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1 Introduction
From the propagation of shallow water waves over a flat bed, Constantin and Lannes [1]

derived the equation

3
gt +gx + ipggx + /’L(agxxx + ﬁgtxx) = pM(ygxgxx + 5ggxxx): (1)

where the constants «, 8, v, 8, p and u satisfy certain restrictions. As illustrated in [1],

using suitable mathematical transformations turns Eq. (1) into the form

8t — Ginx + kg + MGG, = AGGux + DZuxs (2)

where a, b, k and m are constants. We know that the Camassa-Holm and Degasperis-

Procesi models are special cases of Eq. (2). Lai and Wu [2] established the well-posedness

of local strong solutions and obtained the existence of local weak solutions for Eq. (2).
The aim of this paper is to investigate a special case of Eq. (2). Namely, we study the

shallow water equation

8t — Gexx + K@ + MGG = 38 + s (3)

where k > 0 and m > 0 are constants. Letting y = g — 9%.g, v = (m — 32,) "¢ and using Eq.

(3), we derive the conservation law

1+£2 1+82
/RJ’de=/R §2|g(t,$)]2d§ =/Rm|go(‘§)‘2d§ ~ llgoll 2wy (4)

m +
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where gy = g(0,x) and g(¢, &) is the Fourier transform of g(¢,x) with respect to variable x.
In fact, the conservation law (4) plays an important role in our further investigations of
Eq. (3).

For m = 4, k = 0, Eq. (3) reduces to the Degasperis-Procesi equation [3]

& — ZGixx t 4ggx = ?’gxgxx + Z%xxx- (5)

Various dynamic properties for Eq. (5) have been acquired by many scholars. Escher et
al. [4] and Yin [5] studied the global weak solutions and blow-up structures for Eq. (5),
while the blow-up structure for a generalized periodic Degasperis-Procesi equation was
obtained in [6]. Lin and Liu [7] established the stability of peakons for Eq. (5) under certain
assumptions on the initial value. For other dynamic properties of the Degasperis-Procesi
(5) and other shallow water models, the reader is referred to [8-19] and the references
therein.

The objective of this work is to establish the L!(R) stability of local strong solutions for
the generalized Degasperis-Procesi equation (3) under the condition that we let the initial
value gy belong to the space H*(R) with s > % Here we address that the L! stability of
local strong solutions for Eq. (3) has never been established in the literature. Our main
approaches come from those presented in [20].

This paper is organized as follows. Section 2 gives several lemmas. The main result and
its proof are presented in Section 3.

2 Several lemmas
The Cauchy problem of Eq. (3) is written in the form

8t — Zixx T kgx + mgg, = ggxgxx + Z8xxxs
(6)
8(0,%) = go (%),

which is equivalent to

g+ 88 + kAT g + A H(g), = 0,
(7)
g(O,x) :gO(x)’
where A7 = 3 [, eI dy for any f € L*(R) or L®(R).
Let Qq(£,%) = 1 A72(g?) + kA~%g and J, = 0.(5* A~2(g%) + kA~2g), we have
L,
gt+§(g )x+]g=0~ ®)
Lemma 2.1 For problem (6) with m > 0, it holds that
1+£2 2 1+£2 .
/RJ’de = /1; s |8, &)|" d& = /R s 80(8)|” d& ~ llgoll 2 (x)- 9)

In addition, there exist two positive constants ¢, and cy depending only on m such that

allgollzwy < allgllzg < c2llgoll2@w)-
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Proof Lettingy =g —09%g and v = (m-9%) g and using Eq. (3), we have g = mv - 32 v and

d
— yvdx:/y,vdx+fyvtdx=2fvytdx
dt Jr R R R
1
= 2[€[<—%g2>x+kgx+ Eaﬁxxgz]vdx
1
:2/[<—Tg2> v+ kg + —8xg28§xv] dx
R 2° ), 2
= [ [me?) g (&), omv -]
R

= —/g(gz)xdx+k/(mvx — Vaxx)VAX
R

R
:k/vxxvxdx

R
=0,

from which we complete the proof. O

Lemma 2.2 ([2]) Ifgo € H*(R) withs> %, there exist maximal T = T (up) > 0 and a unique
local strong solution g(t,x) to problem (6) such that

gt,x) € C([0, T); H*(R))C' ([0, T); H*(R)).
Firstly, we study the differential equation

=g(t,p), tel0,T),
pe=g(t.p) (0,7) (10)
p(0,x) = x.
Lemma2.3 Letgy € H*(R),s >3 andlet T > 0 be the maximal existence time of the solution
to problem (10). Then problem (10) has a unique solution p € C*([0, T) x R, R). Moreover,
the map p(t,-) is an increasing diffeomorphism of R with p,(t,x) > 0 for (t,x) € [0,T) x R.

Proof From Lemma 2.2, we have g € C([0, T); H*"}(R)) and H*"}(R) € C'(R). Thus we con-
clude that both functions g(t, ) and g,(t, x) are bounded, Lipschitz in space and C' in time.
Using the existence and uniqueness theorem of ordinary differential equations derives that
problem (10) has a unique solution p € C'([0, T) x R, R).

Differentiating (10) with respect to x yields

%px :gx(t,P)px’ tel0,T),
Px(o; x) =1,

which leads to

Pt x) = exp(/o &(t.p(1,%)) dr). (12)
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For every T’ < T, using the Sobolev embedding theorem yields

sup  |gu(T,%)| < 00.
(t,x)€[0,T")xR

It is inferred that there exists a constant Ky > 0 such that p,(t,x) > e X0 for (¢,x) €
[0, T) x R. This completes the proof. d

Lemma 2.4 Assume gy € H*(R) with s > % Let T be the maximal existence time of the
solution g to Eq. (3). Then we have

lg(t.2)] ;o < collgoll?at + Igolle V£ €[0,T], (13)

where constant ¢y depends on m, k.

Proof Let Z(x) = %e“"‘, we have (1 — 92)7'f = Z « f for all f € L*(R) and g = Z « y(t,x).
Using a simple density argument presented in [6], it suffices to consider s = 3 to prove this
lemma. If T is the maximal existence time of the solution g to Eq. (3) with the initial value
go € H3(R) such that g € C([0, T), H3(R)) N CY([0, T), H*(R)). From (7), we obtain

g + 28, = —(m—1)Z x (gg,) — kZ % g;. (14)

Since

1 oo
Zelg) =5 [ e dy

—00

1 * —X+y 1 o Xy
=—§ i e ggydy—i e gg, dy

L w2 LT 2
2] ¢ ¢ dy—z e "¢ dy (15)
o0 X

and

dg(t,p(t, %)) _ dp(t,x)

&(tp(6x)) + g (t,p(t, %))

dt dt
= (g + g¢) (6 p(t, %)), (16)
from (16), we have
dg m—l/‘p(t‘x) | m—1 [
2 e p(t,x)—y\gZ dy - / e—lp(tvx)—y\gZ dy — kZ x g,, 17)
dt 4' —00 4‘ p(t,x)

from which we get

‘dg(t,slft,x))‘ - |m4_1| / IR 4y s KZ % gl

o0 1 o
/_ Ee ¥ ylgydy‘

(o]

-1 o
Slm |/ grdy+k
4 J
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lm —1]
<
-4

=<cligll2@w)

lgli7s +kligll 2

=< cllgollz2(r)»
where c is a positive constant independent of ¢. Using (18) results in
—ctllgollz2(r) + G0 < &(t:p(£:%)) < ctllgoll 2(x) + Lo-

Therefore,

g(t.p(t,x))] < |g(t:p(&:%))|| o0 < ctllgoll 2 + g0l o

(18)

(19)

(20)

Using the Sobolev embedding theorem to ensure the uniform boundedness of g, (s, n) for

(s,m) €[0,£] x R with ¢ € [0,T"), from Lemma 2.3, for every ¢ € [0, T’), we get a constant

C(t) such that

e O < p(t,x) <P, xeR.

We deduce from the above equation that the function p(¢, -) is strictly increasing on R with

limy_, 400 p(t,x) = 00 as long as t € [0, T). It follows from (20) that

let, %) o0 = |g(6:p(t:%) | ;0 < ctllgoll 2 + lIgollzoe-

Lemma 2.5 Assume g, € L*(R). Then

2
|QgllLoo(r, xr)s g llLoo(r, xR) < €ollgoll72s
where cg is a constant independent of t.

Proof Using (7), we get
-1 k
Qg(t,x) = mT / e—lx—ngZ(t’y) dy + 5 / e—lx—ylgdy’
R R
m—-1 .
Jo(t, %) = 4 / el sign(y — x)g>(t,y) dy
R
k —le=yl g
5 ]e sign(y — x)g(t,y) dy.
R

It follows from (23)-(24) and Lemma 2.1 that (22) holds.

(21)
0

(22)

(23)

(24)

O

Lemma 2.6 Assume that g,(t,x) and g»(t,x) are two local strong solutions of equation (3)

with initial data g0, g2 € H*(R), s > %, respectively. Then, for any f(t,x) € C5°([0,00) x R),

it holds that
/ |]g1(t’x)_]gz(tix)|lf(t)x)|dx§60(1+t)/. |g1 _g2|dx’

where ¢y > 0 depends on ¢, f, (gl 2r), 1820l 2(»)> 1810 1lz0®) and l|gaollzoo(r).-

(25)

Page 5of 13
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Proof We have
/ Ve (&%) = J, (&,) | |f (2, %) | dx
—_ 1 o0
< / [0 (- 2) |60

k [o¢] [o¢]
t / / e |sign(x —y)||g1 —gzl[f(t,x)| dydx

-1 o] o]
= |"”l4 | '/ / e |sign(x—y)| |g12 —g22| dy[f(t,x)| dx

+00/ |g1—g2|dy/ e"x_yllf(t,x)|dx

< |m4— 1 /_Oo (@ - @)@ +8)] dy‘/_oo e Nf(t,x)| dx

+Co/ g1 — &l dy

o0
<co(l+ t)f lg1 — g2 dy,
in which we have used the Tonelli theorem and Lemma 2.4. The proof is completed. O

We define §(¢o’) to be a function which is infinitely differentiable on (—o0, +00) such that
8(0)>0,8(c) =0 for o] >1and f_o; 8(0)do = 1. For any number / > 0, we let §,(0) =

-1
8070) Then we know that 8;,(c) is a function in C*(~o00, 00) and

Su(c) >0, (Sh(go):o if|lo| > h, 06)
18n(0)| < 7, I dnlo) =1

Assume that the function u(x) is locally integrable in (—00, 00). We define an approxima-

tion function of u as

1 [ -
uh(x)=z/_ 5(¥)u(y)dy, h>0. 27)

o0

We call x a Lebesgue point of the function u(x) if

1
lim — - dx=0.
hT})h ‘x_x0|§h|u(x) u(x0)| x

At any Lebesgue points x of the function u(x), we have limy,_. o %" () = u(xo). Since the
set of points which are not Lebesgue points of #(x) has measure zero, we get " (x) — u(x)
as i — 0 almost everywhere.

We introduce notation connected with the concept of a characteristic cone. For any
Ry >0, we define N > maxejo,7] lIgllz < 0o. Let U designate the cone {(¢,x) : |x| < Ry —
Nt,0 <t < Ty = min(T,RoN71)}. We let S, designate the cross section of the cone U by
the plane t = 7, v € [0, Tp].

Page 6 of 13
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Let Kiyop = {x: |x| <r+2p},wherer >0, p >0and wy = [0, T] x R for an arbitrary T > 0.
The space of all infinitely differentiable functions f (¢, x) with compact supportin [0, T] x R
is denoted by C§°(mrr).

Lemma 2.7 ([20]) Let the function u(t,x) be bounded and measurable in cylinder Qr =
[0, T] x K. Iffor p € (0, min[r, T]) and any number h € (0, p), then the function

1
V=13 /// |lu(t,x) — u(t,y)| dxdt dy dt
h |58 1<hp< B <T—p,| 52 |<h,| 552 |<r—p

satisfies limy_.o V3, = 0.

Lemma 2.8 ([20]) Let I%L”” be bounded. Then the function
H(u,v) = sign(u - v)(G(u) - G(v))

satisfies the Lipschitz condition in u and v, respectively.

Lemma 2.9 Let g be the strong solution of problem (7), f(t,x) € C3°(rwr) and f(0,x) = 0.
Then

// {Ig — k|f; + sign(g — k)%[g2 - kz]fx —sign(g — k)]g(t,x)f} dxdt =0, (28)

where k is an arbitrary constant.

Proof Let ®(g) be an arbitrary twice smooth function on the line —00 < g < co. We mul-
tiply the first equation of problem (7) by the function ®'(g)f (¢, x), where f(¢,x) € C3°(mr).
Integrating over w7 and transferring the derivatives with respect to ¢ and x to the test
function f, for any constant k, we obtain

// {q)(g)ﬁ + |:/kg CD’(z)zdz}/x - <I>’(g)]g(t,x)f} dxdt =0, (29)

in which we have used [ [[f @' (2)zdzlf,dx = — [ [f ' (g)gg:] dx.
Integration by parts yields

T (¢ Y R EYERRT.
/_OO[/k <I>(z)zdz]ﬁ6dx_/:oo[§(g -k*)®'(g)
_%/g(zz—kz)cb”(z)dz]jxdx. (30)
k

Let ®"(g) be an approximation of the function |g — k| and set ®(g) = ®"(g). Using the
properties of sign(g — k), (29), (30) and sending # — 0, we have

// {Ig — k|f; + sign(g — k)%[g2 - K*]f, - sign(g - k)]g(t,x)f} dxdt =0, (31)

which completes the proof. d
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In fact, the proof of (28) can also be found in [20].
For g1p € H*(R) and g0 € H*(R) with s > %, using Lemma 2.2, we know that there exists
T > 0 such that two local strong solutions g1 (¢, x) and g, (¢, x) of Eq. (3) satisfy

a(t,x),8(t,%) € C([0, T); H*(R))C'([0, T); H* ' (R)), tel0,T). (32)

3 Main result
Now, we give the main result of this work.

Theorem 3.1 Assume that g, and g are two local strong solutions of Eq. (3) with initial
data g, g0 € L'(R) N H*(R), s > 3. For T > 0 in (32), it holds that

”gl(tr ) _gZ(tr ) ||L1(R) < Cect f ‘glO (x) —&20 (x)| dxr te [Or T]r (33)

where c depends on ||gio || @), 1€201l20®)» 18101 12(r)» 1820l L2(r) and T

Proof Forarbitrary T > 0 and f (¢, x) € C5°(rrr), we assume that f (¢, x) = 0 outside the cylin-

der

W={(tx)} =0, T-2p] x K,2p, 0<2p<min(T,r). (34)
We set

(5555 (552 e e @
where (--+) = (4%, %2) and () = (5%, 22). The function 8, (o) is defined in (26). Note that

Me+ e =fe(-hn(x), e+ 0y =fol o )An(k). (36)

Using the Kruzkov device of doubling the variables [20] and Lemma 2.9, we have

////ﬂmiigﬂt’w - (0,0

gt %(ny))nx

+ sign(gi (£, %) _gz(t’y))( 2 2

— sign(gl(t, x) —gg(r,y))]g1 (t, x)n} dxdtdydr = 0. (37)
Similarly, we have

////”Twhgz(r,y) ~ (%) e

&(7,) gf(t,x)>
2l STy,

+sign(ga(t,y) — &t x))( 2 2

— sign(g(7,y) —gl(t,x))]gz(t,y)n} dxdtdydr =0, (38)

Page 8 of 13


http://www.journalofinequalitiesandapplications.com/content/2014/1/410

Lai et al. Journal of Inequalities and Applications 2014, 2014:410
http://www.journalofinequalitiesandapplications.com/content/2014/1/410

from which we obtain

OSLUZﬂW{mmM—@&JWm+m)

gty &)

5 5 )(nx+ny)}dxdtdydr

+sgn@ﬂnm—gxﬂyﬁ(

sign(gl(t,x) - gz(t,x)) (]g1 (t,x) = Jg (r,y))n dxdtdydr

TP XTT

//// Iidxdtdydr|.
X T

We will show that

o= [ / T{!glu,x)—gz(t,x)lﬁ

=L+L+ (39)

gtx) gt

x}dxdt
2

+ // sign(gl(t,x)—gz(t,x))[]gl(t,x)—]gz(t,x)lfdxdt‘. (40)

In fact, the first two terms in the integrand of (39) can be represented in the form

Ap=A(6%,7,2,8(%),2(T,)) An(*).

From Lemma 2.4 and the assumptions on solutions g1, g», we have ||g]/z~ < Cr and
llg2llzee < Cr. From Lemma 2.8, we know that A, satisfies the Lipschitz condition in g
and g, respectively. By the choice of 1, we have A;, = 0 outside the region

t+tT [t — 1|

|+ |~y
—<T-2p, <h ——<r-2p, <h 41
2 - Py = g TP TS (41)

{txT,p) = {,05

and

—A(tx,t,%,1(8,%),82(, %)) |Mn(*) dx dt dy dt

I At sty

= Ku(h) + I(lg. (4'2)

Considering the estimate |1 (x)| < h% and the expression of function Ay, we have

1
|I(11(h)| < C|:h + ﬁ

//_/f lg2(t,%) — ga(7,9) dxdtdydr}
‘t T|<hﬂ<t+T<T [)\ £y|<h‘x+y‘<r7p

(43)
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where the constant ¢ does not depend on /4. Using Lemma 2.7, we obtain Kj;(%#) — 0 as
h — 0. The integral K, does not depend on /. In fact, substituting ¢ = o, 5 = 8, x = ¢,
%2 = £ and noting that

[ : [ : M, E)dE df =1, (44)

we have

h o)
Kip = 22 / / Ah(a,g,a,c,gl(a,a,gz(a,g)){ [ h f kh(ﬂ,é)dédﬂ}df dor

=4 // A(t,x, t,x,gl(t,x),gz(t,x)) dxdt. (45)
Hence
lim //f/ Apdxdtdydr = 4/[ A(t,x, t,x,gl(t,x),gz(t,x)) dxdt. (46)
h—0 X 7T
Since
I3 = sign(g1(t,%) — £2(7,9)) oy (6,%) = Jou (T, ) )f A () = I3 (8,2, T, y) An () (47)

and
f/// Iydxdtdydt
TTXAT

) //// [Z5(t,%,7,9) = Is(t,%,8,0) |1 (x) dx dt dy de
XA
N[ Tt dsdedyas = Kanth) + Koo, (a8)
TTXTT

we obtain

1
|[(21(h)’ < C(h + ﬁ

X //// |]g2(t,x) —]gz(t,y)|dxdtdydt).
|55 I<hp<55E <T—-p,| 752 |<h| 52 |<r-p
(49)

Using Lemma 2.7, we have K;(4) — 0 as & — 0. Using (44), we have

h
o2 / / Bt ales )’g2(a:<)){/ h(p€) de dﬁ} dt da
= 4//”73(”’t’x’gl(t»x),gz(t,x)) dxdt
=4 f / sign (g1 (6 %) — €2(t,%)) (Jo, (£, %) — Jo, (£, %))f (£, %) dx dit. (50)

From (42), (46), (48), (49) and (50), we prove that inequality (40) holds.
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Let
() = f l61(6%) - 2(6,)| .
We define

0, = / Su(o)do (0,2(0) =8,(0) > 0)

o]

and choose two numbers p and 7 € (0, T), p < . In (40), we choose
f= [Oh(t_p)_eh(t_t)])((t’x)’ h <min(p, Ty - 1),
where

x(t,%) = x:(t,x) =1 -6 (|x| + Nt~ R+¢), &>0.

(52)

(54)

We note that the function y (¢,x) = 0 outside the cone U and f(¢,x) = 0 outside the set .

For (¢,x) € U, we have the relations
0=xe+NlXsl = Xt + NXx.
Applying (53)-(55) and (40), we have the inequality

05// {[8u(t = p) = 8t = )] xe |&1(8,%) - &2(t, %) |} dx it

To oo
+ / / [04(t = p) = On(t = T)]|[Jo (&%) = T (&%) | x (&, %) | dix dit.
0 —00

Using Lemma 2.6 and letting ¢ — 0 and Ry — 00, we obtain

To .
ogfo {[5h(t—,0)—Sh(t—f)]fm|g1(t,x)—gz(t,x){dx}dt

To [e9)
raot+ To) [ [ote-p)-0u(e-)] [ o) - e )] s

By the properties of the function 8;(c) for & < min(p, Ty — p), we have

To To
f Bh(t—p)u(t)dt—u(p)‘ = f Sh(t—p)lu(t)—u(p)\dt‘
0 0

1 p+h
SCZ/ (6= (o) dt — 0 ash— 0,

where c is independent of /. Letting

To Ty t—p
Lip) - /0 Ot - p)ua(t) dt = /0 / 5u(0) do pu(0)d,

(55)

(56)

(57)

(58)

(59)
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we get

L= | Y 5t o) de > (o), ash—0,

from which we obtain
0

L(p) — L(0) _/o u(o)do ash— 0.
Similarly, we have

L(t) — L(0) - ‘/OT u(o)do ash— 0.
It follows from (61) and (62) that

L(p) - L(t) —> /T u(o)do ash— 0.

2
Send p — 0, T — ¢, and note that

lg(0, %) — g2(p,%)| < |@1(p,%) — g10(¥)|
+|22(0,%) — g20(0)| + |g10 (%) — g20¥)|-

Thus, from (57), (58), (63)-(64), we have

/ ]gl(t,x)—gz(t,x)\de/ €10 — g20| dx

t [ee]
+ a1+ To) f / l1(6:2) - a6, )| s
0 J-o0

from which we complete the proof by using the Gronwall inequality.
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