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Abstract

The purpose of this paper is to introduce and study a class of new general systems of
set-valued variational inclusions involving relative (A, n)-maximal monotone operators
in Hilbert spaces. By using the generalized resolvent operator technique associated
with relative (A, n)-maximal monotone operators, we also construct some new
iterative algorithms for finding approximation solutions to the general systems of
set-valued variational inclusions and prove the convergence of the sequences
generated by the algorithms. The results presented in this paper improve and extend
some known results in the literature.
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1 Introduction

Recently, some systems of variational inequalities, variational inclusions, complementar-
ity problems, and equilibrium problems have been studied by many authors because of
their close relations to some problems arising in economics, mechanics, engineering sci-
ence and other pure and applied sciences. Among these methods, the resolvent opera-
tor technique is very important. Huang and Fang [1] introduced a system of order com-
plementarity problems and established some existence results for the system using fixed
point theory. Verma [2] introduced and studied some systems of variational inequalities
and developed some iterative algorithms for approximating the solutions of the systems
of variational inequalities. Cho et al. [3] introduced and studied a new system of nonlin-
ear variational inequalities in Hilbert spaces. Further, the authors proved some existence
and uniqueness theorems of solutions for the systems, and also constructed some iterative
algorithms for approximating the solution of the systems of nonlinear variational inequal-
ities, respectively.

Moreover, Fang et al. [4], Yan et al. [5], Fang and Huang [6] introduced and stud-
ied some new systems of variational inclusions involving H-monotone operators and
(H,n)-monotone operators in Hilbert space, respectively. Using the corresponding re-
solvent operator technique associated with H-monotone operators, (H, )-monotone op-
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erators, the authors proved the existence of solutions for the variational inclusion sys-
tems and constructed some algorithms for approximating the solutions of the systems
and discussed convergence of the iteration sequences generated by the algorithms, re-
spectively. Very recently, Lan et al. [7] introduced and studied a new system of nonlinear
A-monotone multivalued variational inclusions in Hilbert spaces. By using the concept
and properties of A-monotone operators, and the resolvent operator technique associ-
ated with A-monotone operators due to Verma [8], the authors constructed a new itera-
tive algorithm for solving this system of nonlinear multivalued variational inclusions with
A-monotone operators in Hilbert spaces and proved the existence of solutions for the
nonlinear multivalued variational inclusion systems and the convergence of iterative se-
quences generated by the algorithm. For some related work, see, for example, [1-32] and
the references therein.

On the other hand, Cao [33] introduced and studied a new system of generalized quasi-
variational-like-inclusions applying the n-proximal mapping technique. Further, Agarwal
and Verma [34] introduced and studied relative (A, n)-maximal monotone operators and
discussed the approximation solvability of a new system of nonlinear (set-valued) varia-
tional inclusions involving (A, n)-maximal relaxed monotone and relative (A, )-maximal
monotone operators in Hilbert spaces based on a generalized hybrid iterative algorithm
and the general (A, n)-resolvent operator method.

Inspired and motivated by the above works, the purpose of this paper is to consider the
following new general system of set-valued variational inclusions involving relative (4, n)-
maximal monotone operators in Hilbert spaces: Find (x{,3,...,x%) € Hy X Hy X - - - X Hp,
and u;; € L[,'j(x;‘) for any i,j =1,2,...,m such that

0 € Fy(uj, ujy,...ous,) + Mi(gi(x))), (1.1)

where m is a given positive integer, F; : Hy x Hy X --- X H,, - H;,A; : H; - H;, g; : H; > H;
and n; : H; x H; — H; are single-valued operators, U : H; — 2 is a set-valued operator
and M, : H; — 2™ is relative (4;, n;)-maximal monotone.

We note that for appropriate and suitable choices of positive integer m, the operators F;,
&i» Aiy i, M, Uy, and H; for i,j =1,2,...,m, one can know that the problem (1.1) includes
a number of known general problems of variational character, including variational in-
equality (system) problems, variational inclusion (system) problems as special cases. For
more details, see [1-31, 35] and the following examples.

Example 1.1 For i,j = 1,2,...,m, if U; = T} is single-valued operator, the problem (1.1)
reduces to finding x; € Hj, such that

0¢ F,v(Tﬂxf, TinXs,..., Tlmx:‘n) +Mi(gi(x7)). (1.2)
Example 1.2 Fori=1,2,...,m, if H; = H and A; = I, an identity operator, and M; = d¢;,
where ¢; : H — RU {+00} is proper and lower semi-continuous 7;-subdifferentiable func-

tional and d¢; denotes 7;-subdifferential operator, then the problem (1.1) reduces to find-
ing x7 € H and ”Z; € U,;(x;.k) forj=1,2,...,m such that

(Fi(u oo t) mi( i (7)) 2 0i(ei(x7)) = i), Ve H. (L3)
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The problem (1.3) is called a set-valued nonlinear generalized quasi-variational-like-
inclusion system, which was considered and studied by Cao [33].

Example 1.3 When m =2 and g; = I for i = 1,2, then the problem (1.1) is equivalent to
the following nonlinear set-valued variational inclusion system problem: Find (x},x3) €
H, x Hy and uf € Un(x}), uj € Uy (x}) such that

0 € Fy(x},u3) + My (x), (1.4)
0 € F>(u, %) + My (x3), '

which was studied by Agarwal and Verma [34].

Example 1.4 If m = 2 and M;(x;) = d¢;(x;), where ¢; : H; — R U {+00} is proper, convex,
and lower semi-continuous functional and d¢; denotes the subdifferential operator of ¢;
for all x; € H;, i = 1,2, then the problem (1.4) reduces to the following system of set-valued
mixed variational inequalities: Find (x],x3) € Hy x Hy, uj € Ui(x}) and uj € Us(x3) such
that

<F1(xi‘, "‘3)”‘ —xi‘) +@1(x) - <ﬂ1(xf) >0, VxeH,

(15)
(Fa(u5,53),y = x5) + 0200) — 2 (x3) = 0, ¥y e Hy.

If U, = U, =1, then the problem (1.5) reduces to finding (x},x}) € H; x H, such that

<F1(xr’x§)»x—xik>+§01(x)—<ﬂ1(xik) >0, VxeH, e
(Fa(x5,25), 7 = x3) + 02(0) — 2 (x5) = 0,  Vy € Hy,

which is called the system of nonlinear variational inequalities considered by Cho et al. [3].
Some specializations of the problem (1.6) are dealt by Kim and Kim [35].

Example 1.5 If m =2 and U; = U = g1 = g&» =1, then the problem (1.1) reduces to the
problem of finding (x},%3) € H; x Hy such that

0 € Fi(x},x3) + Mi(x}),

0 € Fy(xf,%3) + Ma(x3),
which was introduced and studied by Fang et al. [4].

Moreover, by using the generalized resolvent operator technique associated with relative
(A, n)-maximal monotone operators, we also construct some new iterative algorithms for
finding approximation solutions to the general systems of set-valued variational inclusions
and prove convergence of the sequences generated by the algorithms.

2 Preliminaries

Throughout, let H and H; (i =1,2,...,m) be real Hilbert spaces and endowed with the
norm | - || and inner product (-, -). Let 2/ and C(H) denote the family of all the nonempty
subsets of H and the family of all closed subsets of H, respectively.
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Definition 2.1 Let T': H — H be a single-valued operator. Then the map T is said to be
(i) r-strongly monotone, if there exists a constant r > 0 such that

(T@) - TO),x-y)=rlx-ylI>, VryeH;
(i) B-Lipschitz continuous, if there exists a constant 8 > 0 such that
ITx - Tyl < Bllx-yl, VxyeH.

Definition 2.2 Letn: H x H — H and A : H — H be single-valued operators, M : H —
2H be set-valued operator. Then
(i) n is said to be ¢-strongly monotone, if there exists a constant ¢ > 0 such that

(nxy),x—y) = tlx-yl*, Vx,y€H;

(i) n is said to be 7-Lipschitz continuous, if there exists a constant T > 0 such that
In@y|| <tlx-yl, VayeH;

(iii) A is said to be n-monotone, if
(A®) -AB) n(x,9) >0, VxyeH;

(iv) A is said to be strictly n-monotone, if A is n-monotone and
(A(x) —A(y), n(x,y)) =0 ifandonlyif x=y;

(v) A is said to be (r, n)-strongly monotone, if there exists a constant r > 0 such that
(A®) —A®) n(x,9)) = rlx-yl*,  Vx,y € H;

(vi) M is said to be n-monotone with respect to A (or relative (4, n)-monotone) if
(u -, n(A(x),A(y))) >0, Vx,yeH,ueMx),veM(y)

(vil) M is said to be relative (A4, n)-maximal monotone, if M is n-monotone with respect
to A (or relative (A, n)-monotone) and (A + AM)(H) = H, where A > 0 is an
arbitrary constant.

Definition 2.3 Fori,j=1,2,...,m,let H; be a Hilbert space, A; : H; — H; be single-valued
operator, Uj; : H; — 28 be set-valued operator. Then nonlinear operator F; : H; X Hy X
.- x H,, - H, is said to be
(1) (Uj,cj, py)-relaxed cocoercive with respect to A; (or relative (U, ¢j, u;)-relaxed
cocoercive) in the jth argument, if there exist constants ¢, 14; > 0 such that for all
x},xlz € Hj, and for any u}l € U,j(x}), u/2 € U,;(xf),

<Fi(. oy u}, .. ) - F,-(. 7 .),Aj(x}) —Aj(sz))

> (—cj)||Fi(...,u1,...) —Fi(...,uz,...) ||2 + ,u,”x} —sz

2

’
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(ii) ¢;-Lipschitz continuous in the jth argument, if there exists constant £; > 0 such that
for all x;, y; € Hj,

”Fi(xl, e X1 Xy Xjgls - .,xm) - F,-(xl, v X1 Yy Xjls - .,xm) || < ||x, —_)/jH.

Remark 2.1
(i) When m =1 and U =1, then (i) and (ii) of Definition 2.3 reduce to corresponding
concept of the relative relaxed cocoerciveness and Lipschitz continuity, respectively.
(ii) If U = Ty is single-valued operator for i,j = 1,2,...,m, then F; is (Uj;, ¢j, ;1) -relaxed
cocoercive with respect to 4; in the jth argument reduce to (T, ¢;, i1;)-relaxed
cocoercive with respect to 4; in the jth argument, that is, if there exist constants
¢j» ;> 0 such that for all x},xlz €Hj,

(Fi(o- Ty, ) = Bilon, Ty, ) Ay (%) — 4 (x7))

> (—C]‘) “Fl(, T,jx},...) —Fi(..., T,,x,z,) “2 + ,u,»Hx} —sz “2

Lemma 2.1 ([34]) Letn:H x H— H be a single-valued mapping, A : H — H be a strictly
n-monotone mapping and M : H — 2 be a relative (A, n)-maximal monotone mapping.
Then the mapping (A + AM) is single-valued, where . > 0 is arbitrary constant.

Definition 2.4 Let n: H x H — H be a single-valued mapping, A : H — H be a strictly
n-monotone mapping and M : H — 2! be a relative (A, n)-maximal monotone mapping.
Then generalized resolvent operator Rﬁ/x :H — H is defined by

Ry (@) =(A+ M) (), VzeH,
where A > 0 is a constant.

Lemma2.2 ([34]) Letn:H x H— H bea t-strongly monotone and t-Lipschitz continuous
mapping, A : H — H be an r-strongly monotone mapping, and M : H — 2" be a relative
(A, n)-maximal monotone mapping. Then generalized resolvent operator R?,[”x :H— His
~-Lipschitz continuous, that is,

[y @ - R 0N < Zlw=yl, Ve H.

Definition 2.5 A set-valued operator U : H — 2/ is said to be D-y -Lipschitz continuous,
if there exists a constant y > 0 such that

D(U@),U®) <vyllx-yll, YxyeH,

where D : C(H) x C(H) — R U {+00} is called the Hausdorff pseudo-metric defined as
follows:

DU, V) = max{sup inf [lx -yl sup inf [|x - y] ] VU,V € C(H).
xeuyGV yevxeu

Furthermore, the Hausdorff pseudo-metric D reduces to the Hausdorff metric when C(H)
is restricted to closed bounded subsets of the family CB(H).
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Lemma 2.3 Let 6 € (0,1) be a constant. Then function f(L) =1 — A + A0 for A € [0,1] is
nonnegative and strictly decrease and f (1) € [0,1]. Further, if A, # 0, then f(1) € (0,1).

Lemma 2.4 ([36]) Let {a,} and {b,} be two nonnegative real sequences satisfying
Aps1 = an + bn
with 0 <0 <1 and lim,_, o b,, = 0. Then lim,,_,, a, = 0.

3 Iterative algorithm and convergence analysis

In this section, we construct a class of new iterative algorithms for finding approximate
solutions of the problems (1.1) and (1.2), respectively. Then the convergence criterion for
the algorithms is also discussed.

Lemma 3.1 Let (x{,%5,...,x)) € Hl x Hy x --- x H,, and uj; € L[li(x;.“)for Lj=12,...,m,

then (X5, %5, .., X5, Uiy, oo Uy Wiys oo U,,,) (denoted by (x)) is a solution of the prob-

lem (1.1) if and only if (x) satisfy
g(x}) = R}t;l”/; [Ai(gi(x})) = piFi(uhs .oty ity o) ] (3.1)
where Rﬁ,}t"[;l =(A; + piM)) Y and p; > 0 is a constant for i =1,2,...,m.

Proof 1t follows from the definition of generalized resolvent operator Rj\{/}l"/;l that the proof

can be obtained directly, and so it is omitted. O

Algorithm 3.1

Step 1. Setting (x(f,xg,...,xg,,) € Hy x H, x --- x H,, and choose ug € L[ij(x}Q) for i,j =
1,2,...,m.

Step 2. Let

At = (L= + A{xf -g (xl”) + Rﬁl"/;l [Ai(gi (x”))

i

- piFi(uﬁ,...,uzfl,uZ, uZH,...,ufm)]} (3.2)

foralli=1,2,...,mand n=0,1,2,..., where A € (0,1] is a constant.
Step 3. By the results of Nadler [37], we can choose uf]’.“ € L[,«j(x]f’“) such that

1
leg =] = (1 )P ), 39

where D;(., ) is the Hausdorff pseudo-metric on C(H;) and i,j=1,2,...,m.
Step 4. If x/*! and uZ*l for i,j =1,2,...,m satisfy (3.2) to sufficient accuracy, stop. Other-
wise, set #:= n + 1 and return to Step 2.
Remark 3.1 If Rf\ljlnpjl reducesto /5’ = (I + pdg;)~}, where ¢; : H; — RU {+00} is proper and
lower semi-continuous 7;-subdifferentiable functional, H; = H fori =1,2,...,mand A =1,
then Algorithm 3.1 reduces to Algorithm (I) of Cao [33].
When A =1and Uj; = Tj is single-valued operator for i,j = 1,2,..., m, then Algorithm 3.1
reduces to the following algorithm for the problem (1.2).
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Algorithm 3.2 For any given (x),49,...,4%) € H; x Hy x --- x H,,, we compute x/ as
follows:

wpth = o - i) + Ry [Ai(g ()

n V7 M N " M
- pz’FL’(Tilxl yeues Tii—lx,'_p Tiixi , Tii+1xi+1r ceey szxm)] + W;

(3.4)

forn=0,1,2,...andi=1,2,...,m,where w! € H;is error to take into account a possible in-
exact computation of the resolvent operator point satisfying conditions lim,,_, o ||[W/|| = 0.

Remark 3.2
(i) Letm=2,g,=1, U;=1fori=1,2, then Algorithm 3.1 reduces to Algorithm 4.3 of
Agarwal and Verma [34].
(ii) If for appropriate and suitable choices of positive integer m and mappings F;, g;, A;,
ni, M, Uy, and H; for i,j=1,2,...,m, one can know that Algorithms 3.1-3.2 are

extending a number of known algorithms.

In the sequel, we provide main result concerning the problem (1.1) with respect to Al-
gorithm 3.1.

Theorem 3.1 For i =1,2,...,m, let n; : H; X H; — H; be t;-Lipschitz continuous and
t;-strongly monotone operator, A; : H; — H; be B;-Lipschitz continuous and r;-strongly
monotone operator, g; : H; — H; be &;-Lipschitz continuous and §;-strongly monotone oper-
ator and M; : H; — 2'% berelative (A;, n;)-maximal monotone. Suppose that Uj:H; — CH;
is Dj-y;-Lipschitz continuous, F; : Hy x Hy x --- x H,, — H; is (Uy;, c;, j1;)-relaxed coco-
ercive with respect to A; in the ith argument and ¢;-Lipschitz continuous in the jth for
i,j=1,2,...,m. If there exists constant p; > 0 for such that

i 252 2 2y2 + pPLly?
- \/ﬁj §7 = 2087 + 2065y + 0755V
it

m
2 PiTilijVij
+ /1—25,+§j+27<1 (3.5)

i=1,ij

6, =

forallj=1,2,...,m, then the problem (1.1) admits a solution (x), i.e. (x],%5,..., %}, Ujj,...,
Wpgs e Upis - or Upyy), Where (x7,%3,..., %) € Hy X Hy X - -+ X Hyyy and uj; € U(x7) for i, =
1,2,...,m. Moreover, iterative sequences {x}'} and {u};} generated by Algorithm 3.1 strongly

converge to x; and uj; for i,j =1,2,...,m, respectively.
Proof Fori=1,2,...,m, applying Algorithm 3.1 and Lemma 2.2, we have

i Xi

n+l _ n”
i i

|
= (=2 a7 2 = = (gi(?) i)

+ Ry [As(ei () = (o w10,

=~ Ryp (A (™)) = ()]

= =2 =7 2l - - (@) — @@ ) |
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k AT

rl ; ”A ( l( )) —Ai( i(xl(t—l))

n n
_Iol[Fl(uil’ ’uzz l’uu’um—l’ ’uim)

_Fi(u?l’ ’uu l’uzz l’uuﬂ’ ’uznm)]”

Mlpl

1
”F( Ujs. ’uzz 1’”Z ’uzz+1’ u;lm)
- Fi(u;’ql_l’ (] uzz 1’ uu ’ Z'tzerl’ u:qm_l) || . (36)

By &;-Lipschitz continuity and §;-strongly monotonicity of g;, we get

o =7~ (i) - o)) |
= o= a7 - 2 () - gi (o) — )
+ ) - gl ™))

< (1 —28; + g}) ”xl" —xt ||2 (3.7)

Since A; is B;-Lipschitz continuous, F; is (Uj;, ¢;, i1;)-relaxed cocoercive with respect to A;

in the ith argument and F; is {;;-Lipschitz continuous in the jth argument, then we have

| Ai(gi(x)) - Ai( f(x:"l))—pi[Fi(uﬁ, Uiy Wi Uiy Uiy

= Fi(tfys ety i) ]|

= [Ai(ei(x7)) - (z(’“))ll
=20 Fi(ult, .ty il 1)
= Fi(y ooty U1, Ai8i(7)) - Aulgi(#77)))
2| Fiudly oty iyl
—Elt ) |

< B la@) -l )|
=201 (=€) | Fi (o gy ] Uy 1)
—Fuyoul gl )|
s iai () g T+ o2 |- |

< (B26? - 2p01:62) |t — 27|+ (2picic? + 22 |ual — ™)) (3.8)
By D;-y;-Lipschitz continuity of the Uj; and (3.3), we get

n -1 n
||Fi(ui1’ *? uu 1’ M“ ’ uu+l’ uim)
n-1 n-1
- Fi(uil 1 uzz 1’ uu ’ Mll+1’ o Uiy ) ||

n _n n-1 n
S |’Fi(ui1’ui2’ ’ull l’uu ’ulH-l’ ’uim)

n-1 n
- F ( ll ) utZ’ X Mu 17 Mzz ’ Mu+1’ uim) H

Page 8 of 16
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n-1 _n-1 n n-1 _n n
oo | Fi s Ul 1))

n-1 _n-1 n-1 _n-1 _n n
—Fi(y iy W U s ) |

n-1 _n-1 n-1 _n-1 _n n
+ ”Fi(”ﬂ yUjp e Uy U ’uii+1"“’uim)

n-1 _n-1 n-1 _n-1 _ n-1 n
_Fi(“ﬂ s Upp see s Uy 1y Uy ’uii+1""’uim)H

u

n-1 n )
ii+17 0 %im

n-1 _n-1 n-1 n-1
"’”""”Fz’(”ﬂ yUp e Ui Uy U
n-1 _ n-1 n-1 . n-1 , n-1 n-1
—Fi(”ﬂ s Uip see s Uy 1y Uy r”mv-w”im)”

< alluy = s 44 G - |

n n-1 n n-1
+ Giil ||”ii+1 — Ui “ +o 4 Cim H Uiy — Uim “

m
= > gllug -

177
“ 1
<D (1 + ;)D,(ui,»(xf),ui,»(xfl))
17
1 m
<(142) X ol -7 9)

j=Lii

and
1
-] = (1o )0t ot )
1 -1
< (1 + ;)yu”x:l - ” (3.10)
Combining (3.8) and (3.10), we have

[Ailei (7)) = Ailei (™)) = il Fi(uiys ooty i 00 7,)

= Fi(uly, oyl ull i) ] ||2

< [/3351'2 - 2pii8;
1\’ 2
; (1 . ;> y2(2pi? + ngg)] o — 21| (310)

It follows from (3.6)-(3.9), and (3.11), that

gt — 7
= (Lrenio2ne ) b |
AT
' r_? |:\/13i2€i2 - 20iuid; + (1 * ’/171)2)’112 (2/0:‘0;‘{3 + :0;'2;1%) ||xzn - ”
144

1 m
+ (1 + ;)Pi Z cyvilaf -«

)
Jj=Lj#i :|

Page9of 16
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which implies that

m

ZHx;Hl ln Z n+l _
j=1
{(1 At ayf1-26+82) [ =2

AT 1\’
+ —Ttl (\/ﬂ%lg - 2pipti87 + (1 + ;) vii oicitit + pigi) o) 27|

‘M§ T

rit;
+ 1+l i Vi x! =«
p Pi ;zﬂ/y”xj x] ||
j=Li
m
- Z[(l—k+k,/l—28i+§f)
i1

2
o \/.3 £ =207 + <1 + —) Vi (2p0icic? + p}C ”)j| [
1
PiTi8ijVij =
(1) 3 Ay

i=1 j=1,j#i rit
m
- Z[(l—x+x,/1—25,+g,2)
j=1

)\r 1\?
ATj BPE? — 20148} + <1+ ;) v (2,o,c,g“” +p7¢ ”):|||x —a 1

+< ) Z Z szzlfu%; ” 1 n 1”

j=1 i=1,i#

m

2{1 2) +x<,/1—23,+g/2

=1

T 1\’
= \'//3/’251'2 =206} + (1 + _> v (2pi¢¢5 + 91‘251’12))
it "
1 plrl;“,,m, 1
+(1+ - x”
(13) 22 2580 |y

i=1,i7#j

, (3.12)

- m
= 2022~ <A Y[l -
Jj=1 -

where

or = 2 BPE7 — 201187 + 1+12 2 (2p5¢i¢2 + p?¢?)
T\ P50 Vi \SPiCiSj; + Py Sjj

1\ — Pty
+J1-28+ &+ <1+ —) Z U LLL)
n rit;

i=L,i%j
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and
- m — n
fu(A) —lfja;;n{l A+ A0 }

By condition (3.5), we know that sequence {6} is monotone decreasing and 0 — 6; as

n — 00. Thus,
fG) = Jim £,(3) = max {12 +26)).
n—od <j<m

Since 0 <0 <1forj=1,2,...,m, we get § = max;<j<{0;} € (0,1), by Lemma 2.3, we have
f()=1-x+ 26 €(0,1). From (3.12), it follows that {x;’} is a Cauchy sequence and there
exists x/* € H; such thatx;’ — x]* asn—ooforj=12,...,m.
Next, we show that uZ — ul’; € U,-,-(x;‘) asn— oo fori,j=1,2,...,m.
It follows from (3.9) and (3.10) that {u};} are also Cauchy sequences. Hence, there exists
u:; € H; such that ug. — u;; asn — oo for i,j=1,2,...,m. Furthermore,
(6 4y 57)) = in{ ] 51 € Uy 5]
< ]+ e 1)
< [log — ]| + Dy (U (%), U (7))

< ||u:;—uZ|| +yl-,'||x1’7—x;‘|| -0 (n— o).

Since U,j(x;‘) is closed for i,j = 1,2,...,m, we have uj; € LIi}-(x;‘) for i,j =1,2,...,m. Using
continuity, (x{,%3,...,4%) € Hy x Hy X --- x Hy, and uj} € Ulj(x;‘) fori,j=1,2,...,m satisfy
(3.1) and so in light of Lemma 3.1, () is a solution to the problem (1.1). This completes the
proof. g

Remark 3.3 Ifthe generalized resolvent operator R?/}l”/;l reducesto /5’ = (I+pd¢;)~!, where
@; : H — R U {+00} is proper and lower semi-continuous 7;-subdifferentiable functional,
H;=H fori=1,2,...,m, » =1 and (Uj;, ¢;, u;)-relaxed cocoerciveness with respect to A;
in the ith argument of F; reduces to w;-(U;, A;)-strongly monotonicity (right now, ¢; = 0,
A; =g;), then Theorem 3.1 reduces to Theorem 3.1 of Cao [33].

Theorem 3.2 Assume that n;, A;, g, M; are the same as in the Theorem 3.1 for i =
1,2,...,m. Suppose that T; : H; — Hj is y;;-Lipschitz continuous, F; : H; x Hy x - - x H, —
H; is (Tj, ciy j1i)-relaxed cocoercive with respect to A; in the ith argument and ¢y-Lipschitz
continuous in the jth for i,j = 1,2,...,m. If there exists constant p; > 0 for such that

Tj 252 2 2y2 4 p2r2y2?
0 = 1t .\/ﬁj § = 2014587 + 205685 + 05 8y
"\ otV
+ 1—28j+§].2+ Z % <1
=l

forj=1,2,...,m, then the problem (1.2) has a unique solution (x},x5,...,x},) € Hy x Hy X
-++ X H,,. Moreover, the iterative sequences {x}'} generated by Algorithm 3.2 strongly con-

vergetox}‘forj:l,Z,...,m.
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Proof Define the norm || - ||, on product space H; x Hy X - -+ x H,, by
m
|Gevda, )|, =Y llgll, Va0, %) € Hy X Hy X <+ X Hy.
j=1

It is easy to see that (H; x Hy X -+ X Hy, || - ||+) is a Banach space. Set

- gilx) + Ry [Ai(gilesr)
— piFi(Tax1, ..., Tiimaict, Tk TiniFists - > Tom&m) |-

Let G:Hy X Hy X -+- X H, — Hy x Hy X -+ x H,, be defined by

G, %2, .3 %m) = V1, Y2 -5 Vm)s V(X1 X0, %) € H X Hy X « -+ X Hy,.
For any (x},43,...,xL), (%3, 43,...,x%) € Hy x Hy X --+ X Hy,, it follows from Lemma 2.2
that

|G x,) = G35, o) |

= ZH% -7
=< Xm:{ [} =7 = (gi(w}) —gi () | + | Ri™ [As(gi(h)

i=1

- piFi(Tilxi: e Tz’z’—lxll;p Tiz’x TZHIxHP ) szx},n)]

- Ry [Ailei(+7))

- piFi(Tilx%r . Tu lxl 1’ T x Tu+lxz+1’ zmx )] || }

m

> b= - telet) -a)|

r o Ada) - Al ()

1 1 1
- pi [Fi(Tﬂxl, eows Tiiaxty, Tixth, Tia Xy, - Timxm)

IA

- Fi(Tilx%r . Tu lxl 1’ T x Tu+lxz+1’ zmx )] H
Tzﬂz

HF( tlxl; Tii—lx}_lr Tiix Tu+lxl+1: Ttmxin)
— Fi(Tas?, .o, Tiawty, Tix?, Ty, oo T2, | } (313)

By &;-Lipschitz continuity and §;-strongly monotonicity of g;, we get

o} =7 = (gi(x}) —gi(x7)) | < /1 - 28 + &F||«} — 7. (3.14)

Since A; is B;-Lipschitz continuous, F; is (Ty;, ¢;, it;)-relaxed cocoercive with respect to A;

in the ith argument and F; is {;-Lipschitz continuous in the jth argument and Tj; : H; — H,

Page 12 of 16
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is y;-Lipschitz continuous, then we have

[ Ai(gi(x)) - Ailei(x7))

= pi[Fi(Taxt, ... Tiaxty, Ty TiiaXys - - » Tim,)
= Ei(Taa o, Tioaxhy, Tkt Tini®iyyse -0 Timy,) ]|

< B ai(l) ()|
=20 (=) |Ei(Taxts..., Ticaxty, Tt T Xy - - Timxy,)
— F(Tuxl, ..., Tyaxty, Tix?, Tanxhy, -, Tonxl) |2
+uilla() - gd) ]+ P Tund - Taadl |

< (B2~ 2pu1i8) [t =7 |” + (2picisi + 0 8) | Tareh = Tuos? |

< (B2E2 - 2pyuid? + 2pici 2y + 2 2vi) | %) — 42| (3.15)

and

|Ei(Taxt,..., Ticixly Tty Tiina®hyys- - r Tim,)
~Fi(Tux3, ..., Tiaxiy, Tuxts TiaXisgs o Tomocsy )|
< G| Taxg = T |+ + Gt | Timatiy = Tioaoy |
+ Giivl ” Tini — Tin¥i, ” +o ot Cim ” Timy, = Tim¥i H

m

Z i T — Ty |
Z Gyvillx -7 |- (3.16)

From (3.13)-(3.16), we have

||G(x},x§, . ..,xin) - G(xf,x%,...,xfn) H*

5%(,/1—2&%&

i=1

—\/ﬁ 52_2,0#,8 +2p,cL§”y” + P ‘;uVu)Hx —x2||

P T Vi
Ly A x5 -]

jevj#io 7

m
SR
j=1
m
<03 s} -]
j=1

0 (o) - ()

¥’
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where 6 = max;<j<,, ;. It follows from assumption (3.5) that 0 < 6 < 1. This shows that
G:H; X Hy X -+- X H, — Hy x Hy X - -- X Hy, is a contractive operator, and so there exists
a unique (x},%3,...,%5) € Hy x Hy x --- x Hy, such that G(x],x3,...,%5,) = (x],%5,...,%5,).
Thus, (x],%3,...,%;,) is the unique solution of the problem (1.2).

Now we prove that x! — xf asn — oo fori=1,2,...,m.In fact, it follows from (3.4) and
Lemma 2.2 that

n+l
i

o =]

|7 =7 = (i) — & () |

+ Ry [Ai(gi ()

— piF ATy, Tua®ll, Tkl Tty oy Tl ]

- Ry [Ai(e ()

= piFi(Tuxls . Ty, Tty T Xy Tomil) || + | W7
o =7 = (@) =g (7)) || + [w] |

+ A ) - A )

VA n v M M
- pi [Fi(Tilxl voeor Ty, Tl T Xy o Timls,)

IA

IA

- Fi(nlxil: cees T'l'i—lx:‘q_lr T'l'l'x?’(f T'ii+1x;l+11 (RN me:ln)] ”

TiPi n n * n n
+ it ”Fi(Tz’lxl yeees Tii—lxi,p Tiixi ’ Tii+1xi+1; EEy) szxm)
iti
* * * * *
= Fi(Tux,..., Tiaxiy, Tuxls Tin&fgs oo Toml) |- (3.17)

Following very similar arguments from (3.14)-(3.16), we have

X

n+l *
o =27 ]

= l2 87 -]

.
R
1Ad}

+m§2mﬂ¢—ﬁ@+wm, o1

j=Lii

which implies that

m m m
Dol = = 36l -+ D 1w
j=1 j=1 j=1

’

m m
<0l -]+ 2w
j=1 j=1

where a, = Z;Zl I} = 71, by = ZI'ZI Iw}'ll. The condition of Algorithm 3.2 yields

lim,,—, o0 b, = 0. Now Lemma 2.4 implies that lim,,_, », a;, = 0, and so x]” — x]* as n — oo for

j=1,2,...,m. This completes the proof. O
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Remark 3.4 If m =2, g = g, = Uy = Uy =1 (right now, §; = §; = ¢; =1 for i = 1,2), then
Theorem 3.1 reduces to Theorem 4.5 based on Algorithm 4.3 of Agarwal and Verma [34].
Our presented results improve and extend some known results in the literature.
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