New general systems of set-valued variational inclusions involving relative (A, η)-maximal monotone operators in Hilbert spaces

Ting-jian Xiong ${ }^{1}$ and Heng-you Lan ${ }^{1,2^{*}}$
Dedicated to professor Shih-sen Chang on the occasion of his 80th birthday.

"Correspondence:
hengyoulan@163.com
Institute of Nonlinear Science and Engineering Computing, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P.R. China
${ }^{2}$ Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Zigong, Sichuan 643000, P.R. China

Abstract

The purpose of this paper is to introduce and study a class of new general systems of set-valued variational inclusions involving relative (A, η)-maximal monotone operators in Hilbert spaces. By using the generalized resolvent operator technique associated with relative (A, η)-maximal monotone operators, we also construct some new iterative algorithms for finding approximation solutions to the general systems of set-valued variational inclusions and prove the convergence of the sequences generated by the algorithms. The results presented in this paper improve and extend some known results in the literature.

Keywords: general system of set-valued variational inclusions; relative (A, η)-maximal monotone operator; generalized resolvent operator technique; relative relaxed cocoercive; iterative algorithm; convergence criteria

1 Introduction

Recently, some systems of variational inequalities, variational inclusions, complementarity problems, and equilibrium problems have been studied by many authors because of their close relations to some problems arising in economics, mechanics, engineering science and other pure and applied sciences. Among these methods, the resolvent operator technique is very important. Huang and Fang [1] introduced a system of order complementarity problems and established some existence results for the system using fixed point theory. Verma [2] introduced and studied some systems of variational inequalities and developed some iterative algorithms for approximating the solutions of the systems of variational inequalities. Cho et al. [3] introduced and studied a new system of nonlinear variational inequalities in Hilbert spaces. Further, the authors proved some existence and uniqueness theorems of solutions for the systems, and also constructed some iterative algorithms for approximating the solution of the systems of nonlinear variational inequalities, respectively.
Moreover, Fang et al. [4], Yan et al. [5], Fang and Huang [6] introduced and studied some new systems of variational inclusions involving H-monotone operators and (H, η)-monotone operators in Hilbert space, respectively. Using the corresponding resolvent operator technique associated with H-monotone operators, (H, η)-monotone op-
erators, the authors proved the existence of solutions for the variational inclusion systems and constructed some algorithms for approximating the solutions of the systems and discussed convergence of the iteration sequences generated by the algorithms, respectively. Very recently, Lan et al. [7] introduced and studied a new system of nonlinear A-monotone multivalued variational inclusions in Hilbert spaces. By using the concept and properties of A-monotone operators, and the resolvent operator technique associated with A-monotone operators due to Verma [8], the authors constructed a new iterative algorithm for solving this system of nonlinear multivalued variational inclusions with A-monotone operators in Hilbert spaces and proved the existence of solutions for the nonlinear multivalued variational inclusion systems and the convergence of iterative sequences generated by the algorithm. For some related work, see, for example, [1-32] and the references therein.

On the other hand, Cao [33] introduced and studied a new system of generalized quasi-variational-like-inclusions applying the η-proximal mapping technique. Further, Agarwal and Verma [34] introduced and studied relative (A, η)-maximal monotone operators and discussed the approximation solvability of a new system of nonlinear (set-valued) variational inclusions involving (A, η)-maximal relaxed monotone and relative (A, η)-maximal monotone operators in Hilbert spaces based on a generalized hybrid iterative algorithm and the general (A, η)-resolvent operator method.
Inspired and motivated by the above works, the purpose of this paper is to consider the following new general system of set-valued variational inclusions involving relative (A, η)maximal monotone operators in Hilbert spaces: Find $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$ and $u_{i j}^{*} \in U_{i j}\left(x_{j}^{*}\right)$ for any $i, j=1,2, \ldots, m$ such that

$$
\begin{equation*}
0 \in F_{i}\left(u_{i 1}^{*}, u_{i 2}^{*}, \ldots, u_{i m}^{*}\right)+M_{i}\left(g_{i}\left(x_{i}^{*}\right)\right), \tag{1.1}
\end{equation*}
$$

where m is a given positive integer, $F_{i}: H_{1} \times H_{2} \times \cdots \times H_{m} \rightarrow H_{i}, A_{i}: H_{i} \rightarrow H_{i}, g_{i}: H_{i} \rightarrow H_{i}$ and $\eta_{i}: H_{i} \times H_{i} \rightarrow H_{i}$ are single-valued operators, $U_{i j}: H_{j} \rightarrow 2^{H_{j}}$ is a set-valued operator and $M_{i}: H_{i} \rightarrow 2^{H_{i}}$ is relative $\left(A_{i}, \eta_{i}\right)$-maximal monotone.

We note that for appropriate and suitable choices of positive integer m, the operators F_{i}, $g_{i}, A_{i}, \eta_{i}, M_{i}, U_{i j}$, and H_{i} for $i, j=1,2, \ldots, m$, one can know that the problem (1.1) includes a number of known general problems of variational character, including variational inequality (system) problems, variational inclusion (system) problems as special cases. For more details, see $[1-31,35]$ and the following examples.

Example 1.1 For $i, j=1,2, \ldots, m$, if $U_{i j}=T_{i j}$ is single-valued operator, the problem (1.1) reduces to finding $x_{j} \in H_{j}$, such that

$$
\begin{equation*}
0 \in F_{i}\left(T_{i 1} x_{1}^{*}, T_{i 2} x_{2}^{*}, \ldots, T_{i m} x_{m}^{*}\right)+M_{i}\left(g_{i}\left(x_{i}^{*}\right)\right) . \tag{1.2}
\end{equation*}
$$

Example 1.2 For $i=1,2, \ldots, m$, if $H_{i}=H$ and $A_{i} \equiv I$, an identity operator, and $M_{i}=\partial \varphi_{i}$, where $\varphi_{i}: H \rightarrow R \cup\{+\infty\}$ is proper and lower semi-continuous η_{i}-subdifferentiable functional and $\partial \varphi_{i}$ denotes η_{i}-subdifferential operator, then the problem (1.1) reduces to finding $x_{i}^{*} \in H$ and $u_{i j}^{*} \in U_{i j}\left(x_{j}^{*}\right)$ for $j=1,2, \ldots, m$ such that

$$
\begin{equation*}
\left\langle F_{i}\left(u_{i 1}^{*}, u_{i 2}^{*}, \ldots, u_{i m}^{*}\right), \eta_{i}\left(x, g_{i}\left(x_{i}^{*}\right)\right)\right\rangle \geq \varphi_{i}\left(g_{i}\left(x_{i}^{*}\right)\right)-\varphi_{i}(x), \quad \forall x \in H . \tag{1.3}
\end{equation*}
$$

The problem (1.3) is called a set-valued nonlinear generalized quasi-variational-likeinclusion system, which was considered and studied by Cao [33].

Example 1.3 When $m=2$ and $g_{i} \equiv I$ for $i=1$,2, then the problem (1.1) is equivalent to the following nonlinear set-valued variational inclusion system problem: Find $\left(x_{1}^{*}, x_{2}^{*}\right) \in$ $H_{1} \times H_{2}$ and $u_{1}^{*} \in U_{1}\left(x_{1}^{*}\right), u_{2}^{*} \in U_{2}\left(x_{2}^{*}\right)$ such that

$$
\begin{align*}
& 0 \in F_{1}\left(x_{1}^{*}, u_{2}^{*}\right)+M_{1}\left(x_{1}^{*}\right), \tag{1.4}\\
& 0 \in F_{2}\left(u_{1}^{*}, x_{2}^{*}\right)+M_{2}\left(x_{2}^{*}\right),
\end{align*}
$$

which was studied by Agarwal and Verma [34].
Example 1.4 If $m=2$ and $M_{i}\left(x_{i}\right)=\partial \varphi_{i}\left(x_{i}\right)$, where $\varphi_{i}: H_{i} \rightarrow R \cup\{+\infty\}$ is proper, convex, and lower semi-continuous functional and $\partial \varphi_{i}$ denotes the subdifferential operator of φ_{i} for all $x_{i} \in H_{i}, i=1,2$, then the problem (1.4) reduces to the following system of set-valued mixed variational inequalities: Find $\left(x_{1}^{*}, x_{2}^{*}\right) \in H_{1} \times H_{2}, u_{1}^{*} \in U_{1}\left(x_{1}^{*}\right)$ and $u_{2}^{*} \in U_{2}\left(x_{2}^{*}\right)$ such that

$$
\begin{array}{ll}
\left\langle F_{1}\left(x_{1}^{*}, u_{2}^{*}\right), x-x_{1}^{*}\right\rangle+\varphi_{1}(x)-\varphi_{1}\left(x_{1}^{*}\right) \geq 0, & \forall x \in H_{1} \\
\left\langle F_{2}\left(u_{1}^{*}, x_{2}^{*}\right), y-x_{2}^{*}\right\rangle+\varphi_{2}(y)-\varphi_{2}\left(x_{2}^{*}\right) \geq 0, & \forall y \in H_{2} \tag{1.5}
\end{array}
$$

If $U_{1}=U_{2} \equiv I$, then the problem (1.5) reduces to finding $\left(x_{1}^{*}, x_{2}^{*}\right) \in H_{1} \times H_{2}$ such that

$$
\begin{array}{ll}
\left\langle F_{1}\left(x_{1}^{*}, x_{2}^{*}\right), x-x_{1}^{*}\right\rangle+\varphi_{1}(x)-\varphi_{1}\left(x_{1}^{*}\right) \geq 0, & \forall x \in H_{1} \\
\left\langle F_{2}\left(x_{1}^{*}, x_{2}^{*}\right), y-x_{2}^{*}\right\rangle+\varphi_{2}(y)-\varphi_{2}\left(x_{2}^{*}\right) \geq 0, & \forall y \in H_{2} \tag{1.6}
\end{array}
$$

which is called the system of nonlinear variational inequalities considered by Cho et al. [3]. Some specializations of the problem (1.6) are dealt by Kim and Kim [35].

Example 1.5 If $m=2$ and $U_{1}=U_{2}=g_{1}=g_{2} \equiv I$, then the problem (1.1) reduces to the problem of finding $\left(x_{1}^{*}, x_{2}^{*}\right) \in H_{1} \times H_{2}$ such that

$$
\begin{aligned}
& 0 \in F_{1}\left(x_{1}^{*}, x_{2}^{*}\right)+M_{1}\left(x_{1}^{*}\right), \\
& 0 \in F_{2}\left(x_{1}^{*}, x_{2}^{*}\right)+M_{2}\left(x_{2}^{*}\right),
\end{aligned}
$$

which was introduced and studied by Fang et al. [4].

Moreover, by using the generalized resolvent operator technique associated with relative (A, η)-maximal monotone operators, we also construct some new iterative algorithms for finding approximation solutions to the general systems of set-valued variational inclusions and prove convergence of the sequences generated by the algorithms.

2 Preliminaries

Throughout, let H and $H_{i}(i=1,2, \ldots, m)$ be real Hilbert spaces and endowed with the norm $\|\cdot\|$ and inner product $\langle\cdot, \cdot\rangle$. Let 2^{H} and $C(H)$ denote the family of all the nonempty subsets of H and the family of all closed subsets of H, respectively.

Definition 2.1 Let $T: H \rightarrow H$ be a single-valued operator. Then the map T is said to be
(i) r-strongly monotone, if there exists a constant $r>0$ such that

$$
\langle T(x)-T(y), x-y\rangle \geq r\|x-y\|^{2}, \quad \forall x, y \in H ;
$$

(ii) β-Lipschitz continuous, if there exists a constant $\beta>0$ such that

$$
\|T x-T y\| \leq \beta\|x-y\|, \quad \forall x, y \in H
$$

Definition 2.2 Let $\eta: H \times H \rightarrow H$ and $A: H \rightarrow H$ be single-valued operators, $M: H \rightarrow$ 2^{H} be set-valued operator. Then
(i) η is said to be t-strongly monotone, if there exists a constant $t>0$ such that

$$
\langle\eta(x, y), x-y\rangle \geq t\|x-y\|^{2}, \quad \forall x, y \in H
$$

(ii) η is said to be τ-Lipschitz continuous, if there exists a constant $\tau>0$ such that

$$
\|\eta(x, y)\| \leq \tau\|x-y\|, \quad \forall x, y \in H
$$

(iii) A is said to be η-monotone, if

$$
\langle A(x)-A(y), \eta(x, y)\rangle \geq 0, \quad \forall x, y \in H
$$

(iv) A is said to be strictly η-monotone, if A is η-monotone and

$$
\langle A(x)-A(y), \eta(x, y)\rangle=0 \quad \text { if and only if } \quad x=y ;
$$

(v) A is said to be (r, η)-strongly monotone, if there exists a constant $r>0$ such that

$$
\langle A(x)-A(y), \eta(x, y)\rangle \geq r\|x-y\|^{2}, \quad \forall x, y \in H ;
$$

(vi) M is said to be η-monotone with respect to A (or relative (A, η)-monotone) if

$$
\langle u-v, \eta(A(x), A(y))\rangle \geq 0, \quad \forall x, y \in H, u \in M(x), v \in M(y)
$$

(vii) M is said to be relative (A, η)-maximal monotone, if M is η-monotone with respect to A (or relative (A, η)-monotone) and $(A+\lambda M)(H)=H$, where $\lambda>0$ is an arbitrary constant.

Definition 2.3 For $i, j=1,2, \ldots, m$, let H_{i} be a Hilbert space, $A_{j}: H_{j} \rightarrow H_{j}$ be single-valued operator, $U_{i j}: H_{j} \rightarrow 2^{H_{j}}$ be set-valued operator. Then nonlinear operator $F_{i}: H_{1} \times H_{2} \times$ $\cdots \times H_{m} \rightarrow H_{i}$ is said to be
(i) $\left(U_{i j}, c_{j}, \mu_{j}\right)$-relaxed cocoercive with respect to A_{j} (or relative $\left(U_{i j}, c_{j}, \mu_{j}\right)$-relaxed cocoercive) in the j th argument, if there exist constants $c_{j}, \mu_{j}>0$ such that for all $x_{j}^{1}, x_{j}^{2} \in H_{j}$, and for any $u_{j}^{1} \in U_{i j}\left(x_{j}^{1}\right), u_{j}^{2} \in U_{i j}\left(x_{j}^{2}\right)$,

$$
\begin{aligned}
& \left\langle F_{i}\left(\ldots, u_{j}^{1}, \ldots\right)-F_{i}\left(\ldots, u_{j}^{2}, \ldots\right), A_{j}\left(x_{j}^{1}\right)-A_{j}\left(x_{j}^{2}\right)\right\rangle \\
& \quad \geq\left(-c_{j}\right)\left\|F_{i}\left(\ldots, u_{j}^{1}, \ldots\right)-F_{i}\left(\ldots, u_{j}^{2}, \ldots\right)\right\|^{2}+\mu_{j}\left\|x_{j}^{1}-x_{j}^{2}\right\|^{2}
\end{aligned}
$$

(ii) $\zeta_{i j}$-Lipschitz continuous in the j th argument, if there exists constant $\zeta_{i j}>0$ such that for all $x_{j}, y_{j} \in H_{j}$,

$$
\left\|F_{i}\left(x_{1}, \ldots, x_{j-1}, x_{j}, x_{j+1}, \ldots, x_{m}\right)-F_{i}\left(x_{1}, \ldots, x_{j-1}, y_{j}, x_{j+1}, \ldots, x_{m}\right)\right\| \leq\left\|x_{j}-y_{j}\right\|
$$

Remark 2.1

(i) When $m=1$ and $U=I$, then (i) and (ii) of Definition 2.3 reduce to corresponding concept of the relative relaxed cocoerciveness and Lipschitz continuity, respectively.
(ii) If $U_{i j}=T_{i j}$ is single-valued operator for $i, j=1,2, \ldots, m$, then F_{i} is $\left(U_{i j}, c_{j}, \mu_{j}\right)$-relaxed cocoercive with respect to A_{j} in the j th argument reduce to ($T_{i j}, c_{j}, \mu_{j}$)-relaxed cocoercive with respect to A_{j} in the j th argument, that is, if there exist constants $c_{j}, \mu_{j}>0$ such that for all $x_{j}^{1}, x_{j}^{2} \in H_{j}$,

$$
\begin{aligned}
& \left\langle F_{i}\left(\ldots, T_{i j} x_{j}^{1}, \ldots\right)-F_{i}\left(\ldots, T_{i j} x_{j}^{2}, \ldots\right), A_{j}\left(x_{j}^{1}\right)-A_{j}\left(x_{j}^{2}\right)\right\rangle \\
& \quad \geq\left(-c_{j}\right)\left\|F_{i}\left(\ldots, T_{i j} x_{j}^{1}, \ldots\right)-F_{i}\left(\ldots, T_{i j} x_{j}^{2}, \ldots\right)\right\|^{2}+\mu_{j}\left\|x_{j}^{1}-x_{j}^{2}\right\|^{2} .
\end{aligned}
$$

Lemma 2.1 ([34]) Let $\eta: H \times H \rightarrow H$ be a single-valued mapping, $A: H \rightarrow H$ be a strictly η-monotone mapping and $M: H \rightarrow 2^{H}$ be a relative (A, η)-maximal monotone mapping. Then the mapping $(A+\lambda M)$ is single-valued, where $\lambda>0$ is arbitrary constant.

Definition 2.4 Let $\eta: H \times H \rightarrow H$ be a single-valued mapping, $A: H \rightarrow H$ be a strictly η-monotone mapping and $M: H \rightarrow 2^{H}$ be a relative (A, η)-maximal monotone mapping. Then generalized resolvent operator $R_{M, \lambda}^{A, \eta}: H \rightarrow H$ is defined by

$$
R_{M, \lambda}^{A, \eta}(z)=(A+\lambda M)^{-1}(z), \quad \forall z \in H
$$

where $\lambda>0$ is a constant.

Lemma 2.2 ([34]) Let $\eta: H \times H \rightarrow H$ be at-strongly monotone and τ-Lipschitz continuous mapping, $A: H \rightarrow H$ be an r-strongly monotone mapping, and $M: H \rightarrow 2^{H}$ be a relative (A, η)-maximal monotone mapping. Then generalized resolvent operator $R_{M, \lambda}^{A, \eta}: H \rightarrow H$ is $\frac{\tau}{r t}$-Lipschitz continuous, that is,

$$
\left\|R_{M, \lambda}^{A, \eta}(x)-R_{M, \lambda}^{A, \eta}(y)\right\| \leq \frac{\tau}{r t}\|x-y\|, \quad \forall x, y \in H
$$

Definition 2.5 A set-valued operator $U: H \rightarrow 2^{H}$ is said to be $D-\gamma$-Lipschitz continuous, if there exists a constant $\gamma>0$ such that

$$
D(U(x), U(y)) \leq \gamma\|x-y\|, \quad \forall x, y \in H
$$

where $D: C(H) \times C(H) \rightarrow R \cup\{+\infty\}$ is called the Hausdorff pseudo-metric defined as follows:

$$
D(U, V)=\max \left\{\sup _{x \in U} \inf _{y \in V}\|x-y\|, \sup _{y \in V} \inf _{x \in U}\|x-y\|\right\}, \quad \forall U, V \in C(H) .
$$

Furthermore, the Hausdorff pseudo-metric D reduces to the Hausdorff metric when $C(H)$ is restricted to closed bounded subsets of the family $C B(H)$.

Lemma 2.3 Let $\theta \in(0,1)$ be a constant. Then function $f(\lambda)=1-\lambda+\lambda \theta$ for $\lambda \in[0,1]$ is nonnegative and strictly decrease and $f(\lambda) \in[0,1]$. Further, if $\lambda \neq 0$, then $f(\lambda) \in(0,1)$.

Lemma 2.4 ([36]) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two nonnegative real sequences satisfying

$$
a_{n+1} \leq \theta a_{n}+b_{n}
$$

with $0<\theta<1$ and $\lim _{n \rightarrow \infty} b_{n}=0$. Then $\lim _{n \rightarrow \infty} a_{n}=0$.

3 Iterative algorithm and convergence analysis

In this section, we construct a class of new iterative algorithms for finding approximate solutions of the problems (1.1) and (1.2), respectively. Then the convergence criterion for the algorithms is also discussed.

Lemma 3.1 Let $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$ and $u_{i j}^{*} \in U_{i j}\left(x_{j}^{*}\right)$ for $i, j=1,2, \ldots, m$, then $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}, u_{11}^{*}, \ldots, u_{1 m}^{*}, \ldots, u_{m 1}^{*}, \ldots, u_{m m}^{*}\right)$ (denoted by $\left.(*)\right)$ is a solution of the problem (1.1) if and only if (*) satisfy

$$
\begin{equation*}
g_{i}\left(x_{i}^{*}\right)=R_{M_{i}, p_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{*}\right)\right)-\rho_{i} F_{i}\left(u_{i 1}^{*}, \ldots, u_{i i-1}^{*}, u_{i i}^{*}, u_{i i+1}^{*}, \ldots, u_{i m}^{*}\right)\right] \tag{3.1}
\end{equation*}
$$

where $R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}=\left(A_{i}+\rho_{i} M_{i}\right)^{-1}$ and $\rho_{i}>0$ is a constant for $i=1,2, \ldots, m$.
Proof It follows from the definition of generalized resolvent operator $R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}$ that the proof can be obtained directly, and so it is omitted.

Algorithm 3.1

Step 1. Setting $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{m}^{0}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$ and choose $u_{i j}^{0} \in U_{i j}\left(x_{j}^{0}\right)$ for $i, j=$ $1,2, \ldots, m$.
Step 2. Let

$$
\begin{align*}
x_{i}^{n+1}= & (1-\lambda) x_{i}^{n}+\lambda\left\{x_{i}^{n}-g_{i}\left(x_{i}^{n}\right)+R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)\right.\right. \\
& \left.\left.-\rho_{i} F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right]\right\} \tag{3.2}
\end{align*}
$$

for all $i=1,2, \ldots, m$ and $n=0,1,2, \ldots$, where $\lambda \in(0,1]$ is a constant.
Step 3. By the results of Nadler [37], we can choose $u_{i j}^{n+1} \in U_{i j}\left(x_{j}^{n+1}\right)$ such that

$$
\begin{equation*}
\left\|u_{i j}^{n+1}-u_{i j}^{n}\right\| \leq\left(1+\frac{1}{n+1}\right) D_{j}\left(U_{i j}\left(x_{j}^{n+1}\right), U_{i j}\left(x_{j}^{n}\right)\right) \tag{3.3}
\end{equation*}
$$

where $D_{j}(\cdot, \cdot)$ is the Hausdorff pseudo-metric on $C\left(H_{j}\right)$ and $i, j=1,2, \ldots, m$.
Step 4. If x_{i}^{n+1} and $u_{i j}^{n+1}$ for $i, j=1,2, \ldots, m$ satisfy (3.2) to sufficient accuracy, stop. Otherwise, set $n:=n+1$ and return to Step 2 .

Remark 3.1 If $R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}$ reduces to $J_{\rho}^{\varphi_{i}}=\left(I+\rho \partial \varphi_{i}\right)^{-1}$, where $\varphi_{i}: H_{i} \rightarrow R \cup\{+\infty\}$ is proper and lower semi-continuous η_{i}-subdifferentiable functional, $H_{i} \equiv H$ for $i=1,2, \ldots, m$ and $\lambda=1$, then Algorithm 3.1 reduces to Algorithm (I) of Cao [33].

When $\lambda=1$ and $U_{i j}=T_{i j}$ is single-valued operator for $i, j=1,2, \ldots, m$, then Algorithm 3.1 reduces to the following algorithm for the problem (1.2).

Algorithm 3.2 For any given $\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{m}^{0}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$, we compute x_{i}^{n} as follows:

$$
\begin{align*}
x_{i}^{n+1}= & x_{i}^{n}-g_{i}\left(x_{i}^{n}\right)+R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)\right. \\
& \left.-\rho_{i} F_{i}\left(T_{i 1} x_{1}^{n}, \ldots, T_{i i-1} x_{i-1}^{n}, T_{i i} x_{i}^{n}, T_{i i+1} x_{i+1}^{n}, \ldots, T_{i m} x_{m}^{n}\right)\right]+w_{i}^{n} \tag{3.4}
\end{align*}
$$

for $n=0,1,2, \ldots$ and $i=1,2, \ldots, m$, where $w_{i}^{n} \in H_{i}$ is error to take into account a possible inexact computation of the resolvent operator point satisfying conditions $\lim _{n \rightarrow \infty}\left\|w_{i}^{n}\right\|=0$.

Remark 3.2

(i) Let $m=2, g_{i} \equiv I, U_{i i} \equiv I$ for $i=1,2$, then Algorithm 3.1 reduces to Algorithm 4.3 of Agarwal and Verma [34].
(ii) If for appropriate and suitable choices of positive integer m and mappings F_{i}, g_{i}, A_{i}, $\eta_{i}, M, U_{i j}$, and H_{i} for $i, j=1,2, \ldots, m$, one can know that Algorithms 3.1-3.2 are extending a number of known algorithms.

In the sequel, we provide main result concerning the problem (1.1) with respect to Al gorithm 3.1.

Theorem 3.1 For $i=1,2, \ldots, m$, let $\eta_{i}: H_{i} \times H_{i} \rightarrow H_{i}$ be τ_{i}-Lipschitz continuous and t_{i}-strongly monotone operator, $A_{i}: H_{i} \rightarrow H_{i}$ be β_{i}-Lipschitz continuous and r_{i}-strongly monotone operator, $g_{i}: H_{i} \rightarrow H_{i}$ be ξ_{i}-Lipschitz continuous and δ_{i}-strongly monotone operator and $M_{i}: H_{i} \rightarrow 2^{H_{i}}$ be relative $\left(A_{i}, \eta_{i}\right)$-maximal monotone. Suppose that $U_{i j}: H_{j} \rightarrow C H_{j}$ is $D_{j-} \gamma_{i j}$-Lipschitz continuous, $F_{i}: H_{1} \times H_{2} \times \cdots \times H_{m} \rightarrow H_{i}$ is $\left(U_{i i}, c_{i}, \mu_{i}\right)$-relaxed cocoercive with respect to A_{i} in the ith argument and $\zeta_{i j}$-Lipschitz continuous in the jth for $i, j=1,2, \ldots, m$. If there exists constant $\rho_{i}>0$ for such that

$$
\begin{align*}
\theta_{j}= & \frac{\tau_{j}}{r_{j} t_{j}} \cdot \sqrt{\beta_{j}^{2} \xi_{j}^{2}-2 \rho_{j} \mu_{j} \delta_{j}^{2}+2 \rho_{j} c_{j} \zeta_{j j}^{2} \gamma_{j j}^{2}+\rho_{j}^{2} \zeta_{j j}^{2} \gamma_{j j}^{2}} \\
& +\sqrt{1-2 \delta_{j}+\xi_{j}^{2}}+\sum_{i=1, i \neq j}^{m} \frac{\rho_{i} \tau_{i} \zeta_{i j} \gamma_{i j}}{r_{i} t_{i}}<1 \tag{3.5}
\end{align*}
$$

for all $j=1,2, \ldots, m$, then the problem (1.1) admits a solution $(*)$, i.e. $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}, u_{11}^{*}, \ldots\right.$, $\left.u_{1 m}^{*}, \ldots, u_{m 1}^{*}, \ldots, u_{m m}^{*}\right)$, where $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$ and $u_{i j}^{*} \in U_{i j}\left(x_{j}^{*}\right)$ for $i, j=$ $1,2, \ldots, m$. Moreover, iterative sequences $\left\{x_{j}^{n}\right\}$ and $\left\{u_{i j}^{n}\right\}$ generated by Algorithm 3.1 strongly converge to x_{j}^{*} and $u_{i j}^{*}$ for $i, j=1,2, \ldots, m$, respectively.

Proof For $i=1,2, \ldots, m$, applying Algorithm 3.1 and Lemma 2.2, we have

$$
\begin{aligned}
& \left\|x_{i}^{n+1}-x_{i}^{n}\right\| \\
& \leq(1-\lambda)\left\|x_{i}^{n}-x_{i}^{n-1}\right\|+\lambda\left\|x_{i}^{n}-x_{i}^{n-1}-\left(g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{n-1}\right)\right)\right\| \\
& +\lambda \| R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)-\rho_{i} F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right] \\
& -R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{n-1}\right)\right)-\rho_{i} F_{i}\left(u_{i 1}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n-1}, \ldots, u_{i m}^{n-1}\right)\right] \| \\
& \leq(1-\lambda)\left\|x_{i}^{n}-x_{i}^{n-1}\right\|+\lambda\left\|x_{i}^{n}-x_{i}^{n-1}-\left(g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{n-1}\right)\right)\right\|
\end{aligned}
$$

$$
\begin{align*}
& +\frac{\lambda \tau_{i}}{r_{i} t_{i}} \| A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{n-1}\right)\right) \\
& -\rho_{i}\left[F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right. \\
& \left.-F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right] \| \\
& +\frac{\lambda \tau_{i} \rho_{i}}{r_{i} t_{i}} \| F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right) \\
& -F_{i}\left(u_{i 1}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n-1}, \ldots, u_{i m}^{n-1}\right) \| . \tag{3.6}
\end{align*}
$$

By ξ_{i}-Lipschitz continuity and δ_{i}-strongly monotonicity of g_{i}, we get

$$
\begin{align*}
\| x_{i}^{n} & -x_{i}^{n-1}-\left(g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{n-1}\right)\right) \|^{2} \\
= & \left\|x_{i}^{n}-x_{i}^{n-1}\right\|^{2}-2\left(g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{n-1}\right), x_{i}^{n}-x_{i}^{n-1}\right\rangle \\
\quad & +\left\|g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{n-1}\right)\right\|^{2} \\
\leq & \left(1-2 \delta_{i}+\xi_{i}^{2}\right)\left\|x_{i}^{n}-x_{i}^{n-1}\right\|^{2} . \tag{3.7}
\end{align*}
$$

Since A_{i} is β_{i}-Lipschitz continuous, F_{i} is $\left(U_{i i}, c_{i}, \mu_{i}\right)$-relaxed cocoercive with respect to A_{i} in the i th argument and F_{i} is $\zeta_{i j}$-Lipschitz continuous in the j th argument, then we have

$$
\begin{align*}
& \| A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{n-1}\right)\right)-\rho_{i}\left[F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right. \\
& \left.-F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right] \|^{2} \\
& =\left\|A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{n-1}\right)\right)\right\|^{2} \\
& -2 \rho_{i}\left(F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right. \\
& \left.-F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right), A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{n-1}\right)\right)\right\rangle \\
& +\rho_{i}^{2} \| F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right) \\
& -F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i+1}^{n}, \ldots, u_{i m}^{n}\right) \|^{2} \\
& \leq \beta_{i}^{2}\left\|g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{n-1}\right)\right\|^{2} \\
& -2 \rho_{i}\left[\left(-c_{i}\right) \| F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right. \\
& -F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i+1}^{n}, \ldots, u_{i m}^{n}\right) \|^{2} \\
& \left.+\mu_{i}\left\|g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{n-1}\right)\right\|^{2}\right]+\rho_{i}^{2} \zeta_{i i}^{2}\left\|u_{i i}^{n}-u_{i i}^{n-1}\right\|^{2} \\
& \leq\left(\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}\right)\left\|x_{i}^{n}-x_{i}^{n-1}\right\|^{2}+\left(2 \rho_{i} c_{i} \zeta_{i i}^{2}+\rho_{i}^{2} \zeta_{i i}^{2}\right)\left\|u_{i i}^{n}-u_{i i}^{n-1}\right\|^{2} . \tag{3.8}
\end{align*}
$$

By $D_{j}-\gamma_{i j}$-Lipschitz continuity of the $U_{i j}$ and (3.3), we get

$$
\left.\begin{array}{l}
\| F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right) \\
\quad-F_{i}\left(u_{i 1}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n-1}, \ldots, u_{i m}^{n-1}\right) \| \\
\leq
\end{array}\right] F_{i}\left(u_{i 1}^{n}, u_{i 2}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right) .
$$

$$
\begin{align*}
& +\cdots+\| F_{i}\left(u_{i 1}^{n-1}, u_{i 2}^{n-1}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right) \\
& -F_{i}\left(u_{i 1}^{n-1}, u_{i 2}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right) \| \\
& +\| F_{i}\left(u_{i 1}^{n-1}, u_{i 2}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right) \\
& -F_{i}\left(u_{i 1}^{n-1}, u_{i 2}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n-1}, \ldots, u_{i m}^{n}\right) \| \\
& +\cdots+\| F_{i}\left(u_{i 1}^{n-1}, u_{i 2}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n-1}, \ldots, u_{i m}^{n}\right) \\
& -F_{i}\left(u_{i 1}^{n-1}, u_{i 2}^{n-1}, \ldots, u_{i i-1}^{n-1}, u_{i i}^{n-1}, u_{i i+1}^{n-1}, \ldots, u_{i m}^{n-1}\right) \| \\
\leq & \zeta_{i 1}\left\|u_{i 1}^{n}-u_{i 1}^{n-1}\right\|+\cdots+\zeta_{i i-1}\left\|u_{i i-1}^{n}-u_{i i-1}^{n-1}\right\| \\
& +\zeta_{i i+1}\left\|u_{i i+1}^{n}-u_{i i+1}^{n-1}\right\|+\cdots+\zeta_{i m}\left\|u_{i m}^{n}-u_{i m}^{n-1}\right\| \\
= & \sum_{j=1, j \neq i}^{m} \zeta_{i j}\left\|u_{i j}^{n}-u_{i j}^{n-1}\right\| \\
\leq & \sum_{j=1, j \neq i}^{m} \zeta_{i j}\left(1+\frac{1}{n}\right) D_{j}\left(U_{i j}\left(x_{j}^{n}\right), U_{i j}\left(x_{j}^{n-1}\right)\right) \\
\leq & \left(1+\frac{1}{n}\right) \sum_{j=1, j \neq i}^{m} \zeta_{i j} \gamma_{i j}\left\|x_{j}^{n}-x_{j}^{n-1}\right\| \tag{3.9}
\end{align*}
$$

and

$$
\begin{align*}
\left\|u_{i i}^{n}-u_{i i}^{n-1}\right\| & \leq\left(1+\frac{1}{n}\right) D_{i}\left(U_{i i}\left(x_{i}^{n}\right), U_{i i}\left(x_{i}^{n-1}\right)\right) \\
& \leq\left(1+\frac{1}{n}\right) \gamma_{i i}\left\|x_{i}^{n}-x_{i}^{n-1}\right\| . \tag{3.10}
\end{align*}
$$

Combining (3.8) and (3.10), we have

$$
\begin{align*}
& \| A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{n-1}\right)\right)-\rho_{i}\left[F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right. \\
& \\
& \left.\quad-F_{i}\left(u_{i 1}^{n}, \ldots, u_{i i-1}^{n}, u_{i i}^{n-1}, u_{i i+1}^{n}, \ldots, u_{i m}^{n}\right)\right] \|^{2} \\
& \leq \tag{3.11}
\end{align*} \beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2} .
$$

It follows from (3.6)-(3.9), and (3.11), that

$$
\begin{aligned}
& \left\|x_{i}^{n+1}-x_{i}^{n}\right\| \\
& \leq \\
& \left(1-\lambda+\lambda \sqrt{1-2 \delta_{i}+\xi_{i}^{2}}\right)\left\|x_{i}^{n}-x_{i}^{n-1}\right\| \\
& \quad+\frac{\lambda \tau_{i}}{r_{i} t_{i}}\left[\sqrt{\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}+\left(1+n^{-1}\right)^{2} \gamma_{i i}^{2}\left(2 \rho_{i} c_{i} \zeta_{i i}^{2}+\rho_{i}^{2} \zeta_{i i}^{2}\right)}\left\|x_{i}^{n}-x_{i}^{n-1}\right\|\right. \\
& \left.\quad+\left(1+\frac{1}{n}\right) \rho_{i} \sum_{j=1, j \neq i}^{m} \zeta_{i j} \gamma_{i j}\left\|x_{j}^{n}-x_{j}^{n-1}\right\|\right]
\end{aligned}
$$

which implies that

$$
\begin{align*}
& \sum_{j=1}^{m}\left\|x_{j}^{n+1}-x_{j}^{n}\right\|=\sum_{i=1}^{m}\left\|x_{i}^{n+1}-x_{i}^{n}\right\| \\
& \leq \sum_{i=1}^{m}\left[\left(1-\lambda+\lambda \sqrt{1-2 \delta_{i}+\xi_{i}^{2}}\right)\left\|x_{i}^{n}-x_{i}^{n-1}\right\|\right. \\
& +\frac{\lambda \tau_{i}}{r_{i} t_{i}}\left(\sqrt{\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}+\left(1+\frac{1}{n}\right)^{2} \gamma_{i i}^{2}\left(2 \rho_{i} c_{i} \zeta_{i i}^{2}+\rho_{i}^{2} \zeta_{i i}^{2}\right)}\left\|x_{i}^{n}-x_{i}^{n-1}\right\|\right. \\
& \left.\left.+\left(1+\frac{1}{n}\right) \rho_{i} \sum_{j=1, j \neq i}^{m} \zeta_{i j} \gamma_{i j}\left\|x_{j}^{n}-x_{j}^{n-1}\right\|\right)\right] \\
& =\sum_{i=1}^{m}\left[\left(1-\lambda+\lambda \sqrt{1-2 \delta_{i}+\xi_{i}^{2}}\right)\right. \\
& \left.+\frac{\lambda \tau_{i}}{r_{i} t_{i}} \sqrt{\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}+\left(1+\frac{1}{n}\right)^{2} \gamma_{i i}^{2}\left(2 \rho_{i} c_{i} \zeta_{i i}^{2}+\rho_{i}^{2} \zeta_{i i}^{2}\right)}\right]\left\|x_{i}^{n}-x_{i}^{n-1}\right\| \\
& +\left(1+\frac{1}{n}\right) \lambda \sum_{i=1}^{m} \sum_{j=1, j \neq i}^{m} \frac{\rho_{i} \tau_{i} \zeta_{i j} \gamma_{i j}}{r_{i} t_{i}}\left\|x_{j}^{n}-x_{j}^{n-1}\right\| \\
& =\sum_{j=1}^{m}\left[\left(1-\lambda+\lambda \sqrt{1-2 \delta_{j}+\xi_{j}^{2}}\right)\right. \\
& \left.+\frac{\lambda \tau_{j}}{r_{j} t_{j}} \sqrt{\beta_{j}^{2} \xi_{j}^{2}-2 \rho_{j} \mu_{j} \delta_{j}^{2}+\left(1+\frac{1}{n}\right)^{2} \gamma_{j j}^{2}\left(2 \rho_{j} c_{j} \zeta_{j j}^{2}+\rho_{j}^{2} \zeta_{j j}^{2}\right)}\right]\left\|x_{j}^{n}-x_{j}^{n-1}\right\| \\
& +\left(1+\frac{1}{n}\right) \lambda \sum_{j=1}^{m} \sum_{i=1, i \neq j}^{m} \frac{\rho_{i} \tau_{i} \zeta_{i j} \gamma_{i j}}{r_{i} t_{i}}\left\|x_{j}^{n}-x_{j}^{n-1}\right\| \\
& =\sum_{j=1}^{m}\left[(1-\lambda)+\lambda\left(\sqrt{1-2 \delta_{j}+\xi_{j}^{2}}\right.\right. \\
& \left.+\frac{\tau_{j}}{r_{j} t_{j}} \sqrt{\beta_{j}^{2} \xi_{j}^{2}-2 \rho_{j} \mu_{j} \delta_{j}^{2}+\left(1+\frac{1}{n}\right)^{2} \gamma_{j j}^{2}\left(2 \rho_{j} c_{j} \zeta_{j j}^{2}+\rho_{j}^{2} \zeta_{j j}^{2}\right)}\right) \\
& \left.+\left(1+\frac{1}{n}\right) \sum_{i=1, i \neq j}^{m} \frac{\rho_{i} \tau_{i} \zeta_{i j} \gamma_{i j}}{r_{i} t_{i}}\right]\left\|x_{j}^{n}-x_{j}^{n-1}\right\| \\
& =\sum_{j=1}^{m}\left[1-\lambda+\lambda \theta_{j}^{n}\right]\left\|x_{j}^{n}-x_{j}^{n-1}\right\| \leq f_{n}(\lambda) \sum_{j=1}^{m}\left\|x_{j}^{n}-x_{j}^{n-1}\right\|, \tag{3.12}
\end{align*}
$$

where

$$
\begin{aligned}
\theta_{j}^{n}= & \frac{\tau_{j}}{r_{j} t_{j}} \sqrt{\beta_{j}^{2} \xi_{j}^{2}-2 \rho_{j} \mu_{j} \delta_{j}^{2}+\left(1+\frac{1}{n}\right)^{2} \gamma_{i j}^{2}\left(2 \rho_{j} c_{j} \zeta_{j j}^{2}+\rho_{j}^{2} \zeta_{j j}^{2}\right)} \\
& +\sqrt{1-2 \delta_{j}+\xi_{j}^{2}}+\left(1+\frac{1}{n}\right) \sum_{i=1, i \neq j}^{m} \frac{\rho_{i} \tau_{i} \zeta_{i j} \gamma_{i j}}{r_{i} t_{i}}
\end{aligned}
$$

and

$$
f_{n}(\lambda)=\max _{1 \leq j \leq m}\left\{1-\lambda+\lambda \theta_{j}^{n}\right\} .
$$

By condition (3.5), we know that sequence $\left\{\theta_{j}^{n}\right\}$ is monotone decreasing and $\theta_{j}^{n} \rightarrow \theta_{j}$ as $n \rightarrow \infty$. Thus,

$$
f(\lambda)=\lim _{n \rightarrow \infty} f_{n}(\lambda)=\max _{1 \leq j \leq m}\left\{1-\lambda+\lambda \theta_{j}\right\} .
$$

Since $0<\theta_{j}<1$ for $j=1,2, \ldots, m$, we get $\theta=\max _{1 \leq j \leq m}\left\{\theta_{j}\right\} \in(0,1)$, by Lemma 2.3, we have $f(\lambda)=1-\lambda+\lambda \theta \in(0,1)$. From (3.12), it follows that $\left\{x_{j}^{n}\right\}$ is a Cauchy sequence and there exists $x_{j}^{*} \in H_{j}$ such that $x_{j}^{n} \rightarrow x_{j}^{*}$ as $n \rightarrow \infty$ for $j=1,2, \ldots, m$.

Next, we show that $u_{i j}^{n} \rightarrow u_{i j}^{*} \in U_{i j}\left(x_{j}^{*}\right)$ as $n \rightarrow \infty$ for $i, j=1,2, \ldots, m$.
It follows from (3.9) and (3.10) that $\left\{u_{i j}^{n}\right\}$ are also Cauchy sequences. Hence, there exists $u_{i j}^{*} \in H_{j}$ such that $u_{i j}^{n} \rightarrow u_{i j}^{*}$ as $n \rightarrow \infty$ for $i, j=1,2, \ldots, m$. Furthermore,

$$
\begin{aligned}
d\left(u_{i j}^{*}, U_{i j}\left(x_{j}^{*}\right)\right) & =\inf \left\{\left\|u_{i j}^{*}-t\right\|: t \in U_{i j}\left(x_{j}^{*}\right)\right\} \\
& \leq\left\|u_{i j}^{*}-u_{i j}^{n}\right\|+d\left(u_{i j}^{n}, U_{i j}\left(x_{j}^{*}\right)\right) \\
& \leq\left\|u_{i j}^{*}-u_{i j}^{n}\right\|+D_{j}\left(U_{i j}\left(x_{j}^{n}\right), U_{i j}\left(x_{j}^{*}\right)\right) \\
& \leq\left\|u_{i j}^{*}-u_{i j}^{n}\right\|+\gamma_{i j}\left\|x_{j}^{n}-x_{j}^{*}\right\| \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

Since $U_{i j}\left(x_{j}^{*}\right)$ is closed for $i, j=1,2, \ldots, m$, we have $u_{i j}^{*} \in U_{i j}\left(x_{j}^{*}\right)$ for $i, j=1,2, \ldots, m$. Using continuity, $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$ and $u_{i j}^{*} \in U_{i j}\left(x_{j}^{*}\right)$ for $i, j=1,2, \ldots, m$ satisfy (3.1) and so in light of Lemma 3.1, $(*)$ is a solution to the problem (1.1). This completes the proof.

Remark 3.3 If the generalized resolvent operator $R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}$ reduces to $J_{\rho}^{\varphi_{i}}=\left(I+\rho \partial \varphi_{i}\right)^{-1}$, where $\varphi_{i}: H_{i} \rightarrow R \cup\{+\infty\}$ is proper and lower semi-continuous η_{i}-subdifferentiable functional, $H_{i}=H$ for $i=1,2, \ldots, m, \lambda=1$ and $\left(U_{i i}, c_{i}, \mu_{i}\right)$-relaxed cocoerciveness with respect to A_{i} in the i th argument of F_{i} reduces to $\mu_{i}-\left(U_{i i}, A_{i}\right)$-strongly monotonicity (right now, $c_{i}=0$, $A_{i} \equiv g_{i}$), then Theorem 3.1 reduces to Theorem 3.1 of Cao [33].

Theorem 3.2 Assume that $\eta_{i}, A_{i}, g_{i}, M_{i}$ are the same as in the Theorem 3.1 for $i=$ $1,2, \ldots$, m. Suppose that $T_{i j}: H_{j} \rightarrow H_{j}$ is $\gamma_{i j}$ LLpschitz continuous, $F_{i}: H_{1} \times H_{2} \times \cdots \times H_{m} \rightarrow$ H_{i} is $\left(T_{i i}, c_{i}, \mu_{i}\right)$-relaxed cocoercive with respect to A_{i} in the ith argument and $\zeta_{i j}$-Lipschitz continuous in the j th for $i, j=1,2, \ldots$, m. If there exists constant $\rho_{i}>0$ for such that

$$
\begin{aligned}
\theta_{j}= & \frac{\tau_{j}}{r_{j} t_{j}} \cdot \sqrt{\beta_{j}^{2} \xi_{j}^{2}-2 \rho_{j} \mu_{j} \delta_{j}^{2}+2 \rho_{j} c_{j} \zeta_{j j}^{2} \gamma_{i j}^{2}+\rho_{j}^{2} \zeta_{j j}^{2} \gamma_{i j}^{2}} \\
& +\sqrt{1-2 \delta_{j}+\xi_{j}^{2}}+\sum_{i=1, i \neq j}^{m} \frac{\rho_{i} \tau_{i} \zeta_{i j} \gamma_{i j}}{r_{i} t_{i}}<1
\end{aligned}
$$

for $j=1,2, \ldots, m$, then the problem (1.2) has a unique solution $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right) \in H_{1} \times H_{2} \times$ $\cdots \times H_{m}$. Moreover, the iterative sequences $\left\{x_{j}^{n}\right\}$ generated by Algorithm 3.2 strongly converge to x_{j}^{*} for $j=1,2, \ldots, m$.

Proof Define the norm $\|\cdot\|_{*}$ on product space $H_{1} \times H_{2} \times \cdots \times H_{m}$ by

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right\|_{*}=\sum_{j=1}^{m}\left\|x_{j}\right\|, \quad \forall\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m} .
$$

It is easy to see that $\left(H_{1} \times H_{2} \times \cdots \times H_{m},\|\cdot\|_{*}\right)$ is a Banach space. Set

$$
\begin{aligned}
y_{i}= & x_{i}-g_{i}\left(x_{i}\right)+R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}\right)\right)\right. \\
& \left.-\rho_{i} F_{i}\left(T_{i 1} x_{1}, \ldots, T_{i i-1} x_{i-1}, T_{i i} x_{i}, T_{i i+1} x_{i+1}, \ldots, T_{i m} x_{m}\right)\right] .
\end{aligned}
$$

Let G: $H_{1} \times H_{2} \times \cdots \times H_{m} \rightarrow H_{1} \times H_{2} \times \cdots \times H_{m}$ be defined by

$$
G\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\left(y_{1}, y_{2}, \ldots, y_{m}\right), \quad \forall\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}
$$

For any $\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{m}^{1}\right),\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{m}^{2}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$, it follows from Lemma 2.2 that

$$
\begin{align*}
& \left\|G\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{m}^{1}\right)-G\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{m}^{2}\right)\right\|_{*} \\
& =\sum_{i=1}^{m}\left\|y_{i}^{1}-y_{i}^{2}\right\| \\
& \leq \sum_{i=1}^{m}\left\{\left\|x_{i}^{1}-x_{i}^{2}-\left(g_{i}\left(x_{i}^{1}\right)-g_{i}\left(x_{i}^{2}\right)\right)\right\|+\| R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{1}\right)\right)\right.\right. \\
& \left.-\rho_{i} F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{1}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right)\right] \\
& -R_{M_{i}, \rho_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{2}\right)\right)\right. \\
& \left.\left.-\rho_{i} F_{i}\left(T_{i 1} x_{1}^{2}, \ldots, T_{i i-1} x_{i-1}^{2}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{2}, \ldots, T_{i m} x_{m}^{2}\right)\right] \|\right\} \\
& \leq \sum_{i=1}^{m}\left\{\left\|x_{i}^{1}-x_{i}^{2}-\left(g_{i}\left(x_{i}^{1}\right)-g_{i}\left(x_{i}^{2}\right)\right)\right\|\right. \\
& +\frac{\tau_{i}}{r_{i} t_{i}} \| A_{i}\left(g_{i}\left(x_{i}^{1}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{2}\right)\right) \\
& -\rho_{i}\left[F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{1}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right)\right. \\
& \left.-F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right)\right] \| \\
& +\frac{\tau_{i} \rho_{i}}{r_{i} t_{i}} \| F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right) \\
& \left.-F_{i}\left(T_{i 1} x_{1}^{2}, \ldots, T_{i i-1} x_{i-1}^{2}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{2}, \ldots, T_{i m} x_{m}^{2}\right) \|\right\} . \tag{3.13}
\end{align*}
$$

By ξ_{i}-Lipschitz continuity and δ_{i}-strongly monotonicity of g_{i}, we get

$$
\begin{equation*}
\left\|x_{i}^{1}-x_{i}^{2}-\left(g_{i}\left(x_{i}^{1}\right)-g_{i}\left(x_{i}^{2}\right)\right)\right\| \leq \sqrt{1-2 \delta_{i}+\xi_{i}^{2}}\left\|x_{i}^{1}-x_{i}^{2}\right\| \tag{3.14}
\end{equation*}
$$

Since A_{i} is β_{i}-Lipschitz continuous, F_{i} is $\left(T_{i i}, c_{i}, \mu_{i}\right)$-relaxed cocoercive with respect to A_{i} in the i th argument and F_{i} is $\zeta_{i j}$-Lipschitz continuous in the j th argument and $T_{i j}: H_{j} \rightarrow H_{j}$
is $\gamma_{i j}$-Lipschitz continuous, then we have

$$
\begin{align*}
& \| A_{i}\left(g_{i}\left(x_{i}^{1}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{2}\right)\right) \\
& -\rho_{i}\left[F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{1}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right)\right. \\
& \left.-F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right)\right] \|^{2} \\
& \leq \beta_{i}^{2}\left\|g_{i}\left(x_{i}^{1}\right)-g_{i}\left(x_{i}^{2}\right)\right\|^{2} \\
& -2 \rho_{i}\left[\left(-c_{i}\right) \| F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{1}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right)\right. \\
& -F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right) \|^{2} \\
& \left.+\mu_{i}\left\|g_{i}\left(x_{i}^{1}\right)-g_{i}\left(x_{i}^{2}\right)\right\|^{2}\right]+\rho_{i}^{2} \zeta_{i i}^{2}\left\|T_{i i} x_{i}^{1}-T_{i i} x_{i}^{2}\right\|^{2} \\
& \leq\left(\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}\right)\left\|x_{i}^{1}-x_{i}^{2}\right\|^{2}+\left(2 \rho_{i} c_{i} \zeta_{i i}^{2}+\rho_{i}^{2} \zeta_{i i}^{2}\right)\left\|T_{i i} x_{i}^{1}-T_{i i} x_{i}^{2}\right\|^{2} \\
& \leq\left(\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}+2 \rho_{i} c_{i} \zeta_{i i}^{2} \gamma_{i i}+\rho_{i}^{2} \zeta_{i i}^{2} \gamma_{i i}\right)\left\|x_{i}^{1}-x_{i}^{2}\right\|^{2} \tag{3.15}
\end{align*}
$$

and

$$
\begin{align*}
& \| F_{i}\left(T_{i 1} x_{1}^{1}, \ldots, T_{i i-1} x_{i-1}^{1}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{1}, \ldots, T_{i m} x_{m}^{1}\right) \\
& -F_{i}\left(T_{i 1} x_{1}^{2}, \ldots, T_{i i-1} x_{i-1}^{2}, T_{i i} x_{i}^{2}, T_{i i+1} x_{i+1}^{2}, \ldots, T_{i m} x_{m}^{2}\right) \| \\
& \leq \zeta_{i 1}\left\|T_{i 1} x_{1}^{1}-T_{i 1} x_{1}^{2}\right\|+\cdots+\zeta_{i i-1}\left\|T_{i i-1} x_{i-1}^{1}-T_{i i-1} x_{i-1}^{2}\right\| \\
& +\zeta_{i i+1}\left\|T_{i i+1} x_{i+1}^{1}-T_{i i+1} x_{i i+1}^{2}\right\|+\cdots+\zeta_{i m}\left\|T_{i m} x_{m}^{1}-T_{i m} x_{m}^{2}\right\| \\
& =\sum_{j=1, j \neq i}^{m} \zeta_{i j}\left\|T_{i j} x_{j}^{1}-T_{i j} x_{j}^{2}\right\| \\
& \leq \sum_{j=1, j \neq i}^{m} \zeta_{i j} \gamma_{i j}\left\|x_{j}^{1}-x_{j}^{2}\right\| . \tag{3.16}
\end{align*}
$$

From (3.13)-(3.16), we have

$$
\begin{aligned}
\| G & \left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{m}^{1}\right)-G\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{m}^{2}\right) \|_{*} \\
\leq & \sum_{i=1}^{m}\left(\sqrt{1-2 \delta_{i}+\xi_{i}^{2}}\right. \\
& \left.+\frac{\tau_{i}}{r_{i} t_{i}} \sqrt{\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}+2 \rho_{i} c_{i} \zeta_{i i}^{2} \gamma_{i i}^{2}+\rho_{i}^{2} \zeta_{i i}^{2} \gamma_{i i}^{2}}\right)\left\|x_{i}^{1}-x_{i}^{2}\right\| \\
& +\sum_{j=1, j \neq i}^{m} \frac{\rho_{j} \tau_{j} \zeta_{i j} \gamma_{i j}}{r_{j} t_{j}}\left\|x_{j}^{1}-x_{j}^{2}\right\| \\
= & \sum_{j=1}^{m} \theta_{j}\left\|x_{j}^{1}-x_{j}^{2}\right\| \\
\leq & \theta \sum_{j=1}^{m}\left\|x_{j}^{1}-x_{j}^{1}\right\| \\
= & \theta\left\|\left(x_{1}^{1}, x_{2}^{1}, \ldots, x_{m}^{1}\right)-\left(x_{1}^{2}, x_{2}^{2}, \ldots, x_{m}^{2}\right)\right\|_{*}
\end{aligned}
$$

where $\theta=\max _{1 \leq j \leq m} \theta_{j}$. It follows from assumption (3.5) that $0<\theta<1$. This shows that G: $H_{1} \times H_{2} \times \cdots \times H_{m} \rightarrow H_{1} \times H_{2} \times \cdots \times H_{m}$ is a contractive operator, and so there exists a unique $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right) \in H_{1} \times H_{2} \times \cdots \times H_{m}$ such that $G\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right)=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right)$. Thus, $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{m}^{*}\right)$ is the unique solution of the problem (1.2).

Now we prove that $x_{i}^{n} \rightarrow x_{i}^{*}$ as $n \rightarrow \infty$ for $i=1,2, \ldots, m$. In fact, it follows from (3.4) and Lemma 2.2 that

$$
\begin{align*}
\| x_{i}^{n+1} & -x^{*} \| \\
\leq & \left\|x_{i}^{n}-x_{i}^{*}-\left(g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{*}\right)\right)\right\| \\
& +\| R_{M_{i}, P_{i}}^{A_{i}, \eta_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)\right. \\
& \left.-\rho_{i} F_{i}\left(T_{i 1} x_{1}^{n}, \ldots, T_{i i-1} x_{i-1}^{n}, T_{i i} x_{i}^{n}, T_{i i+1} x_{i+1}^{n}, \ldots, T_{i m} x_{m}^{n}\right)\right] \\
& -R_{M_{i}, p_{i}}^{A_{i}, n_{i}}\left[A_{i}\left(g_{i}\left(x_{i}^{*}\right)\right)\right. \\
& \left.\quad-\rho_{i} F_{i}\left(T_{i 1} x_{1}^{*}, \ldots, T_{i i-1} x_{i-1}^{*}, T_{i i} x_{i}^{*}, T_{i i+1} x_{i+1}^{*}, \ldots, T_{i m} x_{m}^{*}\right)\right]\|+\| w_{i}^{n} \| \\
\leq & \left\|x_{i}^{n}-x_{i}^{*}-\left(g_{i}\left(x_{i}^{n}\right)-g_{i}\left(x_{i}^{*}\right)\right)\right\|+\left\|w_{i}^{n}\right\| \\
& +\frac{\tau_{i}}{r_{i} t_{i}} \| A_{i}\left(g_{i}\left(x_{i}^{n}\right)\right)-A_{i}\left(g_{i}\left(x_{i}^{*}\right)\right) \\
& \quad-\rho_{i}\left[F_{i}\left(T_{i 1} x_{1}^{n}, \ldots, T_{i i-1} x_{i-1}^{n}, T_{i i} x_{i}^{n}, T_{i i+1} x_{i+1}^{n}, \ldots, T_{i m} x_{m}^{n}\right)\right. \\
& \left.-F_{i}\left(T_{i 1} x_{1}^{n}, \ldots, T_{i i-1} x_{i-1}^{n}, T_{i i} x_{i}^{*}, T_{i i+1} x_{i+1}^{n}, \ldots, T_{i m} x_{m}^{n}\right)\right] \| \\
& +\frac{\tau_{i} \rho_{i}}{r_{i} t_{i}} \| F_{i}\left(T_{i 1} x_{1}^{n}, \ldots, T_{i i-1} x_{i-1}^{n}, T_{i i} x_{i}^{*}, T_{i i+1} x_{i+1}^{n}, \ldots, T_{i m} x_{m}^{n}\right) \\
& -F_{i}\left(T_{i 1} x_{1}^{*}, \ldots, T_{i i-1} x_{i-1}^{*}, T_{i i} x_{i}^{*}, T_{i i+1} x_{i+1}^{*}, \ldots, T_{i m} x_{m}^{*}\right) \| . \tag{3.17}
\end{align*}
$$

Following very similar arguments from (3.14)-(3.16), we have

$$
\begin{align*}
&\left\|x_{i}^{n+1}-x_{i}^{*}\right\| \\
& \leq \sqrt{1-2 \delta_{i}+\xi_{i}^{2}}\left\|x_{i}^{n}-x_{i}^{*}\right\| \\
&+\frac{\tau_{i}}{r_{i} t_{i}}\left[\sqrt{\beta_{i}^{2} \xi_{i}^{2}-2 \rho_{i} \mu_{i} \delta_{i}^{2}+2 \rho_{i} c_{i} \zeta_{i i}^{2} \gamma_{i i}^{2}+\rho_{i}^{2} \zeta_{i i}^{2} \gamma_{i i}^{2}}\left\|x_{i}^{n}-x_{i}^{*}\right\|\right. \\
&\left.+\rho_{i} \sum_{j=1, j \neq i}^{m} \zeta_{i j} \gamma_{i j}\left\|x_{j}^{n}-x_{j}^{*}\right\|\right]+\left\|w_{i}^{n}\right\|, \tag{3.18}
\end{align*}
$$

which implies that

$$
\begin{aligned}
\sum_{j=1}^{m}\left\|x_{j}^{n+1}-x_{j}^{*}\right\| & =\sum_{j=1}^{m} \theta_{j}\left\|x_{j}^{n}-x_{j}^{*}\right\|+\sum_{j=1}^{m}\left\|w_{j}^{n}\right\| \\
& \leq \theta \sum_{j=1}^{m}\left\|x_{j}^{n}-x_{j}^{*}\right\|+\sum_{j=1}^{m}\left\|w_{j}^{n}\right\|
\end{aligned}
$$

where $a_{n}=\sum_{j=1}^{m}\left\|x_{j}^{n}-x_{j}^{*}\right\|, b_{n}=\sum_{j=1}^{m}\left\|w_{j}^{n}\right\|$. The condition of Algorithm 3.2 yields $\lim _{n \rightarrow \infty} b_{n}=0$. Now Lemma 2.4 implies that $\lim _{n \rightarrow \infty} a_{n}=0$, and so $x_{j}^{n} \rightarrow x_{j}^{*}$ as $n \rightarrow \infty$ for $j=1,2, \ldots, m$. This completes the proof.

Remark 3.4 If $m=2, g_{1}=g_{2}=U_{11}=U_{22} \equiv I$ (right now, $\delta_{i}=\xi_{i}=\zeta_{i i}=1$ for $i=1,2$), then Theorem 3.1 reduces to Theorem 4.5 based on Algorithm 4.3 of Agarwal and Verma [34]. Our presented results improve and extend some known results in the literature.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TX carried out the proof of the corollaries and gave some examples to show the main results. HL conceived of the study and participated in its design and coordination. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by the Cultivation Project of Sichuan University of Science and Engineering (2011PY01) and the Open Research Fund of Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things (2013WZJ01).

Received: 10 April 2014 Accepted: 26 September 2014 Published: 16 Oct 2014

References

1. Huang, NJ, Fang, YP: Fixed point theorems and new system of multi-valued generalized order complementarity problems. Positivity 7, 257-285 (2003)
2. Verma, RU: Projection methods, algorithms, and a new system of nonlinear variational inequalities. Comput. Math. Appl. 41, 1025-1031 (2001)
3. Cho, YJ, Fang, YP, Huang, NJ, Hwang, HJ: Algorithms for systems of nonlinear variational inequalities. J. Korean Math. Soc. 41(3), 489-499 (2004)
4. Fang, YP, Huang, $N J$, Thompson, HB: A new system of variational inclusions with (H, η)-monotone operators in Hilbert spaces. Comput. Math. Appl. 49, 365-374 (2005)
5. Yan, WY, Fang, YP, Huang, NJ: A new system of set-valued variational inclusions with H-monotone operators. Math. Inequal. Appl. 8(3), 537-546 (2005)
6. Fang, YP, Huang, NJ: H-Monotone operator and resolvent operator technique for variational inclusion. Appl. Math. Comput. 145(2-3), 795-803 (2003)
7. Lan, HY, Cho, YJ, Kim, JH: On a new system of nonlinear A-monotone multi-valued variational inclusions. J. Math. Anal. Appl. 327(1), 481-494 (2007)
8. Verma, RU: A-Monotonicity and applications to nonlinear variational inclusion problems. J. Appl. Math. Stoch. Anal. 17(2), 193-195 (2004)
9. Verma, RU: Sensitivity analysis for generalized strongly monotone variational inclusions based on (A, η)-resolvent operator technique. Appl. Math. Lett. 19, 1409-1413 (2006)
10. Agarwal, RP, Huang, NJ, Cho, YJ: Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings. J. Inequal. Appl. 7(6), 807-828 (2002)
11. Ding, XP, Luo, CL: Perturbed proximal point algorithms for generalized quasi-variational-like inclusions. J. Comput. Appl. Math. 210, 153-165 (2000)
12. Fang, YP, Huang, NJ: H-Monotone operator and system of variational inclusions. Commun. Appl. Nonlinear Anal. 11(1), 93-101 (2004)
13. Huang, NJ, Fang, YP: A new class of general variational inclusions involving maximal η-monotone mappings. Publ. Math. (Debr.) 62, 83-98 (2003)
14. Jin, MM: Generalized nonlinear implicit quasi-variational inclusions with relaxed monotone mappings. Adv. Nonlinear Var. Inequal. 7(2), 173-181 (2004)
15. Verma, RU: Approximation solvability of a class of nonlinear set-valued mappings inclusions involving (A, η)-monotone mappings. J. Math. Anal. Appl. 337, 969-975 (2008)
16. Verma, RU: Generalized system for relaxed cocoercive variational inequalities and projection methods. J. Optim. Theory Appl. 121, 203-210 (2004)
17. Kasay, G, Kolumban, J: System of multi-valued variational inequalities. Publ. Math. (Debr.) 56, 185-195 (2000)
18. Ding, XP: Perturbed proximal point algorithms for generalized quasi-variational inclusions. J. Math. Anal. Appl. 210, 88-101 (1997)
19. Qin, XL, Kang, SM, SU, YF, Shang, MJ: Strong convergence of an iterative method for variational inequality problems and fixed point problems. Arch. Math. 45(2), 147-158 (2009)
20. Alimohammady, M, Roohi, M : A system of generalized variational inclusion problems involving (A, η)-monotone mappings. Filomat 23(1), 13-20 (2009)
21. Katchang, P, Kumam, P: A general iterative method of fixed points for mixed equilibrium problems and variational inclusions problems. J. Inequal. Appl. 2010, Article ID 370197 (2010)
22. Jin, MM: Perturbed iterative algorithms for generalized nonlinear set-valued quasivariational inclusions involving generalized m-accretive mappings. J. Inequal. Appl. 2007, Article ID 29863 (2007)
23. Ding, K, Yan, WY, Huang, NJ: A new system of generalized nonlinear relaxed cocoercive variational inequalities. J. Inequal. Appl. 2006, Article ID 40591 (2006)
24. Peng, JW, Zhao, LJ: General system of A-monotone nonlinear variational inclusions problems with applications. J. Inequal. Appl. 2009, Article ID 364615 (2009)
25. Kazmi, KR, Bhat, MI: Iterative algorithms for a system of nonlinear variational-like inclusions. Comput. Math. Appl. 48, 1929-1935 (2004)
26. Eam, CK, Suantai, S: A new approximation method for solving variational inequalities and fixed points of nonexpansive mappings. J. Inequal. Appl. 2009, Article ID 520301 (2009)
27. Cho, YJ, Petrot, N: Regularization and iterative method for general variational inequalities problem in Hilbert spaces. J. Inequal. Appl. 2011, 21 (2011)
28. Lan, HY: Projection iterative approximations a new class of general random implicit quasi-variational inequalities. J. Inequal. Appl. 2006, Article ID 81261 (2006)
29. Noor, MA, Noor, Kl, Kamal, R: General variational inclusions involving difference of operators. J. Inequal. Appl. 2014, 98 (2014)
30. Witthayarat, U, Cho, YJ, Kumam, P: Approximation algorithm for fixed points of nonlinear operators and solutions of mixed equilibrium problems and variational inclusion problems with applications. J. Nonlinear Sci. Appl. 5(6), special issue, 475-494 (2012)
31. Ahmad, R, Dilshad, M: H(.,.)- $\boldsymbol{\eta}$-Cocoercive operators and variational-like inclusions in Banach spaces. J. Nonlinear Sci. Appl. 5(5), special issue, 334-344 (2012)
32. Kavitha, V, Arjunan, MM, Ravichandran, C: Existence results for a second order impulsive neutral functional integrodifferential inclusions in Banach spaces with infinite delay. J. Nonlinear Sci. Appl. 5(5), special issue, 321-333 (2012)
33. Cao, HW: A new system of generalized quasi-variational-like inclusions with noncompact valued mappings. J. Inequal. Appl. 2012, 41 (2012)
34. Agarwal, RP, Verma, RU: General system of (A, η)-maximal relaxed monotone variational inclusion problems based on generalized hybrid algorithms. Commun. Nonlinear Sci. Numer. Simul. 15(2), 238-251 (2010)
35. Kim, JK, Kim, DS: A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces. J. Convex Anal. 11(1), 235-243 (2004)
36. Liu, LS: Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces. J. Math. Appl. 194(1), 114-125 (1995)
37. Nadler, SP: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
10.1186/1029-242X-2014-407

Cite this article as: Xiong and Lan: New general systems of set-valued variational inclusions involving relative
(A, η)-maximal monotone operators in Hilbert spaces. Journal of Inequalities and Applications 2014, 2014:407

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

