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Abstract
The paper focuses on the precise asymptotics of the largest eigenvalues of β-Hermite
ensemble and β-Laguerre ensemble. In particular, we obtain a general law on the
precise moment convergence rates for a type of weighted series constructed by the
first-order conditional moment of the largest eigenvalues of β ensembles. The results
are motivated by the complete convergence for partial sums of independent random
variables. The proofs depend on the small deviations for largest eigenvalue of β
ensembles and non-asymptotic tail probability inequalities of the general β
Tracy-Widom law.
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1 Introduction andmain results
In random matrix theory, β-Hermite ensemble and β-Laguerre ensemble introduced by
Baker and Forrester [] are two classical ensembles, and they have played an important role
in lattice gas theory and statisticalmechanics. The first one, denoted byHβ , is a probability
measure related to a random point process on R, whose joint probability density function
has the form

P(λ,λ, . . . ,λn) =


Zn,β

∏
≤j<k≤n

|λj – λk|βe–nβ
∑n

k= λk , (.)

where λi ∈ R, Zn,β is a normalizing constant, and for the parameter β can be taken any β >
 and it can be interpreted as the inverse temperature of a Coulomb gas with logarithmic
potential in lattice gas theory. In particular, when β = , , , the joint densities are shared
by the eigenvalues of Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble
(GUE), and Gaussian symplectic ensemble (GSE), respectively.
For the Gaussian ensembles, because of the facts that there exist corresponding explicit

random matrix models and that some powerful analytical methods are available in the
derivation of their exact or asymptotical properties, lots of limiting spectral properties,
including the behavior of the extremal eigenvalue, have been discussed in depth. As one of
the major achievements in randommatrix theory, it has been shown by Tracy andWidom
[–] that the distribution of the largest eigenvalue ofG(O/U/S)E, after being centered and
scaled properly, converges to the Tracy-Widom type distribution, which is an important
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probability distribution and has aroused great interest of the mathematicians and statisti-
cians. According to the results of Tracy andWidom, for the largest eigenvalue λmax(A) of
the random matrixA, whenever it comes from GOE (β = ), GUE (β = ) or GSE (β = ),
its distribution function

Fn,β (x) = P
(
λmax(A) ≤ x

)
, β = , , ,

satisfies the following Tracy-Widom limit law:

lim
n→∞Fn,β

(
x

n 

+ 

)
= Fβ (x), β = , , ,

which is given by

F(x) = exp

(
–

∫ ∞

x
(y – x)q(y)dy

)
,

F(x) = exp

(
–



∫ ∞

x
q(y)dy

)(
F(x)

) 
 ,

F
(

x√


)
= cosh

(



∫ ∞

x
q(y)dy

)(
F(x)

) 
 .

Here q(x) is the unique solution to the Painlevé II equation q′′ = xq + q with the asymp-
totics

q(x)∼ 

π– 

 x–

 exp

(
–


x




)
as x → ∞.

As for the β-Hermite ensemble, where for β >  can be taken any positive real value,
a primary question iswhetherwe can establish an internal relationwith the randommatrix
model, whose eigenvalues obey the desired joint probability law. This problem was first
posed by Dumitriu and Edelman [], who successfully constructed a tridiagonal sparse
random matrix model for Hβ , and the eigenvalues of the matrix model obey the desired
joint density function. We usually also call the corresponding matrix model as Hβ and
denote the largest eigenvalue of the β-Hermite ensemble as λmax(Hβ). Making essential
use of the tridiagonal matrix model, Ramírez et al. [] proved that λmax(Hβ ), after being
centered and scaled, converges weakly to the general β Tracy-Widom law TW β (β > ),
that is,

n


(
λmax(Hβ ) – 

) ⇒ TW β , β > . (.)

They define the general β Tracy-Widom law through a random variational principle:

TW β
d= sup

f∈L

{
√
β

∫ ∞


f (x)dB(x) –

∫ ∞



[(
f ′(x)

) + xf (x)
]
dx

}
,

where x 
→ B(x) is a standard Brownian motion, L is the space of functions f that vanish
at the origin and satisfy

∫ ∞
 f (x)dx = ,

∫ ∞
 [(f ′(x)) + xf (x)]dx <∞.
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Ramírez et al. [] also obtained the tail properties of the distribution function of TW β .
Let Fβ (x) = P(TW β ≤ x) for any β >  and large a, and we have

Fβ (–a) = exp

(
–




βa
(
 + o()

))
(.)

and

 – Fβ (a) = exp

(
–


βa



(
 + o()

))
. (.)

In order to investigate the rates of the concentration for various eigenvalue statistics,
some non-asymptotic results for certain random matrix ensembles have also been devel-
oped. Ledoux and Rider [] presented some small deviation results related to λmax(Hβ ),
specifically, for all n≥ ,  < ε ≤ , and β ≥ , we have

P
(
λmax(Hβ ) ≥  + ε

) ≤ Ce–
β
C

nε

 (.)

and

P
(
λmax(Hβ ) ≤  – ε

) ≤ Ce–
β
C

nε

 , (.)

where C and C are positive constants.
In this paper, we are interested in the precise asymptotics of the largest eigenvalues of

β ensembles. Now we will give some attention to the precise asymptotics of random vari-
ables in classical probability theory. Let {X,Xn;n ≥ } be a sequence of i.i.d. random vari-
ables, Sn =

∑n
k=Xk . Let ϕ(x) and f (x) be the positive functions defined on [, +∞), which

satisfy
∑∞

n= ϕ(n) =∞, f (x) ↑ ∞ as x → ∞. SinceHsu and Robbins [] introduced the con-
cept of complete convergence, some researchers discussed the convergence of the series∑∞

n= ϕ(n)P(|Sn| ≥ εf (n)). Note that the sums tend to infinity as ε ↘ ; it is interesting to
find the precise convergence rates when this occurs. This amounts to finding the appro-
priate normalizations in terms of the functions of ε, which, multiplied by the series, has
a non-trivial limit. The researchers call the discussion in this field ‘precise asymptotics’.
Later, some researchers extended the discussion to the cases that the series is constructed
by conditional moment related to Sn, or the series is constructed by other variables, such
as the associated counting process, empirical process, self-normalized sums. Formore de-
tails on the topic of precise asymptotics of independent random variables, one can refer
to Hsu and Robbins [], Baum and Katz [], Chow [], Gut and Spǎtaru [], Zhang et al.
[], Chen and Zhang [] and Zang and Huang [].
This paper is devoted to an extension of the precise asymptotics of i.i.d. to the eigenvalue

variables of randommatrices. Su [] first presented some precise convergence asymptotic
results on the largest eigenvalues ofGUE and LUE, their results are in a sense similar to the
precise asymptotics in the context of the complete convergence of independent random
variables. Xie [] further obtained the precise moment convergence rates of a type of
weighted series constructed by the largest eigenvalues of the β ensembles. The aim of the
paper is to study the general law of the precise asymptotics of the moment convergence
of the largest eigenvalues of the β ensemble.
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Let x+ =max{x, } and [x] be the integer part of real number x. The main results can be
listed as follows.

Theorem . Assume that g(x) is differentiable on the interval [, +∞), which is non-
negative and strictly increasing to ∞, and the differentiable function g ′(x) is non-negative.
We further suppose that g ′(x) is monotone, and if g ′(x) is monotone non-decreasing,we have
limx→∞ g′(x+)

g′(x) = . Then for any s > , β ≥ , we have

lim
ε↘

(ε)

s

∞∑
n=

g ′(n)E
{
n



(
λmax(Hβ ) – 

)
– εgs(n)

}
+ =




∫ ∞


x


s
(
 – Fβ (x)

)
dx.

Theorem . Under the assumptions of Theorem ., we also have

lim
ε↘

–
log ε

∞∑
n=

g ′(n)
g(n)

E
{
n



(
λmax(Hβ ) – 

)
–


εgs(n)

}
+
=


s

∫ ∞



(
 – Fβ (x)

)
dx.

Remark . The assumptions on the function g(x) in the above theorems are all rather
mild conditions, it is easy to see that g(x) = xa, g(x) = (logx)b or g(x) = (log logx)c with some
suitable conditions of a > , b >  or c >  and some others all satisfy these assumptions.
In particular, when g(x) = x 

 , s = , it can lead to a result which is consistent with that of
Xie [].

Remark . As it is difficult to get the explicit expression of Fβ (x), we do not present the
exact values of the right hand of the above equations. However, the approximate values of
them could be computed by Bornemann [].

There is another probability measure, related to a random point process on R whose
joint probability density function is

P
(
λ′
,λ

′
, . . . ,λ

′
n
)
=


Z′
n,β

∏
≤j<k≤n

∣∣λ′
j – λ′

k
∣∣β n∏

i=

λ
′( β
 )(m–n+)–

i e–
nβ


∑n
i= λ′

i ,

where λ′
i ∈ R

+,m > n– , and β > ; Z′
n,β is also a normalizing constant. It is usually called

the β-Laguerre ensemble and denoted Lβ for short. Dumitriu and Edelman [] also con-
structed a tridiagonal sparse random matrix model for Lβ , and we usually also call the
corresponding matrix model Lβ and denote the largest eigenvalue of the β-Hermite en-
semble as λmax(Lβ ). Ramírez et al. [] also obtained, form +  > n→ ∞, m

n → γ ≥ ,

m

 n




(
√
m +

√
n) 

(
λmax(Lβ ) – ( +

√
γ )

) ⇒ TW β .

At the same time, Ledoux and Rider [] proved that for all cn ≤m≤ cn with c ≥ c ≥ ,
β ≥ , and  < ε < , there exist C > , C > , and

P
(

λmax(Lβ ) ≥
(
 +

√
m
n

)

( + ε)
)

≤ Ce–
β
C

√
mnε


 ( √

ε
∧(mn )


 ) ≤ Ce–

β
C

nε
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and

P
(

λmax(Lβ ) ≤
(
 +

√
m
n

)

( – ε)
)

≤ Ce–
β
C

mnε( √
ε
∧(mn )


 ) ≤ Ce–

β
C

nε .

With the help of the two important results, we could reach a similar result on the β-
Laguerre ensemble.

Theorem . Under the assumptions of Theorem ., when m = [γn], ≤ γ < ∞ and β ≥
, for any s > , we have

lim
ε↘

ε

s

∞∑
n=

g ′(n)E
{

m

 n




(
√
m +

√
n) 

[
λmax(Lβ ) – ( +

√
γ )

]
– εgs(n)

}
+

=
∫ ∞


x


s
(
 – Fβ (x)

)
dx.

Theorem . Under the assumptions of Theorem ., we have

lim
ε↘


– log ε

∞∑
n=

g ′(n)
g(n)

E
{

m

 n




(
√
m +

√
n) 

[
λmax(Lβ ) – ( +

√
γ )

]
– εgs(n)

}
+

=

s

∫ ∞



(
 – Fβ (x)

)
dx. (.)

The main proofs will be obtained in the next section, and they mainly depend on the
non-asymptotic exponential inequalities about the general β Tracy-Widom law,weak con-
vergence, and small deviation inequalities about the largest eigenvalues of the β ensem-
bles. Throughout this paper, let C denote an absolutely positive constant whose value can
be different from one appearance to another.

2 The proofs
Proof of Theorem . Set A(ε) = [g–(Mε–


s )], where g–(x) is the inverse function of g(x)

andM is an arbitrary positive real number. The proof of Theorem . relies on the follow-
ing four propositions.

Proposition . Under the assumptions of Theorem ., we have

lim
ε↘

ε

s

∞∑
n=

g ′(n)E
{
TWβ – εgs(n)

}
+ = –


s

∫ ∞


x


s
(
 – Fβ (x)

)
dx.

Proof Observing the fact that, for any random variable ξ and a ∈ R,

Eξ I{ξ≥a} = aP(ξ ≥ a) +
∫ ∞

a
P(ξ ≥ x)dx, (.)

thus we have

E
{
TW β – εgs(n)

}
+ =

∫ ∞

εgs(n)
P(TW β ≥ t)dt. (.)
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If g ′(x) is monotone non-increasing, by the assumption of Theorem ., we can see that
g ′(x)

∫ ∞
εgs(x) P(TW β ≥ t)dt is also non-increasing, thus

∫ ∞


g ′(y)

∫ ∞

εgs(y)
P(TW β ≥ t)dt dy

≤
∞∑
n=

g ′(n)E
{
TWβ – εgs(n)

}
+

≤
∫ ∞


g ′(y)

∫ ∞

εgs(y)
P(TW β ≥ t)dt dy. (.)

If g ′(x) is monotone non-decreasing, by the assumption that limn→∞ g′(n+)
g′(n) = , for any

 < δ < , there exists a sufficient large number N = N(δ), such that g′(n+)
g′(n) <  + δ and

g′(n+)
g′(n) >  – δ for all n≥N . Thus we can get


 + δ

∫ ∞

N
g ′(y)

∫ ∞

εgs(y)
P(TW β ≥ t)dt dy

≤
∞∑
n=N

g ′(n)E
{
TWβ – εgs(n)

}
+

≤ 
 – δ

∫ ∞

N–
g ′(y)

∫ ∞

εgs(y)
P(TW β ≥ t)dt dy. (.)

Making a change of variables and performing integration by parts, for any θ ≥ , we can
deduce that

lim
ε↘

ε

s

∫ ∞

θ

g ′(y)
∫ ∞

εgs(y)
P(TW β ≥ t)dt dy

= lim
ε↘


s
–


s

∫ ∞

εgs(θ )
x


s –

∫ ∞

x
P(TW β ≥ t)dt dx

= lim
ε↘


s
–


s

∫ ∞

εgs(θ )
P(TW β ≥ t)

∫ t

εgs(θ )
x


s – dxdt

= lim
ε↘

–

s

∫ ∞

εgs(θ )

[
t

s – (ε)


s g(θ )

](
 – Fβ (t)

)
dt

= –

s

∫ ∞


t

s
(
 – Fβ (t)

)
dt. (.)

By (.)-(.) and the fact that

lim
ε↘

ε

s

∞∑
n=

g ′(n)E
{
TWβ – εgs(n)

}
+ = lim

ε↘
ε


s

∞∑
n=N

g ′(n)E
{
TWβ – εgs(n)

}
+,

letting δ → , we can complete the proof. �

Proposition . Under the assumptions of Theorem ., for any M > , we have

lim
ε↘

ε

s

∑
n≤A(ε)

g ′(n)
∣∣E{

n


(
λmax(Hβ ) – 

)
– εgs(n)

}
+ – E

{
TW β – εgs(n)

}
+

∣∣ = .
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Proof Using (.), we have

�n := sup
y∈R

∣∣P(
n



(
λmax(Hβ ) – 

) ≥ y
)
– P(TW β ≥ y)

∣∣ →  as n→ ∞. (.)

By (.), it is easy to see that

∣∣E{
n



(
λmax(Hβ ) – 

)
– εgs(n)

}
+ – E

{
TW β – εgs(n)

}
+

∣∣
=

∣∣∣∣
∫ ∞


P
(
n



[
λmax(Hβ ) – 

] ≥ x + εgs(n)
)
dx –

∫ ∞


P
(
TW β ≥ x + εgs(n)

)
dx

∣∣∣∣
≤

∫ ∞



∣∣P(
n



[
λmax(Hβ ) – 

] ≥ x + εgs(n)
)
– P

(
TW β ≥ x + εgs(n)

)∣∣dx
= (�n +�n), (.)

where

�n =
∫ �

– 


n



∣∣P(
n



[
λmax(Hβ ) – 

] ≥ x + εgs(n)
)
– P

(
TW β ≥ x + εgs(n)

)∣∣dx

and

�n =
∫ ∞

�
– 


n

∣∣P(
n



[
λmax(Hβ ) – 

] ≥ x + εgs(n)
)
– P

(
TW β ≥ x + εgs(n)

)∣∣dx.

For the term �n, using the relation (.), we can get

�n ≤ �n�
– 


n =�


n →  as n→ ∞. (.)

For the term �n, by (.) and (.), for large n, we obtain

P
(
TW β ≥ x + εgs(n)

) ≤ Ce–

 β(x+εgs(n))




and

P
(
n



[
λmax(Hβ ) – 

] ≥ x + n

 ε

) ≤ Ce–
βn
C

(  n
– 
 x+εn–


 gs(n))




≤ Ce–

C

βx

 .

Thus

�n ≤ C
∫ ∞

�
– 


n

e–

C

βx

 dx +C

∫ ∞

�
– 


n

e–

 β(x+εgs(n))


 dx →  as n→ ∞. (.)

Note that

ε

s

∑
n≤A(ε)

g ′(n) ≤ Cε

s

∫ A(ε)


g ′(x)dx = Cε


s g

(
A(ε)

)
= CM < ∞,
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by the Toeplitz lemma (see Loève [], p.), we can find that

ε

s

∑
n≤A(ε)

g ′(n)(�n +�n) →  as ε ↘ .

Then the proof is completed. �

Proposition . Under the assumptions of Theorem ., for uniformly ε > , we have

lim
M→∞ ε


s

∑
n>A(ε)

g ′(n)E
{
TWβ – εgs(n)

}
+ = .

Proof Following the same line as of the proof of Proposition ., we can deduce that

ε

s

∑
n>A(ε)

g ′(n)E
{
TWβ – εgs(n)

}
+

= ε

s

∑
n>A(ε)

g ′(n)
∫ ∞

εgs(n)
P(TW β ≥ t)dt

≤ Cε

s

∫ ∞

A(ε)
g ′(y)

∫ ∞

εgs(y)
P(TW β ≥ t)dt dy

≤ C
∫ ∞

εgs(A(ε))
x


s –

∫ ∞

x
P(TW β ≥ t)dt dx

≤ C
∫ ∞

Ms
P(TW β ≥ t)

∫ t

Ms
x


s – dxdt

≤ C
∫ ∞

Ms
t

 e–


 βt


 dt →  asM → ∞,

where (.) is used again in the last inequality. The proof is completed. �

Proposition . Under the assumptions of Theorem ., for uniformly ε > , we have

lim
M→∞

∑
n>A(ε)

g ′(n)E
{
n



(
λmax(Hβ ) – 

)
– εgs(n)

}
+ = .

Proof It follows by the same argument as in Proposition . that

ε

s

∑
n>A(ε)

g ′(n)E
{
n



(
λmax(Hβ) – 

)
– εgs(n)

}
+

=


ε


s

∑
n>A(ε)

g ′(n)
∫ ∞

εgs(n)
P
{
n



(
λmax(Hβ ) – 

) ≥ t
}
dt

≤ C
∫ ∞

Ms
P
{
λmax(Hβ ) ≥  +



n–


 t

}∫ t

Ms
x


s – dxdt

≤ C
∫ ∞

Ms
t

 e–

β
C

t

 dt →  asM → ∞,

where the last inequality used the fact (.) again, and the proof is completed. �
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Letting ε ↘  and then M → ∞, a combination of Propositions .-. can complete
the proof of Theorem . immediately. �

Proof of Theorem . The proof of Theorem . is analogous to that of Theorem .. The
only difference is that we will change the cut-off point A(ε) = [g–(Mε–


s )] to a new one,

Â(ε) = [g–(ε–v)], v > 
s . The following four propositions corresponding to Propositions .-

. are required, and the details are omitted.

Proposition . Under the assumptions of Theorem ., we have

lim
ε↘

–
log ε

∞∑
n=

g ′(n)
g(n)

E
{
TW β – εgs(n)

}
+ =


s

∫ ∞



(
 – Fβ (x)

)
dx.

Proposition . Under the assumptions of Theorem ., we have

lim
ε↘

–
log ε

∑
n≤Â(ε)

g ′(n)
g(n)

∣∣∣∣E
{
n



(
λmax(Hβ) – 

)
–


εgs(n)

}
+
– E

{
TW β – εgs(n)

}
+

∣∣∣∣ = .

Proposition . Under the assumptions of Theorem ., we have

lim
ε↘

–
log ε

∑
n>Â(ε)

g ′(n)
g(n)

E
{
TW β – εgs(n)

}
+ = .

Proposition . Under the assumptions of Theorem ., we have

lim
ε↘

–
log ε

∑
n>Â(ε)

g ′(n)
g(n)

E
{
n



(
λmax(Hβ ) – 

)
–


εgs(n)

}
+
= .

�

Proofs of Theorems . and . The proofs of Theorems . and . are essentially the
same as those of Theorems . and ., respectively, and the details of the proofs will not
be presented. �
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