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Abstract
We establish the L1 stability of local strong solutions for a shallow water equation
which includes the Degasperis-Procesi equation provided that its initial value lies in
the Sobolev space Hs(R) with s > 3

2 . The key element in our analysis is that the L∞
norm of the solutions keeps finite for all finite time t.
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1 Introduction
From the propagation of shallow water waves over a flat bed, Constantin and Lannes []
derived the equation

gt + gx +


ρggx +μ(αgxxx + βgtxx) = ρμ(γ gxgxx + δggxxx), ()

where the constants α, β , γ , δ, ρ and μ satisfy certain restrictions. As illustrated in [],
using suitable mathematical transformations turns Eq. () into the form

gt – gtxx + kgx +mggx = agxgxx + bggxxx, ()

where a, b, k and m are constants. We know that the Camassa-Holm and Degasperis-
Procesi models are special cases of Eq. (). Lai andWu [] established the well-posedness
of local strong solutions and obtained the existence of local weak solutions for Eq. ().
The aim of this paper is to investigate a special case of Eq. (). Namely, we study the

shallow water equation

gt – gtxx + kgx +mggx = gxgxx + ggxxx, ()

where k ≥  and m >  are constants. Letting y = g – ∂
xxg , v = (m – ∂

xx)–g and using Eq.
(), we derive the conservation law

∫
R
yvdx =

∫
R

 + ξ 

m + ξ 

∣∣ĝ(t, ξ )∣∣ dξ =
∫
R

 + ξ 

m + ξ 

∣∣ĝ(ξ )∣∣ dξ ∼ ‖g‖L(R), ()
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where g = g(,x) and ĝ(t, ξ ) is the Fourier transform of g(t,x) with respect to variable x.
In fact, the conservation law () plays an important role in our further investigations of
Eq. ().
Form = , k = , Eq. () reduces to the Degasperis-Procesi equation []

gt – gtxx + ggx = gxgxx + ggxxx. ()

Various dynamic properties for Eq. () have been acquired by many scholars. Escher et
al. [] and Yin [] studied the global weak solutions and blow-up structures for Eq. (),
while the blow-up structure for a generalized periodic Degasperis-Procesi equation was
obtained in []. Lin and Liu [] established the stability of peakons for Eq. () under certain
assumptions on the initial value. For other dynamic properties of the Degasperis-Procesi
() and other shallow water models, the reader is referred to [–] and the references
therein.
The objective of this work is to establish the L(R) stability of local strong solutions for

the generalized Degasperis-Procesi equation () under the condition that we let the initial
value g belong to the space Hs(R) with s > 

 . Here we address that the L stability of
local strong solutions for Eq. () has never been established in the literature. Our main
approaches come from those presented in [].
This paper is organized as follows. Section  gives several lemmas. The main result and

its proof are presented in Section .

2 Several lemmas
The Cauchy problem of Eq. () is written in the form

{
gt – gtxx + kgx +mggx = gxgxx + ggxxx,
g(,x) = g(x),

()

which is equivalent to

{
gt + ggx + k	–gx + m–

 	–(g)x = ,
g(,x) = g(x),

()

where 	–f = 

∫
R e

–|x–y|f dy for any f ∈ L(R) or L∞(R).
Let Qg(t,x) = m–

 	–(g) + k	–g and Jg = ∂x(m–
 	–(g) + k	–g), we have

gt +


(
g

)
x + Jg = . ()

Lemma . For problem () with m > , it holds that

∫
R
yvdx =

∫
R

 + ξ 

m + ξ 

∣∣ĝ(t, ξ )∣∣ dξ =
∫
R

 + ξ 

m + ξ 

∣∣ĝ(ξ )∣∣ dξ ∼ ‖g‖L(R). ()

In addition, there exist two positive constants c and c depending only on m such that

c‖g‖L(R) ≤ c‖g‖L(R) ≤ c‖g‖L(R).
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Proof Letting y = g – ∂
xxg and v = (m– ∂

xx)–g and using Eq. (), we have g =mv– ∂
xxv and

d
dt

∫
R
yvdx =

∫
R
ytvdx +

∫
R
yvt dx = 

∫
R
vyt dx

= 
∫
R

[(
–
m

g

)
x
+ kgx +



∂
xxxg


]
vdx

= 
∫
R

[(
–
m

g

)
x
v + kgxv +



∂xg∂

xxv
]
dx

=
∫
R

[(
–mg

)
xv + kgxv +

(
g

)
x(mv – g)

]
dx

= –
∫
R
g
(
g

)
x dx + k

∫
R
(mvx – vxxx)vdx

= k
∫
R
vxxvx dx

= ,

from which we complete the proof. �

Lemma . ([]) If g ∈Hs(R) with s > 
 , there exist maximal T = T(u) >  and a unique

local strong solution g(t,x) to problem () such that

g(t,x) ∈ C
(
[,T);Hs(R)

)
C([,T);Hs–(R)

)
.

Firstly, we study the differential equation

{
pt = g(t,p), t ∈ [,T),
p(,x) = x.

()

Lemma. Let g ∈Hs(R), s >  and let T >  be themaximal existence time of the solution
to problem (). Then problem () has a unique solution p ∈ C([,T)× R,R). Moreover,
the map p(t, ·) is an increasing diffeomorphism of R with px(t,x) >  for (t,x) ∈ [,T)× R.

Proof FromLemma ., we have g ∈ C([,T);Hs–(R)) andHs–(R) ∈ C(R). Thuswe con-
clude that both functions g(t,x) and gx(t,x) are bounded, Lipschitz in space andC in time.
Using the existence and uniqueness theoremof ordinary differential equations derives that
problem () has a unique solution p ∈ C([,T)× R,R).
Differentiating () with respect to x yields

{
d
dt px = gx(t,p)px, t ∈ [,T),
px(,x) = ,

()

which leads to

px(t,x) = exp

(∫ t


gx

(
τ ,p(τ ,x)

)
dτ

)
. ()
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For every T ′ < T , using the Sobolev embedding theorem yields

sup
(τ ,x)∈[,T ′)×R

∣∣gx(τ ,x)∣∣ < ∞.

It is inferred that there exists a constant K >  such that px(t,x) ≥ e–Kt for (t,x) ∈
[,T)× R. This completes the proof. �

Lemma . Assume g ∈ Hs(R) with s > 
 . Let T be the maximal existence time of the

solution g to Eq. (). Then we have

∥∥g(t,x)∥∥L∞ ≤ c‖g‖L t + ‖g‖L∞ ∀t ∈ [,T], ()

where constant c depends on m, k.

Proof Let Z(x) = 
e

–|x|, we have ( – ∂
x )–f = Z � f for all f ∈ L(R) and g = Z � y(t,x).

Using a simple density argument presented in [], it suffices to consider s =  to prove this
lemma. If T is the maximal existence time of the solution g to Eq. () with the initial value
g ∈H(R) such that g ∈ C([,T),H(R))∩C([,T),H(R)). From (), we obtain

gt + ggx = –(m – )Z � (ggx) – kZ � gx. ()

Since

–Z � (ggx) = –



∫ ∞

–∞
e–|x–y|ggy dy

= –



∫ x

–∞
e–x+yggy dy –




∫ +∞

x
ex–yggy dy

=



∫ x

∞
e–|x–y|g dy –




∫ ∞

x
e–|x–y|g dy ()

and

dg(t,p(t,x))
dt

= gt
(
t,p(t,x)

)
+ gx

(
t,p(t,x)

)dp(t,x)
dt

= (gt + ggx)
(
t,p(t,x)

)
, ()

from (), we have

dg
dt

=
m – 


∫ p(t,x)

–∞
e–|p(t,x)–y|g dy –

m – 


∫ ∞

p(t,x)
e–|p(t,x)–y|g dy – kZ � gx, ()

from which we get

∣∣∣∣dg(t,p(t,x))dt

∣∣∣∣ ≤ |m – |


∫ ∞

–∞
e–|p(t,x)–y|g dy + |kZ � gx|

≤ |m – |


∫ ∞

–∞
g dy + k

∣∣∣∣
∫ ∞

–∞


e–|x–y|gy dy

∣∣∣∣
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≤ |m – |


‖g‖L + k‖g‖L
≤ c‖g‖L(R)
≤ c‖g‖L(R), ()

where c is a positive constant independent of t. Using () results in

–ct‖g‖L(R) + g ≤ g
(
t,p(t,x)

) ≤ ct‖g‖L(R) + g. ()

Therefore,

∣∣g(t,p(t,x))∣∣ ≤ ∥∥g(t,p(t,x))∥∥L∞ ≤ ct‖g‖L(R) + ‖g‖L∞ . ()

Using the Sobolev embedding theorem to ensure the uniform boundedness of gx(s,η) for
(s,η) ∈ [, t] × R with t ∈ [,T ′), from Lemma ., for every t ∈ [,T ′), we get a constant
C(t) such that

e–C(t) ≤ px(t,x)≤ eC(t), x ∈ R.

We deduce from the above equation that the function p(t, ·) is strictly increasing on Rwith
limx→±∞ p(t,x) = ±∞ as long as t ∈ [,T ′). It follows from () that

∥∥g(t,x)∥∥L∞ =
∥∥g(t,p(t,x))∥∥L∞ ≤ ct‖g‖L(R) + ‖g‖L∞ . ()

�

Lemma . Assume g ∈ L(R). Then

‖Qg‖L∞(R+×R),‖Jg‖L∞(R+×R) ≤ c‖g‖L , ()

where c is a constant independent of t.

Proof Using (), we get

Qg(t,x) =
m – 


∫
R
e–|x–y|g(t, y)dy +

k


∫
R
e–|x–y|g dy, ()

Jg(t,x) =
m – 


∫
R
e–|x–y| sign(y – x)g(t, y)dy

+
k


∫
R
e–|x–y| sign(y – x)g(t, y)dy. ()

It follows from ()-() and Lemma . that () holds. �

Lemma . Assume that g(t,x) and g(t,x) are two local strong solutions of equation ()
with initial data g, g ∈Hs(R), s > 

 , respectively. Then, for any f (t,x) ∈ C∞
 ([,∞)×R),

it holds that∫ ∞

–∞

∣∣Jg (t,x) – Jg (t,x)
∣∣∣∣f (t,x)∣∣dx≤ c( + t)

∫ ∞

–∞
|g – g|dx, ()

where c >  depends on t, f , ‖g‖L(R), ‖g‖L(R), ‖g‖L∞(R) and ‖g‖L∞(R).
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Proof We have

∫ ∞

–∞

∣∣Jg (t,x) – Jg (t,x)
∣∣∣∣f (t,x)∣∣dx

≤ |m – |


∫ ∞

–∞

∣∣∂x	–(g – g
)∣∣∣∣f (t,x)∣∣dx

+
k


∫ ∞

–∞

∫ ∞

–∞
e–|x–y|∣∣sign(x – y)

∣∣|g – g|
∣∣f (t,x)∣∣dydx

=
|m – |



∣∣∣∣
∫ ∞

–∞

∫ ∞

–∞
e–|x–y|∣∣sign(x – y)

∣∣∣∣g – g
∣∣dy∣∣f (t,x)∣∣dx∣∣∣∣

+ c
∫ ∞

–∞
|g – g|dy

∫ ∞

–∞
e–|x–y|∣∣f (t,x)∣∣dx

≤ |m – |


∫ ∞

–∞

∣∣(g – g)(g + g)
∣∣dy∣∣∣∣

∫ ∞

–∞
e–|x–y|∣∣f (t,x)∣∣dx∣∣∣∣

+ c
∫ ∞

–∞
|g – g|dy

≤ c( + t)
∫ ∞

–∞
|g – g|dy,

in which we have used the Tonelli theorem and Lemma .. The proof is completed. �

We define δ(σ ) to be a function which is infinitely differentiable on (–∞, +∞) such that
δ(σ ) ≥ , δ(σ ) =  for |σ | ≥  and

∫ ∞
–∞ δ(σ )dσ = . For any number h > , we let δh(σ ) =

δ(h–σ )
h . Then we know that δh(σ ) is a function in C∞(–∞,∞) and

{
δh(σ )≥ , δh(σ ) =  if |σ | ≥ h,
|δh(σ )| ≤ c

h ,
∫ ∞
–∞ δh(σ ) = .

()

Assume that the function u(x) is locally integrable in (–∞,∞). We define an approxima-
tion function of u as

uh(x) =

h

∫ ∞

–∞
δ

(
x – y
h

)
u(y)dy, h > . ()

We call x a Lebesgue point of the function u(x) if

lim
h→


h

∫
|x–x|≤h

∣∣u(x) – u(x)
∣∣dx = .

At any Lebesgue points x of the function u(x), we have limh→ uh(x) = u(x). Since the
set of points which are not Lebesgue points of u(x) has measure zero, we get uh(x)→ u(x)
as h→  almost everywhere.
We introduce notation connected with the concept of a characteristic cone. For any

R > , we define N > maxt∈[,T] ‖g‖L∞ < ∞. Let � designate the cone {(t,x) : |x| < R –
Nt,  ≤ t ≤ T = min(T ,RN–)}. We let Sτ designate the cross section of the cone � by
the plane t = τ , τ ∈ [,T].

http://www.journalofinequalitiesandapplications.com/content/2014/1/410
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LetKr+ρ = {x : |x| ≤ r+ρ}, where r > , ρ >  and πT = [,T]×R for an arbitrary T > .
The space of all infinitely differentiable functions f (t,x) with compact support in [,T]×R
is denoted by C∞

 (πT ).

Lemma . ([]) Let the function u(t,x) be bounded and measurable in cylinder �T =
[,T]×Kr . If for ρ ∈ (,min[r,T]) and any number h ∈ (,ρ), then the function

Vh =

h

∫∫∫∫
| t–τ

 |≤h,ρ≤ t+τ
 ≤T–ρ,| x–y |≤h,| x+y |≤r–ρ

∣∣u(t,x) – u(τ , y)
∣∣dxdt dydτ

satisfies limh→Vh = .

Lemma . ([]) Let | ∂G(u)
∂u | be bounded. Then the function

H(u, v) = sign(u – v)
(
G(u) –G(v)

)
satisfies the Lipschitz condition in u and v, respectively.

Lemma . Let g be the strong solution of problem (), f (t,x) ∈ C∞
 (πT ) and f (,x) = .

Then
∫∫

πT

{
|g – k|ft + sign(g – k)



[
g – k

]
fx – sign(g – k)Jg(t,x)f

}
dxdt = , ()

where k is an arbitrary constant.

Proof Let �(g) be an arbitrary twice smooth function on the line –∞ < g < ∞. We mul-
tiply the first equation of problem () by the function �′(g)f (t,x), where f (t,x) ∈ C∞

 (πT ).
Integrating over πT and transferring the derivatives with respect to t and x to the test
function f , for any constant k, we obtain

∫∫
πT

{
�(g)ft +

[∫ g

k
�′(z)z dz

]
fx –�′(g)Jg(t,x)f

}
dxdt = , ()

in which we have used
∫ ∞
–∞[

∫ g
k �′(z)z dz]fx dx = –

∫ ∞
–∞[f�′(g)ggx]dx.

Integration by parts yields

∫ ∞

–∞

[∫ g

k
�′(z)z dz

]
fx dx =

∫ ∞

–∞

[


(
g – k

)
�′(g)

–



∫ g

k

(
z – k

)
�′′(z)dz

]
fx dx. ()

Let �h(g) be an approximation of the function |g – k| and set �(g) = �h(g). Using the
properties of sign(g – k), (), () and sending h→ , we have

∫∫
πT

{
|g – k|ft + sign(g – k)



[
g – k

]
fx – sign(g – k)Jg(t,x)f

}
dxdt = , ()

which completes the proof. �
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In fact, the proof of () can also be found in [].
For g ∈ Hs(R) and g ∈ Hs(R) with s > 

 , using Lemma ., we know that there exists
T >  such that two local strong solutions g(t,x) and g(t,x) of Eq. () satisfy

g(t,x), g(t,x) ∈ C
(
[,T);Hs(R)

)
C([,T);Hs–(R)

)
, t ∈ [,T). ()

3 Main result
Now, we give the main result of this work.

Theorem . Assume that g and g are two local strong solutions of Eq. () with initial
data g, g ∈ L(R)∩Hs(R), s > 

 . For T >  in (), it holds that

∥∥g(t, ·) – g(t, ·)
∥∥
L(R) ≤ cect

∫ ∞

–∞

∣∣g(x) – g(x)
∣∣dx, t ∈ [,T], ()

where c depends on ‖g‖L∞(R), ‖g‖L∞(R), ‖g‖L(R), ‖g‖L(R) and T .

Proof For arbitraryT >  and f (t,x) ∈ C∞
 (πT ), we assume that f (t,x) =  outside the cylin-

der

� =
{
(t,x)

}
= [ρ,T – ρ]×Kr–ρ ,  < ρ ≤min(T , r). ()

We set

η = f
(
t + τ


,
x + y


)
δh

(
t – τ



)
δh

(
x – y


)
= f (· · · )λh(∗), ()

where (· · · ) = ( t+τ
 , x+y ) and (∗) = ( t–τ

 , x–y ). The function δh(σ ) is defined in (). Note that

ηt + ητ = ft(· · · )λh(∗), ηx + ηy = fx(· · · )λh(∗). ()

Using the Kruzkov device of doubling the variables [] and Lemma ., we have

∫∫∫∫
πT×πT

{∣∣g(t,x) – g(τ , y)
∣∣ηt

+ sign
(
g(t,x) – g(τ , y)

)(g (t,x)


–
g (τ , y)



)
ηx

– sign
(
g(t,x) – g(τ , y)

)
Jg (t,x)η

}
dxdt dydτ = . ()

Similarly, we have

∫∫∫∫
πT×πT

{∣∣g(τ , y) – g(t,x)
∣∣ητ

+ sign
(
g(τ , y) – g(t,x)

)(g (τ , y)


–
g (t,x)



)
ηy

– sign
(
g(τ , y) – g(t,x)

)
Jg (τ , y)η

}
dxdt dydτ = , ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/410
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from which we obtain

 ≤
∫∫∫∫

πT×πT

{∣∣g(t,x) – g(τ , y)
∣∣(ηt + ητ )

+ sign
(
g(t,x) – g(τ , y)

)(g (t,x)


–
g (τ , y)



)
(ηx + ηy)

}
dxdt dydτ

+
∣∣∣∣
∫∫∫∫

πT×πT

sign
(
g(t,x) – g(t,x)

)(
Jg (t,x) – Jg (τ , y)

)
ηdxdt dydτ

∣∣∣∣
= I + I +

∣∣∣∣
∫∫∫∫

πT×πT

I dxdt dydτ

∣∣∣∣. ()

We will show that

 ≤
∫∫

πT

{∣∣g(t,x) – g(t,x)
∣∣ft

+ sign
(
g(t,x) – g(t,x)

)(g (t,x)


–
g (t,x)



)
fx
}
dxdt

+
∣∣∣∣
∫∫

πT

sign
(
g(t,x) – g(t,x)

)[
Jg (t,x) – Jg (t,x)

]
f dxdt

∣∣∣∣. ()

In fact, the first two terms in the integrand of () can be represented in the form

Ah = A
(
t,x, τ , y, g(t,x), g(τ , y)

)
λh(∗).

From Lemma . and the assumptions on solutions g, g, we have ‖g‖L∞ < CT and
‖g‖L∞ < CT . From Lemma ., we know that Ah satisfies the Lipschitz condition in g
and g, respectively. By the choice of η, we have Ah =  outside the region

{
(t,x; τ , y)

}
=

{
ρ ≤ t + τ


≤ T – ρ,

|t – τ |


≤ h,
|x + y|


≤ r – ρ,
|x – y|


≤ h
}

()

and
∫∫∫∫

πT×πT

Ah dxdt dydτ =
∫∫∫∫

πT×πT

[
A

(
t,x, τ , y, g(t,x), g(τ , y)

)
–A

(
t,x, t,x, g(t,x), g(t,x)

)]
λh(∗)dxdt dydτ

+
∫∫∫∫

πT×πT

A
(
t,x, t,x, g(t,x), g(t,x)

)
λh(∗)dxdt dydτ

= K(h) +K. ()

Considering the estimate |λ(∗)| ≤ c
h and the expression of function Ah, we have

∣∣K(h)
∣∣ ≤ c

[
h +


h

×
∫∫∫∫

| t–τ
 |≤h,ρ≤ t+τ

 ≤T–ρ,| x–y |≤h,| x+y |≤r–ρ

|g(t,x) – g(τ , y)|dxdt dydτ

]
,

()

http://www.journalofinequalitiesandapplications.com/content/2014/1/410
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where the constant c does not depend on h. Using Lemma ., we obtain K(h) →  as
h → . The integral K does not depend on h. In fact, substituting t = α, t–τ

 = β , x = ζ ,
x–y
 = ξ and noting that

∫ h

–h

∫ ∞

–∞
λh(β , ξ )dξ dβ = , ()

we have

K = 
∫∫

πT

Ah
(
α, ζ ,α, ζ , g(α, ζ ), g(α, ζ )

){∫ h

–h

∫ ∞

–∞
λh(β , ξ )dξ dβ

}
dζ dα

= 
∫∫

πT

A
(
t,x, t,x, g(t,x), g(t,x)

)
dxdt. ()

Hence

lim
h→

∫∫∫∫
πT×πT

Ah dxdt dydτ = 
∫∫

πT

A
(
t,x, t,x, g(t,x), g(t,x)

)
dxdt. ()

Since

I = sign
(
g(t,x) – g(τ , y)

)(
Jg (t,x) – Jg (τ , y)

)
f λh(∗) = I(t,x, τ , y)λh(∗) ()

and ∫∫∫∫
πT×πT

I dxdt dydτ

=
∫∫∫∫

πT×πT

[
I(t,x, τ , y) – I(t,x, t,x)

]
λh(∗)dxdt dydτ

+
∫∫∫∫

πT×πT

I(t,x, t,x)λh(∗)dxdt dydτ = K(h) +K, ()

we obtain

∣∣K(h)
∣∣ ≤ c

(
h +


h

×
∫∫∫∫

| t–τ
 |≤h,ρ≤ t+τ

 ≤T–ρ,| x–y |≤h,| x+y |≤r–ρ

∣∣Jg (t,x) – Jg (τ , y)
∣∣dxdt dydτ

)
.

()

Using Lemma ., we have K(h)→  as h→ . Using (), we have

K = 
∫∫

πT

I
(
α, ζ ,α, ζ , g(α, ζ ), g(α, ζ )

){∫ h

–h
λh(β , ξ )dξ dβ

}
dζ dα

= 
∫∫

πT

I
(
t,x, t,x, g(t,x), g(t,x)

)
dxdt

= 
∫∫

πT

sign
(
g(t,x) – g(t,x)

)(
Jg (t,x) – Jg (t,x)

)
f (t,x)dxdt. ()

From (), (), (), () and (), we prove that inequality () holds.
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Let

μ(t) =
∫ ∞

–∞

∣∣g(t,x) – g(t,x)
∣∣dx. ()

We define

θh =
∫ σ

–∞
δh(σ )dσ

(
θ ′
h(σ ) = δh(σ )≥ 

)
()

and choose two numbers ρ and τ ∈ (,T), ρ < τ . In (), we choose

f =
[
θh(t – ρ) – θh(t – τ )

]
χ (t,x), h <min(ρ,T – τ ), ()

where

χ (t,x) = χε(t,x) =  – θε

(|x| +Nt – R + ε
)
, ε > . ()

We note that the function χ (t,x) =  outside the cone � and f (t,x) =  outside the set �.
For (t,x) ∈�, we have the relations

 = χt +N |χx| ≥ χt +Nχx. ()

Applying ()-() and (), we have the inequality

 ≤
∫∫

πT

{[
δh(t – ρ) – δh(t – τ )

]
χε

∣∣g(t,x) – g(t,x)
∣∣}dxdt

+
∫ T



∫ ∞

–∞

[
θh(t – ρ) – θh(t – τ )

]∣∣[Jg (t,x) – Jg (t,x)
]
χ (t,x)

∣∣dxdt. ()

Using Lemma . and letting ε →  and R → ∞, we obtain

 ≤
∫ T



{[
δh(t – ρ) – δh(t – τ )

] ∫ ∞

–∞

∣∣g(t,x) – g(t,x)
∣∣dx}dt

+ c( + T)
∫ T



[
θh(t – ρ) – θh(t – τ )

] ∫ ∞

–∞

∣∣g(t,x) – g(t,x)
∣∣dxdt. ()

By the properties of the function δh(σ ) for h≤min(ρ,T – ρ), we have

∣∣∣∣
∫ T


δh(t – ρ)μ(t)dt –μ(ρ)

∣∣∣∣ =
∣∣∣∣
∫ T


δh(t – ρ)

∣∣μ(t) –μ(ρ)
∣∣dt∣∣∣∣

≤ c

h

∫ ρ+h

ρ–h

∣∣μ(t) –μ(ρ)
∣∣dt →  as h→ , ()

where c is independent of h. Letting

L(ρ) =
∫ T


θh(t – ρ)μ(t)dt =

∫ T



∫ t–ρ

–∞
δh(σ )dσμ(t)dt, ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/410
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we get

L′(ρ) = –
∫ T


δh(t – ρ)μ(t)dt → –μ(ρ), as h→ , ()

from which we obtain

L(ρ)→ L() –
∫ ρ


μ(σ )dσ as h→ . ()

Similarly, we have

L(τ )→ L() –
∫ τ


μ(σ )dσ as h→ . ()

It follows from () and () that

L(ρ) – L(τ )→
∫ τ

ρ

μ(σ )dσ as h→ . ()

Send ρ → , τ → t, and note that

∣∣g(ρ,x) – g(ρ,x)
∣∣ ≤ ∣∣g(ρ,x) – g(x)

∣∣
+

∣∣g(ρ,x) – g(x)
∣∣ + ∣∣g(x) – g(x)

∣∣. ()

Thus, from (), (), ()-(), we have

∫ ∞

–∞

∣∣g(t,x) – g(t,x)
∣∣dx ≤

∫ ∞

–∞
|g – g|dx

+ c( + T)
∫ t



∫ ∞

–∞

∣∣g(t,x) – g(t,x)
∣∣dxdt, ()

from which we complete the proof by using the Gronwall inequality. �
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