemma  Let K be a convex body with C boundary ∂K in R
n and let K ′

r be the or-
thogonal projection of K on the r-dimensional subspace Lr[O] ⊆ R

n. Denote by M(r)
i (∂K ′

r)
(i = , , . . . , r – ) the mean curvature integrals of K ′

r as a convex body of Lr[O] and by
M(n)

i (∂K ) (i = , , . . . ,n – ) the mean curvature integrals of K in R
n. Then

∫
Gr,n–r

M(r)
i

(
∂K ′

r
)
dLr[O] =

On– · · ·On–r

Or– · · ·O
M(n)

n–r+i(∂K ). (.)

3 Proofs of themain theorems and some corollaries
Proof of Theorem  We apply the Cauchy formula (.) to the convex body (K ′

r)(n)ρ , then

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
= nW (n)

i+
((
K ′
r
)(n)
ρ

)
, i = , , . . . ,n – . (.)

Applying (.) to the convex body K ′
r , we have

W (n)
i

((
K ′
r
)(n)
ρ

)
=

n–i∑
j=

(
n – i
j

)
W (n)

i+j
(
K ′
r
)
ρ j, i = , , . . . ,n. (.)
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Then combining (.) and (.) gives

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
=

n–i–∑
j=

(
n – i – 

j

)
M(n)

i+j
(
∂K ′

r
)
ρ j

=
n–∑
q=i

(
n – i – 
q – i

)
M(n)

q
(
∂K ′

r
)
ρq–i, (.)

where in the first step we use the Cauchy formula

Mi(∂K ) = nWi+(K ), i = , , . . . ,n,

for flattened convex bodies.
Now, we are ready to compute the mean curvature integral of ∂(K ′

r)(n)ρ from the below
three cases.
() If i≥ n – r, and obviously q ≥ n – r in (.). Then by Santaló’s result (.)

M(n)
q

(
∂K ′

r
)
=

( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
, for all q ≥ n – r. (.)

Inserting (.) to (.), we obtain

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
=

n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–i. (.)

() If i = n – r – , then (.) can be rewritten as

M(n)
n–r–

(
∂
(
K ′
r
)(n)
ρ

)
=

n–∑
q=n–r–

(
r

q – n + r + 

)
M(n)

q
(
∂K ′

r
)
ρq–n+r+

=M(n)
n–r–

(
∂K ′

r
)
+

n–∑
q=n–r

(
r

q – n + r + 

)
M(n)

q
(
∂K ′

r
)
ρq–n+r+

=
(

n – 
n – r – 

)–

On–r–Vr
(
K ′
r
)

+
n–∑

q=n–r

(
r

q – n + r + 

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–n+r+, (.)

where the first equation and the last equation follow from (.) and (.), respectively.
() If i < n – r – , from (.) and (.), followed by (.) and (.), then we have

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
=

n–∑
q=i

(
n – i – 
q – i

)
M(n)

q
(
∂K ′

r
)
ρq–i

=
n–r–∑
q=i

(
n – i – 
q – i

)
M(n)

q
(
∂K ′

r
)
ρq–i +

(
n – i – 

n – r – i – 

)
M(n)

n–r–
(
∂K ′

r
)
ρn–r–i–
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+
n–∑

q=n–r

(
n – i – 
q – i

)
M(n)

q
(
∂K ′

r
)
ρq–i

=
(

n – i – 
n – r – i – 

)
M(n)

n–r–
(
∂K ′

r
)
ρn–r–i–

+
n–∑

q=n–r

(
n – i – 
q – i

)
M(n)

q
(
∂K ′

r
)
ρq–i

=
(

n – i – 
n – r – i – 

)(
n – 

n – r – 

)–

On–r–Vr
(
K ′
r
)
ρn–r–i–

+
n–∑

q=n–r

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–i. (.)

If we take i = n – r –  in (.), then

M(n)
n–r–

(
∂
(
K ′
r
)(n)
ρ

)
=

(
n – 

n – r – 

)–

On–r–Vr
(
K ′
r
)

+
n–∑

q=n–r

(
r

q – n + r + 

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–n+r+, (.)

which is in fact (.). So combining (.) and (.) gives (.) and completes the proof of
Theorem . �

Proof of Theorem  () If i≥ n – r, and applying (.) and (.), then

M(n)
i

(
∂
(
K ′
r
)(r)
ρ

)
=

( r–
i–n+r

)
(n–

i
) Oi

Oi–n+r
M(r)

i–n+r
(
∂
(
K ′
r
)(r)
ρ

)

=
( r–
i–n+r

)
(n–

i
) Oi

Oi–n+r

n–i–r–∑
q=

(
n – i – r – 

q

)
M(r)

i–n+r+q
(
∂
(
K ′
r
))

ρq. (.)

() If i = n – r – , then by (.),

M(n)
n–r–

(
∂
(
K ′
r
)(r)
ρ

)
=

(
n – 

n – r – 

)–

On–r–Vr
((
K ′
r
)(r)
ρ

)
. (.)

Next, we turn our attention to the computation of the r-volume (K ′
r)(r)ρ . By applying the

Steiner formula to K ′
r , we see that

Vr
((
K ′
r
)(r)
ρ

)
=

r∑
q=

(
r
q

)
Wq

(
K ′
r
)
ρq. (.)

Hence

Vr
((
K ′
r
)(r)
ρ

)
=

r∑
q=

(
r
q

)
Wq

(
K ′
r
)
ρq = Vr

(
K ′
r
)
+

r–∑
q=

ρq+

q + 

(
r – 
q

)
M(r)

q
(
∂
(
K ′
r
))
. (.)
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Finally, we obtain

M(n)
n–r–

(
∂
(
K ′
r
)(r)
ρ

)

=
(

n – 
n – r – 

)–

On–r–

[
Vr

(
K ′
r
)
+

r–∑
q=

ρq+

q + 

(
r – 
q

)
M(r)

q
(
∂
(
K ′
r
))]

. (.)

() If i < n – r – , then by (.) we have

M(n)
i

(
∂
(
K ′
r
)(r)
ρ

)
= . (.)

�

Based on Theorem , we begin to consider the integral of M(n)
i (∂(K ′

r)(n)ρ ) on Grassmann
manifold Gr,n–r , and obtain the following.

Theorem  Let K be a convex body with C boundary ∂K in R
n. Let (K ′

r)(n)ρ be the outer
parallel body of K ′

r in the distance ρ inRn,where K ′
r is the orthogonal projection of K on the

r-dimensional linear subspace Lr[O] ⊆ R
n. Denote by M(n)

i (∂(K ′
r)(n)ρ ) (i = , , . . . ,n – ) the

mean curvature integrals of (K ′
r)(n)ρ and by M(n)

i (∂K ) (i = , , . . . ,n – ) the mean curvature
integrals of K . Then:
() If i ≥ n – r, then

∫
Gr,n–r

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
dLr[O]

=
n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) OqOn– · · ·On–r

Oq–n+rOr– · · ·O
ρq–iM(n)

q (∂K ).

() If i ≤ n – r – , then

∫
Gr,n–r

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
dLr[O]

=
(

n – i – 
n – r – i – 

)(
n – 

n – r – 

)–On– · · ·On–r–

rOr– · · ·O
ρn–r–i–M(n)

n–r–(∂K )

+
n–∑

q=n–r

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) On– · · ·On–rOq

Oq–n+rOr– · · ·O
ρq–iM(n)

q (∂K ).

Proof () If i ≥ n – r, by (.) and Lemma , the integral of M(n)
i (∂(K ′

r)(n)ρ ) on Grassmann
manifold Gr,n–r can be obtained as follows:

∫
Gr,n–r

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
dLr[O]

=
∫
Gr,n–r

n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–i dLr[O]

=
n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
ρq–i

∫
Gr,n–r

M(r)
q–n+r

(
∂K ′

r
)
dLr[O]
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=
n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
ρq–i On– · · ·On–r

Or– · · ·O
M(n)

q (∂K )

=
n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) OqOn– · · ·On–r

Oq–n+rOr– · · ·O
ρq–iM(n)

q (∂K ).

() If i≤ n – r – , then by (.) and Lemma  we arrive at

∫
Gr,n–r

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
dLr[O]

=
∫
Gr,n–r

{(
n – i – 

n – r – i – 

)(
n – 

n – r – 

)–

On–r–Vr
(
K ′
r
)
ρn–r–i–

+
n–∑

q=n–r

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
M(r)

q–n+r
(
∂K ′

r
)
ρq–i

}
dLr[O]

=
(

n – i – 
n – r – i – 

)(
n – 

n – r – 

)–

On–r–ρ
n–r–i–

∫
Gr,n–r

Vr
(
K ′
r
)
dLr[O]

+
n–∑

q=n–r

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
ρq–i

∫
Gr,n–r

M(r)
q–n+r

(
∂K ′

r
)
dLr[O]. (.)

Note that
∫
Gr,n–r

Vr
(
K ′
r
)
dLr[O] = In–r(K )

and

W (n)
n–r(K ) =

rOr– · · ·O

nOn– · · ·On–r
In–r(K ),

therefore we obtain
∫
Gr,n–r

Vr
(
K ′
r
)
dLr[O] = In–r(K )

=
nOn– · · ·On–r

rOr– · · ·O
W (n)

n–r(K )

=
On– · · ·On–r

rOr– · · ·O
M(n)

n–r–(∂K ). (.)

Inserting (.) to (.) and using Lemma , we have

∫
Gr,n–r

M(n)
i

(
∂
(
K ′
r
)(n)
ρ

)
dLr[O]

=
(

n – i – 
n – r – i – 

)(
n – 

n – r – 

)–

On–r–ρ
n–r–i–On– · · ·On–r

rOr– · · ·O
M(n)

n–r–(∂K )

+
n–∑

q=n–r

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) Oq

Oq–n+r
ρq–i On– · · ·On–r

Or– · · ·O
M(n)

q (∂K )
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=
(

n – i – 
n – r – i – 

)(
n – 

n – r – 

)–On– · · ·On–r–

rOr– · · ·O
ρn–r–i–M(n)

n–r–(∂K )

+
n–∑

q=n–r

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) On– · · ·On–rOq

Oq–n+rOr– · · ·O
ρq–iM(n)

q (∂K ),

we complete the proof of Theorem . �

By the Cauchy formula (.) and Theorem , the following corollary can be obtained.

Corollary  Let K be a convex body with C boundary ∂K in R
n. Let (K ′

r)(n)ρ be the outer
parallel body of K ′

r in the distance ρ in R
n, where K ′

r is the orthogonal projection of K
on the r-dimensional linear subspace Lr[O] ⊆ R

n. Denote by W (n)
i ((K ′

r)(n)ρ ) (i = , , . . . ,n)
the Minkowski quermassintegrals of (K ′

r)(n)ρ and by W (n)
i (K ) (i = , , . . . ,n) the Minkowski

quermassintegrals of K . Then:
() If i ≥ n – r + , then

∫
Gr,n–r

W (n)
i

((
K ′
r
)(n)
ρ

)
dLr[O]

=
n–∑
q=i–

(
n – i

q – i + 

)( r–
q–n+r

)
(n–

q
) OqOn– · · ·On–r

Oq–n+rOr– · · ·O
ρq–i+W (n)

q+(K ).

() If i ≤ n – r, then
∫
Gr,n–r

W (n)
i

((
K ′
r
)(n)
ρ

)
dLr[O]

=
(

n – i
n – r – i

)(
n – 

n – r – 

)–On– · · ·On–r–

rOr– · · ·O
ρn–r–iW (n)

n–r(K )

+
n–∑

q=n–r

(
n – i

q – i + 

)( r–
q–n+r

)
(n–

q
) On– · · ·On–rOq

Oq–n+rOr– · · ·O
ρq–i+W (n)

q+(K ).

Using
∫
Gr,n–r

M(n)
i (∂(K ′

r)(n)ρ )dLr[O] divided by m(Gr,n–r), and by Theorem , we immedi-
ately obtain the following corollaries.

Corollary  Let K be a convex body with C boundary ∂K in R
n. Let (K ′

r)(n)ρ be the outer
parallel body of K ′

r in the distance ρ inRn,where K ′
r is the orthogonal projection of K on the

r-dimensional linear space Lr[O]. Denote by M(n)
i (∂(K ′

r)(n)ρ ) (i = , , . . . ,n – ) the mean cur-
vature integrals of (K ′

r)(n)ρ and by M(n)
i (∂K ) (i = , , . . . ,n – ) the mean curvature integrals

of K . Then:
() If i ≥ n – r,

E
(
M(n)

i
(
∂
(
K ′
r
)(n)
ρ

))
=

n–∑
q=i

(
n – i – 
q – i

)( r–
q–n+r

)
(n–

q
) OqOr–

Oq–n+rOn–
ρq–iM(n)

q+j(∂K ).

() If i ≤ n – r – ,

E
(
M(n)

i
(
∂
(
K ′
r
)(n)
ρ

))
=

(
n – 

n – r – 

)–On–r–O
r–Or– · · ·O

rO
n–On– · · ·On–r

r∑
i=

(
r
i

)
ρ iM(n)

n–r+i–(∂K ).
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Corollary  Let K be a convex body with C boundary ∂K in R
n. Let (K ′

r)(n)ρ be the outer
parallel body of K ′

r in the distance ρ in R
n, where K ′

r is the orthogonal projection of K on
the r-dimensional linear space Lr[O]. Denote by W (n)

i ((K ′
r)(n)ρ ) (i = , , . . . ,n) the Minkowski

quermassintegrals of (K ′
r)(n)ρ and by W (n)

i (K ) (i = , , . . . ,n) the Minkowski quermassinte-
grals of K . Then:
() If i ≥ n – r + ,

E
(
W (n)

i
((
K ′
r
)(n)
ρ

))
=

n–∑
q=i–

(
n – i

q – i + 

)( r–
q–n+r

)
(n–

q
) OqOr–

Oq–n+rOn–
ρq–i+W (n)

q+(K ).

() If i ≤ n – r,

E
(
W (n)

i
((
K ′
r
)(n)
ρ

))
=

(
n – i

n – r – i

)(
n – 

n – r – 

)–Or–On–r–

rOn–
ρn–r–iW (n)

n–r(K )

+
n–∑

q=n–r

(
n – i

q – i + 

)( r–
q–n+r

)
(n–

q
) Or–

Oq–n+rOn–
ρq–i+W (n)

q+(K ).
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