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Abstract
The purpose of this paper is to study the existence and multiplicity of periodic
solutions for the following non-autonomous second-order Hamiltonian systems:
ü(t) = ∇F(t,u(t)) a.e. t ∈ [0, T ], u(0) – u(T ) = u̇(0) – u̇(T ) = 0, where T > 0. Some new
existence and multiplicity theorems are obtained by using the least action principle,
and the minimax method in critical point theory, which unify and generalize some of
the recent corresponding results in the literature.
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1 Introduction andmain results
Consider the second-order Hamiltonian systems{

ü(t) =∇F(t,u(t)) a.e. t ∈ [,T],
u() – u(T) = u̇() – u̇(T) = ,

()

where T >  and F : [,T]× RN → R satisfies the following assumption:
(A) F(t,x) is measurable in t for every x ∈ RN and continuously differentiable in x for

a.e. t ∈ [,T], and there exist a ∈ C(R+,R+), b ∈ L(,T ;R+) such that

∣∣F(t,x)∣∣ ≤ a
(|x|)b(t), ∣∣∇F(t,x)

∣∣ ≤ a
(|x|)b(t)

for all x ∈ RN and a.e. t ∈ [,T].
As is well known, a Hamiltonian system is a system of differential equations which can

model themotion of amechanical system. An important and interesting question is under
what conditions the Hamiltonian system can support periodic solutions. During the past
few years, under assumption (A) and some other suitable conditions, such as the coer-
civity condition, the convexity conditions, the sublinear nonlinearity conditions, the sub-
quadratic potential conditions, the superquadratic potential conditions, the periodicity
conditions, and even the type potential condition, and so on, the existence and multiplic-
ity of periodic solutions are obtained for problem () in [–]. Inspired and motivated by
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the results due toWang and Zhang [], Aizmahin and An [], Ye and Tang [], andMa and
Tang [], we obtain some new existence theorems for problem (), which generalize some
results mentioned above.
The following main results are obtained by using the least action principle and by the

minimax methods.

Theorem . Suppose that F(t, s) =G(x) +H(t,x) satisfies assumption (A) and the follow-
ing conditions:
(F) there exist constants C ≥ , C∗ > , and a positive function q ∈ C(R+,R+) with the

properties:
(q) q(s)≤ q(t) +C, ∀s, t ∈ R+ and s ≤ t,
(q) q(s + t) ≤ C∗(q(s) + q(t)), ∀s, t ∈ R+,
(q) tq(t) – Q(t)→ –∞ as t → +∞,
(q) Q(t)/t →  as t → +∞,

where Q(t) =
∫ t
 q(s)ds.Moreover, there exist f ∈ L(,T ;R+) and g ∈ L(,T ;R+) such that

∣∣∇H(t,x)
∣∣ ≤ f (t)q

(|x|) + g(t) ()

for all x ∈ RN and a.e. t ∈ [,T];
(F) there exists a positive function q ∈ C(R+,R+) which satisfies the conditions (q)-(q)

and

lim inf|x|→∞


Q(|x|)
∫ T


F(t,x)dt > ; ()

(F) there exists r < π/T such that

(∇G(x) –∇G(y),x – y
) ≥ –r|x – y| ()

for all x, y ∈ RN .
Then problem () has at least one solution which minimizes the functional ϕ on H

T given
by

ϕ(u) =



∫ T



∣∣u̇(t)∣∣ dt + ∫ T



[
F
(
t,u(t)

)
– F(t, )

]
dt

for u ∈H
T , where

H
T =

{
u : [,T] → RN |u is absolutely continuous,u() = u(T) and u̇ ∈ L

(
,T ;RN)}

is a Hilbert space with the norm defined by

‖u‖ =
(∫ T



∣∣u(t)∣∣ dt + ∫ T



∣∣u̇(t)∣∣ dt)/

for u ∈H
T .
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Remark  Theorem . extends Theorem . in [], in which it is a special case of our The-
orem . corresponding toG(x)≡ . There are functions F(t,x) satisfying the assumptions
of our Theorem . and not satisfying the corresponding assumptions in [–]. For ex-
ample, let

F(t,x) =G(x) +H(t,x)

with G(x) = C(x) – (r/)|x|, which is bounded from below, and

H(t,x) = f (t)
|x|

ln( + |x|) ,

where C(x) is convex in RN (e.g., C(x) = (r/)(|x| + |x| + · · · + |xN |)), r < π/T, f (t) ∈
L(,T ;RN ) and f (t) >  for a.e. t ∈ [,T]. Let

q(t) =
t

ln( + t)
, C = , C∗ = .

Then Q(t) =
∫ t


s
ln(+s) ds, and it is easy to see the (F), (F), and (F) conditions are sat-

isfied. Then by Theorem ., we conclude that problem () has at least one solution which
minimizes the functional ϕ in H

T . We note that F does not satisfy those of the results
given in [–] (e.g., F does not satisfy (S) of Theorem . in [, ], (ii) of Theorem  in
[], () of Theorem  in [] and () of Theorem  in [], . . . ).

Replacing () with the following condition:

lim sup
|x|→∞


Q(|x|)

∫ T


F(t,x)dt < , ()

we then obtain Theorem . by the Saddle Point Theorem (see Theorem . in []).

Theorem . Suppose that F(t, s) = G(x) + H(t,x) satisfies assumption (A), (F), (F),
and (). Assume that there exist M ≥ , N ≥  such that

∣∣∇G(x) –∇G(y)
∣∣ ≤M|x – y| +N ()

for all x, y ∈ RN . The problem () has at least one solution in H
T .

Remark  We note that Theorem . generalizes Theorem . in [], which is the special
case of our Theorem . corresponding to G(x)≡ . There are functions F(t,x) satisfying
the assumptions of our Theorem ., but not satisfying the corresponding assumptions in
[–]. For example, let

F(t,x) =G(x) +H(t,x)

with G(x) = C(x) – (r/)|x|, which is bounded from above, and

H(t,x) =
(


T – t

) |x|
ln( + |x|) +

(
d(t),x

)
,
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where C(x) satisfies the requirement that ∇C(x) is Lipschitz continuous and monotone in
RN (e.g., C(x) = (r/)(x + |x| + · · · + |xN |)), r < π/T and d(t) ∈ L(,T ;RN ). Take

q(t) =
t

ln( + t)
, Q(t) =

∫ t



s
ln( + s)

ds,

then it is easy to see that F satisfies the assumptions of Theorem ., we conclude that
problem () has one solution in H

T . However, the results in [–] cannot be applied.

Theorem . Let the hypotheses of Theorem . be satisfied.Again, assume that there exist
δ > , ε >  and an integer k >  such that

–


(k + )ω|x| ≤ F(t,x) – F(t, ) ()

for all x ∈ RN and a.e. t ∈ [,T], and

F(t,x) – F(t, )≤ –


kω( + ε)|x| ()

for all |x| ≤ δ and a.e. t ∈ [,T],whereω = π
T .Then problem () has at least one non-trivial

solution in H
T .

Theorem . Let the hypotheses of Theorem . be satisfied.Again, assume that there exist
δ >  and an integer k >  such that

–


(k + )ω|x| ≤ F(t,x) – F(t, )≤ –



kω|x| ()

for all |x| ≤ δ and a.e. t ∈ [,T]. Then problem () has at least two non-trivial solutions
in H

T .

2 Preliminaries
For u ∈ H

T , let

ū =

T

∫ T


u(t)dt, ũ(t) = u(t) – ū.

Then one has

‖ũ‖∞ ≤ T


∫ T



∣∣u̇(t)∣∣ dt (Sobolev’s inequality),

and ∫ T



∣∣ũ(t)∣∣ dt ≤ T

π

∫ T



∣∣u̇(t)∣∣ dt (Wirtinger’s inequality),

where ‖ũ‖∞ =maxt∈[,T] |u(t)|.
It follows from assumption (A) that the corresponding function ϕ on H

T given by

ϕ(u) =



∫ T



∣∣u̇(t)∣∣ dt + ∫ T



[
F
(
t,u(t)

)
– F(t, )

]
dt
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is continuously differentiable andweakly lower semi-continuous onH
T (cf. [], pp.-).

Moreover, one has

(
ϕ′(u), v

)
=

∫ T



(
u̇(t), v̇(t)

)
dt +

∫ T



(∇F
(
t,u(t)

)
, v(t)

)
dt

for all u, v ∈H
T . It is well known that the solutions to problem () correspond to the critical

point of ϕ.
In order to prove our main theorems, we need the following lemmas.

Lemma . (Lemma . of []) Suppose that there exists a positive function q which satis-
fies the conditions (q), (q), (q) of (F), then we have the following estimates:
(a)  < q(t)≤ εt +C, ∀ε > , C > , t ∈ R+,
(b) q(t)

Q(t) →  as t → +∞,
(c) Q(t)→ +∞ as t → +∞.

Lemma . (Theorem  of []) Let X be a Banach space with a direct sum decomposition
X = X ⊕ X with dimX < ∞, and let ϕ be a C function on X with ϕ() = , satisfying
(P.S.). Assume that for some R > 

ϕ(u) ≥  for u ∈ X with ‖u‖ ≤ R

and

ϕ(u) ≤  for u ∈ X with ‖u‖ ≤ R.

Again, assume that ϕ is bounded from below and infϕ < .Then ϕ has at least two non-zero
critical points.

3 The proof of main results
For the sake of convenience, we will denote various positive constants as Ci, i = , , , . . . .
Now, we are ready to prove our main result, Theorem ..

Proof of Theorem . It follows from (F), Lemma ., and Sobolev’s inequality that∣∣∣∣∫ T



[
H

(
t,u(t)

)
–H(t, ū)

]
dt

∣∣∣∣
=

∣∣∣∣∫ T



∫ 



(∇H
(
t, ū + sũ(t)

)
, ũ(t)

)
dsdt

∣∣∣∣
≤

∫ T



∫ 


f (t)q

(∣∣ū + sũ(t)
∣∣)∣∣ũ(t)∣∣dsdt + ∫ T



∫ 


g(t)

∣∣ũ(t)∣∣dsdt
≤

∫ T



∫ 


f (t)

[
q
(|ū| + ∣∣ũ(t)∣∣) +C

]∣∣ũ(t)∣∣dsdt + ‖ũ‖∞
∫ T


g(t)dt

≤
∫ T



∫ 


f (t)

[
C∗(q(|ū|) + q

(∣∣ũ(t)∣∣)) +C
]∣∣ũ(t)∣∣dsdt + ‖ũ‖∞

∫ T


g(t)dt

≤ C∗[q(|ū|) + q
(∣∣ũ(t)∣∣)]‖ũ‖∞

∫ T


f (t)dt +C‖ũ‖∞

∫ T


f (t)dt + ‖ũ‖∞

∫ T


g(t)dt
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≤ C∗
[
(π – rT)
πC∗T

‖ũ‖∞ +
πC∗T

(π – rT)
q

(|ū|)(∫ T


f (t)dt

)]
+C∗[q(‖ũ‖∞

)
+C

]‖ũ‖∞
∫ T


f (t)dt +C‖ũ‖∞

∫ T


f (t)dt + ‖ũ‖∞

∫ T


g(t)dt

≤ π – rT

π

∫ T



∣∣u̇(t)∣∣ dt +Cq
(|ū|) +C∗(ε‖ũ‖∞ +C +C

)‖ũ‖∞
∫ T


f (t)dt

+C‖ũ‖∞
∫ T


f (t)dt + ‖ũ‖∞

∫ T


g(t)dt

≤
(
π – rT

π + εC

)∫ T



∣∣u̇(t)∣∣ dt +Cq
(|ū|) +C

(∫ T



∣∣u̇(t)∣∣ dt)/

()

for u ∈ H
T . From (F) and Wirtinger’s inequality we obtain

∫ T



[
G(u(t) –G(ū)

]
dt

=
∫ T



∫ 



(∇G
(
ū + sũ(t)

)
, ũ(t)

)
dsdt

=
∫ T



∫ 



(∇G
(
ū + sũ(t)

)
–∇G(ū), ũ(t)

)
dsdt

=
∫ T



∫ 




s
(∇G

(
ū + sũ(t)

)
–∇G(ū), sũ(t)

)
dsdt

≥
∫ T



∫ 




s
(
–rs

∣∣ũ(t)∣∣)dsdt
≥ –

rT

π

∫ T



∣∣u̇(t)∣∣ dt ()

for u ∈ H
T . Hence we have

ϕ(u) =



∫ T



∣∣u̇(t)∣∣ dt + ∫ T



[
H

(
t,u(t)

)
–H(t, ū)

]
dt

+
∫ T



[
G

(
u(t)

)
–G(ū)

]
dt +

∫ T


F(t, ū)dt –

∫ T


F(t, )dt

≥
(
π – rT

π – εC

)∫ T



∣∣u̇(t)∣∣ dt –C

(∫ T



∣∣u̇(t)∣∣ dt)/

+Q
(|ū|)[ 

Q(|ū|)
∫ T


F(t, ū)dt –C

q(|ū|)
Q(|ū|)

]
–

∫ T


F(t, )dt. ()

Taking into account Lemma . and (F), one has

Q
(|ū|)[ 

Q(|ū|)
∫ T


F(t, ū)dt –C

q(|ū|)
Q(|ū|)

]
→ +∞ ()

as |ū| → +∞.
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As ‖u‖ → +∞ if and only if (|ū| + ∫ T
 |u̇(t)| dt)/ → +∞, for ε small enough, by ()

and () one deduces that

ϕ(u) → +∞ as ‖u‖ → +∞.

Hence, by the least action principle, the problem () has at least one solution which mini-
mizes the functional ϕ in H

T . �

Proof of Theorem . First we prove that ϕ satisfies the (P.S.) condition. Suppose that
{un} ⊂H

T is a (P.S.) sequence of ϕ, that is,

ϕ′(un) →  as n→ ∞

and {ϕ(un)} is bounded. In a way similar to that the proof of Theorem . above, we have∣∣∣∣∫ T



(∇H
(
t,un(t)

)
, ũn(t)

)
dt

∣∣∣∣ ≤
(
π – rT

π + εC

)∫ T



∣∣u̇n(t)∣∣ dt +Cq
(|ūn|)

+C

(∫ T



∣∣u̇n(t)∣∣ dt)/

and ∫ T



(∇G
(
un(t)

)
, ũn(t)

)
dt ≥ –

rT

π

∫ T



∣∣u̇n(t)∣∣ dt
for all n. Hence one has

‖ũn‖ ≥ ∣∣〈ϕ′(un), ũn
〉∣∣

≥
∫ T



∣∣u̇n(t)∣∣ dt + ∫ T



(∇F
(
t,un(t)

)
, ũn(t)

)
dt

≥
∫ T



∣∣u̇n(t)∣∣ dt + ∫ T



(∇G
(
un(t)

)
, ũn(t)

)
dt

–
∣∣∣∣∫ T



(∇H
(
t,un(t)

)
, ũn(t)

)
dt

∣∣∣∣
≥

(
(π – rT)

π – εC

)∫ T



∣∣u̇n(t)∣∣ dt –Cq
(|ūn|)

–C

(∫ T



∣∣u̇n(t)∣∣ dt)/

()

for large n. On the other hand, it follows fromWirtinger’s inequality that

(∫ T



∣∣u̇n(t)∣∣dt)/

≤ ‖ũn‖ ≤
(

T

π + 
)/(∫ T



∣∣u̇n(t)∣∣dt)/

()

for large n. Combining () with (), we obtain

Cq
(|ūn|) ≥

(∫ T



∣∣u̇n(t)∣∣ dt)/

–C ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/411
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for all large n and ε small enough. It follows from (), Cauchy-Schwarz’s inequality, and
Wirtinger’s inequality that∫ T



[
G

(
un(t)

)
–G(ūn)

]
dt

=
∫ T



∫ 



(∇G
(
ūn + s̃un(t)

)
, ũn(t)

)
dsdt

=
∫ T



∫ 




s
(∇G

(
ūn + s̃un(t)

)
–∇G(ūn), sũn(t)

)
dsdt

≤
∫ T



∫ 



(
sM

∣∣ũn(t)∣∣ +N
∣∣ũn(t)∣∣)dsdt

≤ M


∫ T



∣∣ũn(t)∣∣ dt +N
√
T

(∫ T



∣∣ũn(t)∣∣ dt)/

≤ MT

π

∫ T



∣∣u̇n(t)∣∣ dt + NT
√
T

π

(∫ T



∣∣u̇n(t)∣∣ dt)/

()

for all n. By the proof Theorem . we have∣∣∣∣∫ T



[
H

(
t,un(t)

)
–H(t, ūn)

]
dt

∣∣∣∣ ≤
(
π – rT

π + εC

)∫ T



∣∣u̇n(t)∣∣ dt
+Cq

(|ūn|) +C

(∫ T



∣∣u̇n(t)∣∣ dt)/

()

for all n. By (), (), (), Lemma ., and (), one has

ϕ(un) =



∫ T



∣∣u̇n(t)∣∣ dt + ∫ T



[
G

(
un(t)

)
–G(ūn)

]
dt

+
∫ T



[
H

(
t,un(t)

)
–H(t, ūn)

]
dt +

∫ T


F(t, ūn)dt –

∫ T


F(t, )dt

≤
(
π – rT + MT

π + εC

)∫ T



∣∣u̇n(t)∣∣ dt +Cq
(|ūn|)

+
(
C +

NT
√
T

π

)(∫ T



∣∣u̇n(t)∣∣ dt)/

+
∫ T


F(t, ūn)dt –

∫ T


F(t, )dt

≤ C
[
Cq

(|ūn|) +C
] +Cq

(|ūn|) +(
C +

NT
√
T

π

)[
Cq

(|ūn|) +C
]

+
∫ T


F(t, ūn)dt –

∫ T


F(t, )dt

≤ Cq
(|ūn|) +Cq

(|ūn|) +C +
∫ T


F(t, ūn)dt –

∫ T


F(t, )dt

≤ Q
(|ūn|)[C

q(|ūn|)
Q(|ūn|) +C

q(|ūn|)
Q(|ūn|) +


Q(|ūn|)

∫ T


F(t, ūn)dt

]
+C –

∫ T


F(t, )dt

→ –∞

as |ūn| → ∞. This contradicts the boundedness of {ϕ(un)}.
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Thus {ūn} is bounded. Notice () and (a) of Lemma ., {un} is bounded, and by fol-
lowing the same arguments used as Proposition . in [] we conclude that the (P.S.)
condition is satisfied.
We now prove that ϕ satisfies the other conditions of the Saddle Point Theorem. Let H̃

T

be the subspace of H
T given by

H̃
T =

{
u ∈H

T |ū = 
}
.

Then one has

ϕ(u) → +∞ ()

as |u| → ∞ in H̃
T . In fact, by the proof of Theorem . we have

∫ T



[
G

(
u(t)

)
–G()

]
dt ≥ –

rT

π

∫ T



∣∣u̇(t)∣∣ dt
for all u ∈ H̃

T . In addition, by (F), Sobolev’s inequality and Lemma ., we have

∣∣∣∣∫ T



[
H

(
t,u(t)

)
–H(t, )

]
dt

∣∣∣∣
=

∣∣∣∣∫ T



∫ 



(∇H
(
t, su(t)

)
,u(t)

)
dsdt

∣∣∣∣
≤

∫ T


f (t)q

(∣∣su(t)∣∣)∣∣u(t)∣∣dt + ∫ T


g(t)

∣∣u(t)∣∣dt
≤

∫ T


f (t)

[
q
(∣∣u(t)∣∣) +C

]∣∣u(t)∣∣dt + ‖u‖∞
∫ T


g(t)dt

≤ ε‖u‖∞
∫ T


f (t)dt + (C +C)‖u‖∞

∫ T


f (t)dt + ‖u‖∞

∫ T


g(t)dt

≤ εC

∫ T



∣∣u̇(t)∣∣ dt +C

(∫ T



∣∣u̇(t)∣∣ dt)/

.

Hence one has

ϕ(u) =



∫ T



∣∣u̇(t)∣∣ dt + ∫ T



[
G

(
u(t)

)
–G()

]
dt

+
∫ T



[
H

(
t,u(t)

)
–H(t, )

]
dt

≥
(
π – rT

π – εC

)∫ T



∣∣u̇(t)∣∣ dt
–C

(∫ T



∣∣u̇(t)∣∣ dt)/

. ()

By Wirtinger’s inequality, one has ‖u‖ → +∞ if and only if (
∫ T
 |u̇(t)| dt)/ → +∞ on

H̃
T . Hence, for ε small enough, this implies () by () and ().
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On the other hand, by () and Lemma ., we get

ϕ(x) =
∫ T


F(t,x)dt –

∫ T


F(t, )dt → –∞ ()

as |x| → ∞ in RN .
Now, Theorem . is proved by (), (), and the application of the Saddle Point Theo-

rem. �

Proof of Theorem . Let E =H
T ,

Hk =

{ k∑
j=

(aj cos jωt + bj sin jωt)|aj,bj ∈ RN , j = , , . . . ,k

}
()

and

ψ(u) = –ϕ(u) = –



∫ T



∣∣u̇(t)∣∣ dt – ∫ T



[
F(t,x) – F(t, )

]
dt.

Then ψ ∈ C(E,R) satisfies the (P.S.) condition by the proof of Theorem .. In view of
Theorem . and Example . in [] (e.g., the Generalized Mountain Pass Theorem),
we only need to prove that

(ψ) lim inf‖u‖–ψ(u) >  as u→  in Hk ,
(ψ) ψ(u)≤  for all u ∈H⊥

k , and
(ψ) ψ(u) → –∞ as ‖u‖ → ∞ in H⊥

k–.

By (F) and Lemma ., one has

H(t,x) –H(t, ) =
∫ 



(∇H(t, sx),x
)
ds

≤
∫ 



(
f (t)q

(|sx|) + g(t),x
)
ds

≤ f (t)
[
q
(|x|) +C

]|x| + g(t)|x|
≤ f (t)

(
ε|x| +C +C

)|x| + g(t)|x|
= εf (t)|x| + [

(C +C)f (t) + g(t)
]|x| ()

for all |x| ≥ δ and a.e. t ∈ [,T]. From (), it follows that

G(x) –G() =
∫ 



(∇G(sx),x
)
ds

=
∫ 



(∇G(sx) –∇G(),x
)
ds

≤
∫ 



(
sM|x| +N

)|x|ds
≤ M|x| +N |x| ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/411
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for all |x| ≥ δ and a.e. t ∈ [,T]. From () and (), we obtain

F(t,x) – F(t, ) ≤ [
εf (t) +M

]|x| + [
(C +C)f (t) + g(t) +N

]|x|
≤ γ (t)|x|

for all |x| ≥ δ, a.e. t ∈ [,T] and some γ (t) ∈ L(,T ;R+) given by

γ (t) =
[
εf (t) +M

]
δ– +

[
(C +C)f (t) + g(t) +N

]
δ–.

Now, it follows from () that

F(t,x) – F(t, )≤ –


kω( + ε)|x| + γ (t)|x|

for all x ∈ RN and a.e. t ∈ [,T]. Hence, we obtain

ψ(u) ≥ –



∫ T



∣∣u̇(t)∣∣ dt + 

kω( + ε)

∫ T



∣∣u(t)∣∣ dt – ∫ T


γ (t)

∣∣u(t)∣∣
≥ 


ε

∫ T



∣∣u̇(t)∣∣ dt + 

kω( + ε)|ū|T – ‖u‖∞

∫ T


γ (t)dt

≥ C‖u‖ –C‖u‖

for all u ∈Hk . Then (ψ) follows from the above inequality. For u ∈H⊥
k , by (), one has

ψ(u) ≤ –



∫ T



∣∣u̇(t)∣∣ dt + 

kω

∫ T



∣∣u(t)∣∣ dt ≤ ,

which is (ψ). Finally, (ψ) follows from (). Hence the proof of Theorem . is com-
pleted. �

Proof of Theorem . From the proof of Theorem . we know that ϕ is coercive, which
implies that ϕ satisfies the (P.S.) condition. In a manner similar to ones used by the litera-
ture of [, ], we can get the multiplicity results. For convenience of the readers, we give
details.
Let X be the finite-dimensional subspace Hk given by () and let X = X⊥

 . Then by ()
we have

ϕ(u) ≤ 


∫ T



∣∣u̇(t)∣∣ dt – 

kω

∫ T



∣∣u(t)∣∣ dt ≤ 

for all u ∈ X with ‖u‖ ≤ C–
 δ and

ϕ(u) ≥ 


∫ T



∣∣u̇(t)∣∣ dt – 

(k + )ω

∫ T



∣∣u(t)∣∣ dt ≥ 

for all u ∈ X with ‖u‖ ≤ C–
 δ, whereC is the positive constant such that ‖u‖∞ ≤ C‖u‖

for all u ∈H
T .

http://www.journalofinequalitiesandapplications.com/content/2014/1/411
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The case that

∫ T



[
F(t,x) – F(t, )

]
dt < 

for some |x| < δ, implies infϕ < . Now our Theorem . follows from Lemma ..
On the contrary, we have

∫ T



[
F(t,x) – F(t, )

]
dt ≥ 

for all |x| < δ. Then it follows from () that for every given |x| < δ one has

F(t,x) – F(t, ) = 

for a.e. t ∈ [,T]. Let

E(x) =
{
t ∈ [,T]|F(t,x) – F(t, ) �= 

}
.

Then measE(x) =  for all |x| < δ. Given |x| < δ we have

∣∣∣∣x + 
n
em

∣∣∣∣ < δ

for n > 
δ–|x| , where {em| <m <N} is the canonical basis of RN . Thus we obtain

(∇F(t,x), em
)
= lim

n→∞
F(t,x + 

n em) – F(t,x)

n

= 

for all t /∈ (
⋃{E(x + 

n em)|n > 
δ–|x| ,  ≤ m ≤ N} ∪ E(x)), which implies that ∇F(t,x) = 

for a.e. t ∈ [,T], that is, x is a solution to problem (). Hence all |x| < δ are the solutions
to problem (). Therefore, Theorem . is proved. �
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