RESEARCH

Open Access

The stability of local strong solutions for a shallow water equation

Shaoyong Lai^{*}, Haibo Yan, Hongjing Chen and Yang Wang

*Correspondence: Laishaoy@swufe.edu.cn Department of Mathematics, Southwestern University of Finance and Economics, Chengdu, 611130, China

Abstract

We establish the L^1 stability of local strong solutions for a shallow water equation which includes the Degasperis-Procesi equation provided that its initial value lies in the Sobolev space $H^s(R)$ with $s > \frac{3}{2}$. The key element in our analysis is that the L^∞ norm of the solutions keeps finite for all finite time *t*. **MSC:** 35G25; 35L05

Keywords: L¹ stability; strong solutions; shallow water equation

1 Introduction

From the propagation of shallow water waves over a flat bed, Constantin and Lannes [1] derived the equation

$$g_t + g_x + \frac{3}{2}\rho gg_x + \mu(\alpha g_{xxx} + \beta g_{txx}) = \rho \mu(\gamma g_x g_{xx} + \delta gg_{xxx}), \tag{1}$$

where the constants α , β , γ , δ , ρ and μ satisfy certain restrictions. As illustrated in [1], using suitable mathematical transformations turns Eq. (1) into the form

$$g_t - g_{txx} + kg_x + mgg_x = ag_xg_{xx} + bgg_{xxx},$$
(2)

where a, b, k and m are constants. We know that the Camassa-Holm and Degasperis-Procesi models are special cases of Eq. (2). Lai and Wu [2] established the well-posedness of local strong solutions and obtained the existence of local weak solutions for Eq. (2).

The aim of this paper is to investigate a special case of Eq. (2). Namely, we study the shallow water equation

$$g_t - g_{txx} + kg_x + mgg_x = 3g_xg_{xx} + gg_{xxx},\tag{3}$$

where $k \ge 0$ and m > 0 are constants. Letting $y = g - \partial_{xx}^2 g$, $v = (m - \partial_{xx}^2)^{-1}g$ and using Eq. (3), we derive the conservation law

$$\int_{R} yv \, dx = \int_{R} \frac{1+\xi^2}{m+\xi^2} \left| \hat{g}(t,\xi) \right|^2 d\xi = \int_{R} \frac{1+\xi^2}{m+\xi^2} \left| \hat{g}_0(\xi) \right|^2 d\xi \sim \|g_0\|_{L^2(R)},\tag{4}$$

©2014 Lai et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

where $g_0 = g(0, x)$ and $\hat{g}(t, \xi)$ is the Fourier transform of g(t, x) with respect to variable x. In fact, the conservation law (4) plays an important role in our further investigations of Eq. (3).

For m = 4, k = 0, Eq. (3) reduces to the Degasperis-Procesi equation [3]

$$g_t - g_{txx} + 4gg_x = 3g_x g_{xx} + gg_{xxx}.$$
 (5)

Various dynamic properties for Eq. (5) have been acquired by many scholars. Escher *et al.* [4] and Yin [5] studied the global weak solutions and blow-up structures for Eq. (5), while the blow-up structure for a generalized periodic Degasperis-Procesi equation was obtained in [6]. Lin and Liu [7] established the stability of peakons for Eq. (5) under certain assumptions on the initial value. For other dynamic properties of the Degasperis-Procesi (5) and other shallow water models, the reader is referred to [8–19] and the references therein.

The objective of this work is to establish the $L^1(R)$ stability of local strong solutions for the generalized Degasperis-Procesi equation (3) under the condition that we let the initial value g_0 belong to the space $H^s(R)$ with $s > \frac{3}{2}$. Here we address that the L^1 stability of local strong solutions for Eq. (3) has never been established in the literature. Our main approaches come from those presented in [20].

This paper is organized as follows. Section 2 gives several lemmas. The main result and its proof are presented in Section 3.

2 Several lemmas

The Cauchy problem of Eq. (3) is written in the form

$$\begin{cases} g_t - g_{txx} + kg_x + mgg_x = 3g_xg_{xx} + gg_{xxx}, \\ g(0, x) = g_0(x), \end{cases}$$
(6)

which is equivalent to

$$\begin{cases} g_t + gg_x + k\Lambda^{-2}g_x + \frac{m-1}{2}\Lambda^{-2}(g^2)_x = 0, \\ g(0,x) = g_0(x), \end{cases}$$
(7)

where $\Lambda^{-2}f = \frac{1}{2}\int_{R} e^{-|x-y|}f \,dy$ for any $f \in L^2(R)$ or $L^{\infty}(R)$. Let $Q_g(t,x) = \frac{m-1}{2}\Lambda^{-2}(g^2) + k\Lambda^{-2}g$ and $J_g = \partial_x(\frac{m-1}{2}\Lambda^{-2}(g^2) + k\Lambda^{-2}g)$, we have

$$g_t + \frac{1}{2} (g^2)_x + J_g = 0.$$
(8)

Lemma 2.1 For problem (6) with m > 0, it holds that

$$\int_{R} y \nu \, dx = \int_{R} \frac{1+\xi^2}{m+\xi^2} \left| \hat{g}(t,\xi) \right|^2 d\xi = \int_{R} \frac{1+\xi^2}{m+\xi^2} \left| \hat{g}_0(\xi) \right|^2 d\xi \sim \|g_0\|_{L^2(R)}. \tag{9}$$

In addition, there exist two positive constants c_1 and c_2 depending only on m such that

 $c_1 \|g_0\|_{L^2(R)} \le c_1 \|g\|_{L^2(R)} \le c_2 \|g_0\|_{L^2(R)}.$

Proof Letting $y = g - \partial_{xx}^2 g$ and $v = (m - \partial_{xx}^2)^{-1} g$ and using Eq. (3), we have $g = mv - \partial_{xx}^2 v$ and

$$\begin{aligned} \frac{d}{dt} \int_{R} yv \, dx &= \int_{R} y_t v \, dx + \int_{R} yv_t \, dx = 2 \int_{R} vy_t \, dx \\ &= 2 \int_{R} \left[\left(-\frac{m}{2} g^2 \right)_x + kg_x + \frac{1}{2} \partial_{xxx}^3 g^2 \right] v \, dx \\ &= 2 \int_{R} \left[\left(-\frac{m}{2} g^2 \right)_x v + kg_x v + \frac{1}{2} \partial_x g^2 \partial_{xx}^2 v \right] dx \\ &= \int_{R} \left[\left(-mg^2 \right)_x v + kg_x v + \left(g^2 \right)_x (mv - g) \right] dx \\ &= -\int_{R} g(g^2)_x \, dx + k \int_{R} (mv_x - v_{xxx}) v \, dx \\ &= k \int_{R} v_{xx} v_x \, dx \\ &= 0. \end{aligned}$$

from which we complete the proof.

Lemma 2.2 ([2]) If $g_0 \in H^s(R)$ with $s > \frac{3}{2}$, there exist maximal $T = T(u_0) > 0$ and a unique local strong solution g(t, x) to problem (6) such that

$$g(t,x) \in C([0,T); H^{s}(R))C^{1}([0,T); H^{s-1}(R)).$$

Firstly, we study the differential equation

$$\begin{cases} p_t = g(t, p), & t \in [0, T), \\ p(0, x) = x. \end{cases}$$
(10)

Lemma 2.3 Let $g_0 \in H^s(R)$, s > 3 and let T > 0 be the maximal existence time of the solution to problem (10). Then problem (10) has a unique solution $p \in C^1([0, T) \times R, R)$. Moreover, the map $p(t, \cdot)$ is an increasing diffeomorphism of R with $p_x(t,x) > 0$ for $(t,x) \in [0, T) \times R$.

Proof From Lemma 2.2, we have $g \in C^1([0, T); H^{s-1}(R))$ and $H^{s-1}(R) \in C^1(R)$. Thus we conclude that both functions g(t, x) and $g_x(t, x)$ are bounded, Lipschitz in space and C^1 in time. Using the existence and uniqueness theorem of ordinary differential equations derives that problem (10) has a unique solution $p \in C^1([0, T) \times R, R)$.

Differentiating (10) with respect to x yields

$$\begin{cases} \frac{d}{dt}p_x = g_x(t,p)p_x, & t \in [0,T), \\ p_x(0,x) = 1, \end{cases}$$
(11)

which leads to

$$p_x(t,x) = \exp\left(\int_0^t g_x(\tau, p(\tau, x)) \, d\tau\right). \tag{12}$$

For every T' < T, using the Sobolev embedding theorem yields

$$\sup_{(\tau,x)\in[0,T')\times R} |g_x(\tau,x)| < \infty.$$

It is inferred that there exists a constant $K_0 > 0$ such that $p_x(t,x) \ge e^{-K_0 t}$ for $(t,x) \in [0,T) \times R$. This completes the proof.

Lemma 2.4 Assume $g_0 \in H^s(R)$ with $s > \frac{3}{2}$. Let T be the maximal existence time of the solution g to Eq. (3). Then we have

$$\left\|g(t,x)\right\|_{L^{\infty}} \le c_0 \left\|g_0\right\|_{L^2}^2 t + \left\|g_0\right\|_{L^{\infty}} \quad \forall t \in [0,T],$$
(13)

where constant c_0 depends on m, k.

Proof Let $Z(x) = \frac{1}{2}e^{-|x|}$, we have $(1 - \partial_x^2)^{-1}f = Z \star f$ for all $f \in L^2(R)$ and $g = Z \star y(t, x)$. Using a simple density argument presented in [6], it suffices to consider s = 3 to prove this lemma. If T is the maximal existence time of the solution g to Eq. (3) with the initial value $g_0 \in H^3(R)$ such that $g \in C([0, T), H^3(R)) \cap C^1([0, T), H^2(R))$. From (7), we obtain

$$g_t + gg_x = -(m-1)Z \star (gg_x) - kZ \star g_x. \tag{14}$$

Since

$$-Z \star (gg_x) = -\frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} gg_y \, dy$$

= $-\frac{1}{2} \int_{-\infty}^{x} e^{-x+y} gg_y \, dy - \frac{1}{2} \int_{x}^{+\infty} e^{x-y} gg_y \, dy$
= $\frac{1}{4} \int_{\infty}^{x} e^{-|x-y|} g^2 \, dy - \frac{1}{4} \int_{x}^{\infty} e^{-|x-y|} g^2 \, dy$ (15)

and

$$\frac{dg(t, p(t, x))}{dt} = g_t(t, p(t, x)) + g_x(t, p(t, x)) \frac{dp(t, x)}{dt}$$
$$= (g_t + gg_x)(t, p(t, x)),$$
(16)

from (16), we have

$$\frac{dg}{dt} = \frac{m-1}{4} \int_{-\infty}^{p(t,x)} e^{-|p(t,x)-y|} g^2 \, dy - \frac{m-1}{4} \int_{p(t,x)}^{\infty} e^{-|p(t,x)-y|} g^2 \, dy - kZ \star g_x, \tag{17}$$

from which we get

$$\left|\frac{dg(t, p(t, x))}{dt}\right| \le \frac{|m-1|}{4} \int_{-\infty}^{\infty} e^{-|p(t, x)-y|} g^2 \, dy + |kZ \star g_x|$$
$$\le \frac{|m-1|}{4} \int_{-\infty}^{\infty} g^2 \, dy + k \left| \int_{-\infty}^{\infty} \frac{1}{2} e^{-|x-y|} g_y \, dy \right|$$

where c is a positive constant independent of t. Using (18) results in

$$-ct\|g_0\|_{L^2(\mathbb{R})} + g_0 \le g(t, p(t, x)) \le ct\|g_0\|_{L^2(\mathbb{R})} + g_0.$$
⁽¹⁹⁾

Therefore,

$$\left|g(t,p(t,x))\right| \le \left\|g(t,p(t,x))\right\|_{L^{\infty}} \le ct \|g_0\|_{L^2(\mathbb{R})} + \|g_0\|_{L^{\infty}}.$$
(20)

Using the Sobolev embedding theorem to ensure the uniform boundedness of $g_x(s, \eta)$ for $(s, \eta) \in [0, t] \times R$ with $t \in [0, T')$, from Lemma 2.3, for every $t \in [0, T')$, we get a constant C(t) such that

 $e^{-C(t)} \leq p_x(t,x) \leq e^{C(t)}, \quad x \in R.$

We deduce from the above equation that the function $p(t, \cdot)$ is strictly increasing on R with $\lim_{x\to\pm\infty} p(t,x) = \pm\infty$ as long as $t \in [0, T')$. It follows from (20) that

$$\left\|g(t,x)\right\|_{L^{\infty}} = \left\|g(t,p(t,x))\right\|_{L^{\infty}} \le ct \|g_0\|_{L^2(\mathbb{R})} + \|g_0\|_{L^{\infty}}.$$
(21)

Lemma 2.5 Assume $g_0 \in L^2(R)$. Then

$$\|Q_g\|_{L^{\infty}(R_+\times R)}, \|J_g\|_{L^{\infty}(R_+\times R)} \le c_0 \|g_0\|_{L^2}^2,$$
(22)

where c_0 is a constant independent of t.

Proof Using (7), we get

$$Q_g(t,x) = \frac{m-1}{4} \int_R e^{-|x-y|} g^2(t,y) \, dy + \frac{k}{2} \int_R e^{-|x-y|} g \, dy, \tag{23}$$

$$J_g(t,x) = \frac{m-1}{4} \int_R e^{-|x-y|} \operatorname{sign}(y-x) g^2(t,y) \, dy + \frac{k}{2} \int_R e^{-|x-y|} \operatorname{sign}(y-x) g(t,y) \, dy.$$
(24)

It follows from (23)-(24) and Lemma 2.1 that (22) holds.

Lemma 2.6 Assume that $g_1(t,x)$ and $g_2(t,x)$ are two local strong solutions of equation (3) with initial data $g_{10}, g_{20} \in H^s(R)$, $s > \frac{3}{2}$, respectively. Then, for any $f(t,x) \in C_0^{\infty}([0,\infty) \times R)$, it holds that

$$\int_{-\infty}^{\infty} \left| J_{g_1}(t,x) - J_{g_2}(t,x) \right| \left| f(t,x) \right| dx \le c_0(1+t) \int_{-\infty}^{\infty} |g_1 - g_2| \, dx, \tag{25}$$

where $c_0 > 0$ depends on t, f, $\|g_{10}\|_{L^2(R)}$, $\|g_{20}\|_{L^2(R)}$, $\|g_{10}\|_{L^{\infty}(R)}$ and $\|g_{20}\|_{L^{\infty}(R)}$.

Proof We have

$$\begin{split} &\int_{-\infty}^{\infty} \left| J_{g_1}(t,x) - J_{g_2}(t,x) \right| \left| f(t,x) \right| dx \\ &\leq \frac{|m-1|}{2} \int_{-\infty}^{\infty} \left| \partial_x \Lambda^{-2} (g_1^2 - g_2^2) \right| \left| f(t,x) \right| dx \\ &\quad + \frac{k}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-|x-y|} \left| \operatorname{sign}(x-y) \right| \left| g_1 - g_2 \right| \left| f(t,x) \right| dy dx \\ &= \frac{|m-1|}{4} \left| \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-|x-y|} \left| \operatorname{sign}(x-y) \right| \left| g_1^2 - g_2^2 \right| dy \left| f(t,x) \right| dx \right| \\ &\quad + c_0 \int_{-\infty}^{\infty} \left| g_1 - g_2 \right| dy \int_{-\infty}^{\infty} e^{-|x-y|} \left| f(t,x) \right| dx \\ &\leq \frac{|m-1|}{4} \int_{-\infty}^{\infty} \left| (g_1 - g_2) (g_1 + g_2) \right| dy \left| \int_{-\infty}^{\infty} e^{-|x-y|} \left| f(t,x) \right| dx \right| \\ &\quad + c_0 \int_{-\infty}^{\infty} \left| g_1 - g_2 \right| dy \\ &\leq c_0 (1+t) \int_{-\infty}^{\infty} \left| g_1 - g_2 \right| dy, \end{split}$$

in which we have used the Tonelli theorem and Lemma 2.4. The proof is completed. $\hfill\square$

We define $\delta(\sigma)$ to be a function which is infinitely differentiable on $(-\infty, +\infty)$ such that $\delta(\sigma) \ge 0$, $\delta(\sigma) = 0$ for $|\sigma| \ge 1$ and $\int_{-\infty}^{\infty} \delta(\sigma) d\sigma = 1$. For any number h > 0, we let $\delta_h(\sigma) = \frac{\delta(h^{-1}\sigma)}{h}$. Then we know that $\delta_h(\sigma)$ is a function in $C^{\infty}(-\infty, \infty)$ and

$$\begin{cases} \delta_h(\sigma) \ge 0, & \delta_h(\sigma) = 0 \quad \text{if } |\sigma| \ge h, \\ |\delta_h(\sigma)| \le \frac{c}{h}, & \int_{-\infty}^{\infty} \delta_h(\sigma) = 1. \end{cases}$$
(26)

Assume that the function u(x) is locally integrable in $(-\infty, \infty)$. We define an approximation function of u as

$$u^{h}(x) = \frac{1}{h} \int_{-\infty}^{\infty} \delta\left(\frac{x-y}{h}\right) u(y) \, dy, \quad h > 0.$$
⁽²⁷⁾

We call x_0 a Lebesgue point of the function u(x) if

$$\lim_{h\to 0}\frac{1}{h}\int_{|x-x_0|\leq h} |u(x)-u(x_0)|\,dx=0.$$

At any Lebesgue points x_0 of the function u(x), we have $\lim_{h\to 0} u^h(x_0) = u(x_0)$. Since the set of points which are not Lebesgue points of u(x) has measure zero, we get $u^h(x) \to u(x)$ as $h \to 0$ almost everywhere.

We introduce notation connected with the concept of a characteristic cone. For any $R_0 > 0$, we define $N > \max_{t \in [0,T]} ||g||_{L^{\infty}} < \infty$. Let \Im designate the cone $\{(t,x) : |x| < R_0 - Nt, 0 \le t \le T_0 = \min(T, R_0 N^{-1})\}$. We let S_{τ} designate the cross section of the cone \Im by the plane $t = \tau, \tau \in [0, T_0]$.

Let $K_{r+2\rho} = \{x : |x| \le r + 2\rho\}$, where r > 0, $\rho > 0$ and $\pi_T = [0, T] \times R$ for an arbitrary T > 0. The space of all infinitely differentiable functions f(t, x) with compact support in $[0, T] \times R$ is denoted by $C_0^{\infty}(\pi_T)$.

Lemma 2.7 ([20]) Let the function u(t,x) be bounded and measurable in cylinder $\Omega_T = [0,T] \times K_r$. If for $\rho \in (0,\min[r,T])$ and any number $h \in (0,\rho)$, then the function

$$V_{h} = \frac{1}{h^{2}} \iiint_{|\frac{t-\tau}{2}| \le h, \rho \le \frac{t+\tau}{2} \le T-\rho, |\frac{x-y}{2}| \le h, |\frac{x+y}{2}| \le r-\rho} \left| u(t,x) - u(\tau,y) \right| dx dt dy d\tau$$

satisfies $\lim_{h\to 0} V_h = 0$.

Lemma 2.8 ([20]) Let $\left|\frac{\partial G(u)}{\partial u}\right|$ be bounded. Then the function

 $H(u, v) = \operatorname{sign}(u - v) \big(G(u) - G(v) \big)$

satisfies the Lipschitz condition in u and v, respectively.

Lemma 2.9 Let g be the strong solution of problem (7), $f(t,x) \in C_0^{\infty}(\pi_T)$ and f(0,x) = 0. Then

$$\iint_{\pi_T} \left\{ |g-k| f_t + \operatorname{sign}(g-k) \frac{1}{2} [g^2 - k^2] f_x - \operatorname{sign}(g-k) J_g(t,x) f \right\} dx \, dt = 0,$$
(28)

where k is an arbitrary constant.

Proof Let $\Phi(g)$ be an arbitrary twice smooth function on the line $-\infty < g < \infty$. We multiply the first equation of problem (7) by the function $\Phi'(g)f(t,x)$, where $f(t,x) \in C_0^{\infty}(\pi_T)$. Integrating over π_T and transferring the derivatives with respect to t and x to the test function f, for any constant k, we obtain

$$\iint_{\pi_T} \left\{ \Phi(g) f_t + \left[\int_k^g \Phi'(z) z \, dz \right] f_x - \Phi'(g) J_g(t, x) f \right\} dx \, dt = 0, \tag{29}$$

in which we have used $\int_{-\infty}^{\infty} \left[\int_{k}^{g} \Phi'(z) z \, dz \right] f_x \, dx = - \int_{-\infty}^{\infty} \left[f \Phi'(g) gg_x \right] dx$. Integration by parts yields

$$\int_{-\infty}^{\infty} \left[\int_{k}^{g} \Phi'(z) z \, dz \right] f_{x} \, dx = \int_{-\infty}^{\infty} \left[\frac{1}{2} \left(g^{2} - k^{2} \right) \Phi'(g) - \frac{1}{2} \int_{k}^{g} \left(z^{2} - k^{2} \right) \Phi''(z) \, dz \right] f_{x} \, dx.$$
(30)

Let $\Phi^h(g)$ be an approximation of the function |g - k| and set $\Phi(g) = \Phi^h(g)$. Using the properties of sign(g - k), (29), (30) and sending $h \to 0$, we have

$$\iint_{\pi_T} \left\{ |g - k| f_t + \operatorname{sign}(g - k) \frac{1}{2} [g^2 - k^2] f_x - \operatorname{sign}(g - k) J_g(t, x) f \right\} dx \, dt = 0, \tag{31}$$

which completes the proof.

In fact, the proof of (28) can also be found in [20].

For $g_{10} \in H^s(R)$ and $g_{20} \in H^s(R)$ with $s > \frac{3}{2}$, using Lemma 2.2, we know that there exists T > 0 such that two local strong solutions $g_1(t, x)$ and $g_2(t, x)$ of Eq. (3) satisfy

$$g_1(t,x), g_2(t,x) \in C([0,T]; H^s(R)) C^1([0,T]; H^{s-1}(R)), \quad t \in [0,T].$$
(32)

3 Main result

Now, we give the main result of this work.

Theorem 3.1 Assume that g_1 and g_2 are two local strong solutions of Eq. (3) with initial data $g_{10}, g_{20} \in L^1(R) \cap H^s(R)$, $s > \frac{3}{2}$. For T > 0 in (32), it holds that

$$\left\|g_{1}(t,\cdot)-g_{2}(t,\cdot)\right\|_{L^{1}(\mathbb{R})} \leq c e^{ct} \int_{-\infty}^{\infty} \left|g_{10}(x)-g_{20}(x)\right| dx, \quad t \in [0,T],$$
(33)

where c depends on $\|g_{10}\|_{L^{\infty}(R)}$, $\|g_{20}\|_{L^{\infty}(R)}$, $\|g_{10}\|_{L^{2}(R)}$, $\|g_{20}\|_{L^{2}(R)}$ and T.

Proof For arbitrary T > 0 and $f(t, x) \in C_0^{\infty}(\pi_T)$, we assume that f(t, x) = 0 outside the cylinder

We set

$$\eta = f\left(\frac{t+\tau}{2}, \frac{x+y}{2}\right)\delta_h\left(\frac{t-\tau}{2}\right)\delta_h\left(\frac{x-y}{2}\right) = f(\cdots)\lambda_h(*), \tag{35}$$

where $(\cdots) = (\frac{t+\tau}{2}, \frac{x+y}{2})$ and $(*) = (\frac{t-\tau}{2}, \frac{x-y}{2})$. The function $\delta_h(\sigma)$ is defined in (26). Note that

$$\eta_t + \eta_\tau = f_t(\cdots)\lambda_h(*), \qquad \eta_x + \eta_y = f_x(\cdots)\lambda_h(*). \tag{36}$$

Using the Kruzkov device of doubling the variables [20] and Lemma 2.9, we have

Similarly, we have

from which we obtain

$$0 \leq \iiint \int_{\pi_T \times \pi_T} \left\{ \left| g_1(t,x) - g_2(\tau,y) \right| (\eta_t + \eta_\tau) + \operatorname{sign}(g_1(t,x) - g_2(\tau,y)) \left(\frac{g_1^2(t,x)}{2} - \frac{g_2^2(\tau,y)}{2} \right) (\eta_x + \eta_y) \right\} dx \, dt \, dy \, d\tau + \left| \iiint \int_{\pi_T \times \pi_T} \operatorname{sign}(g_1(t,x) - g_2(t,x)) (J_{g_1}(t,x) - J_{g_2}(\tau,y)) \eta \, dx \, dt \, dy \, d\tau \right| \\ = I_1 + I_2 + \left| \iiint \int_{\pi_T \times \pi_T} I_3 \, dx \, dt \, dy \, d\tau \right|.$$

$$(39)$$

We will show that

$$0 \leq \iint_{\pi_T} \left\{ \left| g_1(t,x) - g_2(t,x) \right| f_t + \operatorname{sign} \left(g_1(t,x) - g_2(t,x) \right) \left(\frac{g_1^2(t,x)}{2} - \frac{g_2^2(t,x)}{2} \right) f_x \right\} dx dt + \left| \iint_{\pi_T} \operatorname{sign} \left(g_1(t,x) - g_2(t,x) \right) \left[J_{g_1}(t,x) - J_{g_2}(t,x) \right] f dx dt \right|.$$

$$(40)$$

In fact, the first two terms in the integrand of (39) can be represented in the form

$$A_h = A(t, x, \tau, y, g_1(t, x), g_2(\tau, y))\lambda_h(*).$$

From Lemma 2.4 and the assumptions on solutions g_1 , g_2 , we have $||g_1||_{L^{\infty}} < C_T$ and $||g_2||_{L^{\infty}} < C_T$. From Lemma 2.8, we know that A_h satisfies the Lipschitz condition in g_1 and g_2 , respectively. By the choice of η , we have $A_h = 0$ outside the region

$$\left\{(t,x;\tau,y)\right\} = \left\{\rho \le \frac{t+\tau}{2} \le T - 2\rho, \frac{|t-\tau|}{2} \le h, \frac{|x+y|}{2} \le r - 2\rho, \frac{|x-y|}{2} \le h\right\}$$
(41)

and

$$\iiint_{\pi_T \times \pi_T} A_h \, dx \, dt \, dy \, d\tau = \iiint_{\pi_T \times \pi_T} \left[A \left(t, x, \tau, y, g_1(t, x), g_2(\tau, y) \right) - A \left(t, x, t, x, g_1(t, x), g_2(t, x) \right) \right] \lambda_h(*) \, dx \, dt \, dy \, d\tau + \iiint_{\pi_T \times \pi_T} A \left(t, x, t, x, g_1(t, x), g_2(t, x) \right) \lambda_h(*) \, dx \, dt \, dy \, d\tau = K_{11}(h) + K_{12}.$$

$$(42)$$

Considering the estimate $|\lambda(*)| \leq \frac{c}{h^2}$ and the expression of function A_h , we have

$$|K_{11}(h)| \leq c \left[h + \frac{1}{h^2} \right] \\ \times \iiint_{|\frac{t-\tau}{2}| \leq h, \rho \leq \frac{t+\tau}{2} \leq T-\rho, |\frac{x-y}{2}| \leq h, |\frac{x+y}{2}| \leq r-\rho}} |g_2(t,x) - g_2(\tau,y)| \, dx \, dt \, dy \, d\tau \right],$$
(43)

where the constant *c* does not depend on *h*. Using Lemma 2.7, we obtain $K_{11}(h) \rightarrow 0$ as $h \rightarrow 0$. The integral K_{12} does not depend on *h*. In fact, substituting $t = \alpha$, $\frac{t-\tau}{2} = \beta$, $x = \zeta$, $\frac{x-y}{2} = \xi$ and noting that

$$\int_{-h}^{h} \int_{-\infty}^{\infty} \lambda_h(\beta,\xi) \, d\xi \, d\beta = 1, \tag{44}$$

we have

$$K_{12} = 2^{2} \iint_{\pi_{T}} A_{h}(\alpha, \zeta, \alpha, \zeta, g_{1}(\alpha, \zeta), g_{2}(\alpha, \zeta)) \left\{ \int_{-h}^{h} \int_{-\infty}^{\infty} \lambda_{h}(\beta, \xi) d\xi d\beta \right\} d\zeta d\alpha$$
$$= 4 \iint_{\pi_{T}} A(t, x, t, x, g_{1}(t, x), g_{2}(t, x)) dx dt.$$
(45)

Hence

$$\lim_{h \to 0} \iiint_{\pi_T \times \pi_T} A_h \, dx \, dt \, dy \, d\tau = 4 \iint_{\pi_T} A\big(t, x, t, x, g_1(t, x), g_2(t, x)\big) \, dx \, dt. \tag{46}$$

Since

$$I_{3} = \operatorname{sign}(g_{1}(t,x) - g_{2}(\tau,y)) (J_{g_{1}}(t,x) - J_{g_{2}}(\tau,y)) f \lambda_{h}(*) = \overline{I}_{3}(t,x,\tau,y) \lambda_{h}(*)$$
(47)

and

$$\iiint \int_{\pi_T \times \pi_T} I_3 \, dx \, dt \, dy \, d\tau$$

$$= \iiint \int_{\pi_T \times \pi_T} [\overline{I}_3(t, x, \tau, y) - \overline{I}_3(t, x, t, x)] \lambda_h(*) \, dx \, dt \, dy \, d\tau$$

$$+ \iiint \int_{\pi_T \times \pi_T} \overline{I}_3(t, x, t, x) \lambda_h(*) \, dx \, dt \, dy \, d\tau = K_{21}(h) + K_{22}, \qquad (48)$$

we obtain

$$|K_{21}(h)| \leq c \left(h + \frac{1}{h^2} \times \iiint_{|\frac{t-\tau}{2}| \leq h, \rho \leq \frac{t+\tau}{2} \leq T-\rho, |\frac{x-y}{2}| \leq h, |\frac{x+y}{2}| \leq r-\rho} |J_{g_2}(t,x) - J_{g_2}(\tau,y)| \, dx \, dt \, dy \, d\tau \right).$$
(49)

Using Lemma 2.7, we have $K_{21}(h) \rightarrow 0$ as $h \rightarrow 0$. Using (44), we have

$$K_{22} = 2^{2} \iint_{\pi_{T}} \overline{I}_{3}(\alpha, \zeta, \alpha, \zeta, g_{1}(\alpha, \zeta), g_{2}(\alpha, \zeta)) \left\{ \int_{-h}^{h} \lambda_{h}(\beta, \xi) d\xi d\beta \right\} d\zeta d\alpha$$

$$= 4 \iint_{\pi_{T}} \overline{I}_{3}(t, x, t, x, g_{1}(t, x), g_{2}(t, x)) dx dt$$

$$= 4 \iint_{\pi_{T}} \operatorname{sign}(g_{1}(t, x) - g_{2}(t, x)) (J_{g_{1}}(t, x) - J_{g_{2}}(t, x)) f(t, x) dx dt.$$
(50)

From (42), (46), (48), (49) and (50), we prove that inequality (40) holds.

Let

$$\mu(t) = \int_{-\infty}^{\infty} \left| g_1(t,x) - g_2(t,x) \right| dx.$$
(51)

We define

$$\theta_{h} = \int_{-\infty}^{\sigma} \delta_{h}(\sigma) \, d\sigma \quad \left(\theta_{h}'(\sigma) = \delta_{h}(\sigma) \ge 0\right) \tag{52}$$

and choose two numbers ρ and $\tau \in (0, T_0)$, $\rho < \tau$. In (40), we choose

$$f = \left[\theta_h(t-\rho) - \theta_h(t-\tau)\right]\chi(t,x), \quad h < \min(\rho, T_0 - \tau),$$
(53)

where

$$\chi(t,x) = \chi_{\varepsilon}(t,x) = 1 - \theta_{\varepsilon} (|x| + Nt - R + \varepsilon), \quad \varepsilon > 0.$$
(54)

We note that the function $\chi(t, x) = 0$ outside the cone \Im and f(t, x) = 0 outside the set \uplus . For $(t, x) \in \Im$, we have the relations

$$0 = \chi_t + N|\chi_x| \ge \chi_t + N\chi_x. \tag{55}$$

Applying (53)-(55) and (40), we have the inequality

$$0 \leq \iint_{\pi_{T_0}} \left\{ \left[\delta_h(t-\rho) - \delta_h(t-\tau) \right] \chi_{\varepsilon} \left| g_1(t,x) - g_2(t,x) \right| \right\} dx \, dt \\ + \int_0^{T_0} \int_{-\infty}^{\infty} \left[\theta_h(t-\rho) - \theta_h(t-\tau) \right] \left| \left[J_{g_1}(t,x) - J_{g_2}(t,x) \right] \chi(t,x) \right| dx \, dt.$$
(56)

Using Lemma 2.6 and letting $\varepsilon \to 0$ and $R_0 \to \infty$, we obtain

$$0 \leq \int_{0}^{T_{0}} \left\{ \left[\delta_{h}(t-\rho) - \delta_{h}(t-\tau) \right] \int_{-\infty}^{\infty} \left| g_{1}(t,x) - g_{2}(t,x) \right| dx \right\} dt + c_{0}(1+T_{0}) \int_{0}^{T_{0}} \left[\theta_{h}(t-\rho) - \theta_{h}(t-\tau) \right] \int_{-\infty}^{\infty} \left| g_{1}(t,x) - g_{2}(t,x) \right| dx dt.$$
(57)

By the properties of the function $\delta_h(\sigma)$ for $h \leq \min(\rho, T_0 - \rho)$, we have

$$\left| \int_{0}^{T_{0}} \delta_{h}(t-\rho)\mu(t) dt - \mu(\rho) \right| = \left| \int_{0}^{T_{0}} \delta_{h}(t-\rho) \left| \mu(t) - \mu(\rho) \right| dt \right|$$
$$\leq c \frac{1}{h} \int_{\rho-h}^{\rho+h} \left| \mu(t) - \mu(\rho) \right| dt \to 0 \quad \text{as } h \to 0, \tag{58}$$

where c is independent of h. Letting

$$L(\rho) = \int_{0}^{T_{0}} \theta_{h}(t-\rho)\mu(t) dt = \int_{0}^{T_{0}} \int_{-\infty}^{t-\rho} \delta_{h}(\sigma) d\sigma \mu(t) dt,$$
(59)

we get

$$L'(\rho) = -\int_0^{T_0} \delta_h(t-\rho)\mu(t) dt \to -\mu(\rho), \quad \text{as } h \to 0,$$
(60)

from which we obtain

$$L(\rho) \to L(0) - \int_0^{\rho} \mu(\sigma) \, d\sigma \quad \text{as } h \to 0.$$
 (61)

Similarly, we have

$$L(\tau) \to L(0) - \int_0^\tau \mu(\sigma) \, d\sigma \quad \text{as } h \to 0.$$
(62)

It follows from (61) and (62) that

$$L(\rho) - L(\tau) \to \int_{\rho}^{\tau} \mu(\sigma) \, d\sigma \quad \text{as } h \to 0.$$
(63)

Send $\rho \rightarrow 0$, $\tau \rightarrow t$, and note that

$$|g_{1}(\rho, x) - g_{2}(\rho, x)| \leq |g_{1}(\rho, x) - g_{10}(x)| + |g_{2}(\rho, x) - g_{20}(x)| + |g_{10}(x) - g_{20}(x)|.$$
(64)

Thus, from (57), (58), (63)-(64), we have

$$\int_{-\infty}^{\infty} |g_1(t,x) - g_2(t,x)| \, dx \le \int_{-\infty}^{\infty} |g_{10} - g_{20}| \, dx + c_0(1+T_0) \int_0^t \int_{-\infty}^{\infty} |g_1(t,x) - g_2(t,x)| \, dx \, dt, \tag{65}$$

from which we complete the proof by using the Gronwall inequality.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The article is a joint work of four authors who contributed equally to the final version of the paper. All authors read and approved the final manuscript.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11471263).

Received: 31 May 2014 Accepted: 15 September 2014 Published: 16 Oct 2014

References

- 1. Constantin, A, Lannes, D: The hydro-dynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. **193**, 165-186 (2009)
- 2. Lai, SY, Wu, YH: A model containing both the Camassa-Holm and Degasperis-Procesi equations. J. Math. Anal. Appl. **374**, 458-469 (2011)
- 3. Degasperis, A, Procesi, M: Asymptotic integrability. In: Degasperis, A, Gaeta, G (eds.) Symmetry and Perturbation Theory, vol. 1, pp. 23-37. World Scientific, Singapore (1999)
- 4. Escher, J, Liu, Y, Yin, ZY: Global weak solutions and blow-up structure for the Degasperis-Procesi equation. J. Funct. Anal. 241, 457-485 (2006)

- Yin, ZY: Global weak solutions for a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182-194 (2004)
- Fu, Y, Liu, Y, Qu, CZ: On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equation. J. Funct. Anal. 262, 3125-3158 (2012)
- 7. Lin, ZW, Liu, Y: Stability of peakons for the Degasperis-Procesi equation. Commun. Pure Appl. Math. 62, 125-146 (2009)
- Bressan, A, Constantin, A: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183, 215-239 (2007)
- 9. Bressan, A, Constantin, A: Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 5, 1-27 (2007)
- 10. Coclite, GM, Karlsen, KH: On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal. 223, 60-91 (2006) 11. Guo, ZG, Zhou, Y: Wave breaking and persistence properties for the dispersive rod equation. SIAM J. Math. Anal. 40,
- 2567-2580 (2009)
- 12. Henry, D: Infinite propagation speed for the Degasperis-Procesi equation. J. Math. Anal. Appl. 311, 755-759 (2005)
- 13. Lenells, J: Traveling wave solutions of the Degasperis-Procesi equation. J. Math. Anal. Appl. **306**, 72-82 (2005)
- 14. Li, LC: Long time behaviour for a class of low-regularity solutions of the Camassa-Holm equation. Commun. Math. Phys. **285**, 265-291 (2009)
- 15. Lundmark, H, Szmigielski, J: Multi-peakon solutions of the Degasperis-Procesi equation. Inverse Probl. 19, 1241-1245 (2003)
- Lai, SY, Wu, YH: The local strong and weak solutions to a generalized Novikov equation. Bound. Value Probl. 2013, 134 (2013)
- 17. Lai, SY, Li, N, Fan, S: The entropy weak solution to a generalized Degasperis-Procesi equation. J. Inequal. Appl. 2013, 409 (2013)
- Ni, L, Zhou, Y: Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002-3021 (2011)
- 19. Tian, LX, Gui, GL, Liu, Y: On the well-posedness problem and the scattering problem for the Dullin-Gottwald-Holm equation. Commun. Math. Phys. **257**, 667-701 (2005)
- 20. Kruzkov, SN: First order quasi-linear equations in several independent variables. Math. USSR Sb. 10, 217-243 (1970)

10.1186/1029-242X-2014-410

Cite this article as: Lai et al.: The stability of local strong solutions for a shallow water equation. Journal of Inequalities and Applications 2014, 2014:410

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com