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Abstract
In this paper, we prove that the double inequalityMp(a,b) < U(a,b) <Mq(a,b) holds for
all a,b > 0 with a �= b if and only if p ≤ 2 log2/(2 logπ – log2) = 0.8684 · · · and
q ≥ 4/3, where U(a,b) andMr(a,b) are the Yang and rth power means of a and b,
respectively.
MSC: 26E60
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1 Introduction
Let p ∈R and a,b >  with a �= b. Then the pth power meanMp(a,b) of a and b is given by

Mp(a,b) =
(
ap + bp



)/p

(p �= ), M(a,b) =
√
ab.

Themain properties for the powermean are given in []. It is well known thatMp(a,b) is
strictly increasing with respect to p ∈ R for fixed a,b >  with a �= b. Many classical means
are the special cases of the power mean, for example, M–(a,b) = ab/(a + b) = H(a,b) is
the harmonicmean,M(a,b) =

√
ab =G(a,b) is the geometricmean,M(a,b) = (a+b)/ =

A(a,b) is the arithmeticmean, andM(a,b) =
√
(a + b)/ =Q(a,b) is the quadraticmean.

Let L(a,b) = (b – a)/(logb – loga), P(a,b) = (a – b)/[ arcsin((a – b)/(a + b))], M(a,b) =
(a–b)/[ sinh–((a–b)/(a+b))], I(a,b) = (aa/bb)/(a–b)/e and T(a,b) = (a–b)/[ arctan((a–
b)/(a+b))] be the logarithmic, first Seiffert, Neuman-Sándor, identric, and second Seiffert
means of two distinct positive real numbers a and b, respectively. Then it is well known
that the inequalities

H(a,b) <G(a,b) < L(a,b) < P(a,b)

< I(a,b) < A(a,b) <M(a,b) < T(a,b) <Q(a,b)

hold for all a,b >  with a �= b.
Recently, the bounds for certain bivariate means in terms of the power mean have been

the subject of intensive research. Seiffert [] proved that the inequalities


π
M(a,b) < P(a,b) <M(a,b) < T(a,b) <M(a,b)

hold for all a,b >  with a �= b.
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Jagers [] proved that the double inequality

M/(a,b) < P(a,b) <M/(a,b)

holds for all a,b >  with a �= b.
In [, ], Hästö established that

P(a,b) >Mlog/ logπ (a,b), P(a,b) >

√


π
M/(a,b)

for all a,b >  with a �= b.
Witkowski [] proved that the double inequality


√


π
M(a,b) < T(a,b) <


π
M(a,b)

holds for all a,b >  with a �= b.
In [], Costin and Toader presented the result that

Mlog/(logπ–log)(a,b) < T(a,b) <M/(a,b)

for all a,b >  with a �= b.
Chu and Long [] proved that the double inequality

Mp(a,b) <M(a,b) <Mq(a,b)

holds for all a,b >  with a �= b if and only if p ≤ log/ log[ log( +
√
)] = . · · · and

q ≥ /.
The following sharp bounds for the logarithmic and identric means in terms of the

power means can be found in the literature [–]:

M(a,b) < L(a,b) <M/(a,b), M/(a,b) < I(a,b) <Mlog(a,b),

M(a,b) < L/(a,b)I/(a,b) <M/(a,b),

Mlog/(+log)(a,b) <
L(a,b) + I(a,b)


<M/(a,b)

for all a,b >  with a �= b.
Recently, Yang [] introduced the Yang mean U(a,b) of two distinct positive real num-

bers a and b as follows:

U(a,b) =
a – b√

 arctan a–b√
ab

,

and he proved that the inequalities

P(a,b) <U(a,b) < T(a,b),
G(a,b)T(a,b)

A(a,b)
<U(a,b) <

P(a,b)Q(a,b)
A(a,b)

,

Q/(a,b)
[
G(a,b) +Q(a,b)



]/

<U(a,b) <Q/(a,b)
[
G(a,b) +Q(a,b)



]/

,
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G(a,b) +Q(a,b)


<U(a,b) <
[



(
G(a,b) +Q(a,b)



)/

+


Q/(a,b)

]

hold for all a,b >  with a �= b.
In [], Yang et al. presented several sharp bounds for the Yang mean U(a,b) in terms

of the geometric mean G(a,b) and quadratic mean Q(a,b).
The main purpose of this article is to find the greatest value p and the least value q such

that the double inequality

Mp(a,b) <U(a,b) <Mq(a,b)

holds for all a,b >  with a �= b.

2 Lemmas
In order to prove our main results we need several lemmas, which we present in this sec-
tion.

Lemma . Let f : (, )×R→R be defined by

f(x,p) =
( – x)( + xp)√
x( + x)( + xp–)

–
√
 arctan

 – x√
x

. (.)

Then
() f(x,p) is strictly decreasing with respect to x on (, ) if and only if p≥ /;
() f(x,p) is strictly increasing with respect to x on (, ) if and only if p ≤ /.

Proof It follows from (.) that

∂f(x,p)
∂x

=
( – x)xp–/

( + x)(x + xp)
f(x,p), (.)

where

f(x,p) = x–p
(
– + x – x – x

)
+ xp

(
 + x – x + x

)
– (p – )

+ x – x + (p – )x. (.)

() If f(x,p) is strictly decreasing with respect to x on (, ), then (.) leads to the con-
clusion that f(x,p) <  for all x ∈ (, ). In particular, from (.) we have

lim
x→–

f(x,p)
 – x

= –
(
p –




)
≤ . (.)

Therefore, p ≥ / follows from (.).
If p≥ /, then it follows from (.) that

∂f(x,p)
∂p

=
[
xp

(
x – x + x + 

)
+ x–p

(
x + x – x + 

)]
logx

– 
(
 – x

)
<  (.)

for all x ∈ (, ).
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Equation (.) and inequality (.) lead to the conclusion that

f(x,p) ≤ f
(
x,



)
= –

x–/


(
 – x/

)

× (
x/ + x/ + x + x/ + x/ + x + x/ + x/ + 

)
<  (.)

for all x ∈ (, ).
Therefore, f(x,p) is strictly decreasing with respect to x on (, ) follows from (.) and

(.).
() If f(x,p) is strictly increasing with respect to x on (, ), then (.) leads to the con-

clusion that f(x,p) >  for all x ∈ (, ). In particular, we have f(+,p) ≥  and we assert
that p ≤ /. Indeed, from (.) we clearly see that f(+,p) = –∞ for p > , f(+, ) = –,
f(+, ) = , f(+,p) = ∞ for p < , and f(+,p) =  – p for  < p < .
If p≤ /, then inequality (.) holds again. It follows from (.) and (.) that

f(x,p) ≥ f
(
x,




)
= x/( – x)

(
x + x/ + x + x/ + 

)
>  (.)

for all x ∈ (, ).
Therefore, f(x,p) is strictly increasing with respect to x on (, ) follows from (.) and

(.). �

Lemma . Let f : (, )×R→R be defined by (.). Then
() f(x,p) >  for all x ∈ (, ) if and only if p≥ /;
() f(x,p) <  for all x ∈ (, ) if and only if p≤ /.

Proof () If f(x,p) >  for all x ∈ (, ), then from (.) and the L’Hôpital rules we have

lim
x→–

f(x,p)
( – x)

=



(p – ) ≥ 

and p ≥ /.
If p ≥ /, then (.) and Lemma .() lead to the conclusion that f(x,p) > f(,p) = 

for all x ∈ (, ).
() If f(x,p) <  for all x ∈ (, ), then f(+,p) ≤ . We claim that p ≤ /. Indeed, it

follows from (.) that f(+,p) = +∞ if p > /.
If p ≤ /, then (.) and Lemma .() lead to the conclusion that f(x,p) < f(,p) = 

for all x ∈ (, ). �

Lemma . Let f : (, )×R →R be defined by

f(x,p) = –x–p + x–p – x–p – x–p +  + x – x + x

– (p – )x–p + x–p – x–p + (p – )x–p. (.)

Then ∂f(x,p)/∂x <  for all x ∈ (, ) if p ∈ (, /).
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Proof It follows (.) that

xp+
∂f(x,p)

∂x
= x–p

(
ax + ax + ax + a

)
+ bx + bx + bx + b, (.)

where

a = –(p – )(p – )(p – )(p – ) < , (.)

a = –p(p – )(p – )(p – ) > , (.)

a = p(p – )(p + )(p – ) > , (.)

a = –p(p – )(p + )(p + ) < , (.)

b = (p – )(p – )(p – )(p – )(p – ) < , (.)

b = –p(p – )(p – )(p – ) < , (.)

b = p(p – )(p + )(p + ) > , (.)

b = –p(p – )(p + )(p + )(p + ) < . (.)

From (.)-(.) and (.) together with (.) we get

ax + ax + a < a + a + a = –p(p – )
(
p – p + 

)
< , (.)

bx + b < b + b = –p(p + )(p + )
(
p + p + 

)
<  (.)

for all x ∈ (, ).
Therefore, Lemma . follows easily from (.), (.), (.), (.), (.), and (.).

�

Lemma . Let f : (, ) × R → R be defined by (.). Then ∂f(x,p)/∂x <  for all x ∈
(, ) if p ∈ (/, /).

Proof It follows from (.) that

xp+
∂f(x,p)

∂x
= xp+ + (p – )(p – )(p – )x – xp+

– (p – )(p – )x–p – (p – )(p – )x–p

+ (p – )(p – )x–p – p(p – )x–p

– (p – )(p – )x + p(p – )x – p(p – )(p + ), (.)

∂f(x,p)
∂x

∣∣∣
x=

= –
(


– p

)(


– p

)
< , (.)

∂f(x,p)
∂x

∣∣∣
x=

= p – p + p – . (.)

We divide the proof into two cases.
Case . p ∈ (/, ]. Then from

(p – )(p – )(p – ) > , –(p – )(p – ) < , –(p – )(p – )≤ ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/401
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(p – )(p – )≤ , –p(p – ) < , –(p – )(p – ) < ,

p(p – ) < , –p(p – )(p + ) < ,

 < x ≤ xp+ < x–p ≤ x ≤ xp+ < x–p ≤ x < x–p ≤ x < x–p ≤ 

and (.) we clearly see that

xp+
∂f(x,p)

∂x
<

[
 + (p – )(p – )(p – )

]
x–p +

[
– – (p – )(p – )

– (p – )(p – ) + (p – )(p – ) – p(p – )

– (p – )(p – ) + p(p – )

– p(p – )(p + )
]
x–p

= –(p – )(p – )x–p < 

for all x ∈ (, ).
Case . p ∈ (, /]. Then (.) leads to

∂f(x,p)
∂x

∣∣∣
x=

= (p – )
(
p –




)

+



(p – ) +  > . (.)

It follows fromLemma. and (.) that ∂f(x,p)/∂x is strictly increasingwith respect
to x on (, ).
Therefore, ∂f(x,p)/∂x <  for all x ∈ (, ) follows from (.) and the monotonicity of

the ∂f(x,p)/∂x with respect to x on the interval (, ). �

Lemma . Let f : (, )×R→R be defined by (.). Then there exists λ ∈ (, ) such that
f(x,p) is strictly decreasing with respect to x on the interval (,λ] and strictly increasing
with respect to x on the interval [λ, ) if p ∈ (/, /).

Proof Let f(x,p) and f(x,p) be defined by (.) and (.), respectively. Then from (.)
we clearly see that

f(,p) = , f
(
+,p

)
= –∞, (.)

∂f(x,p)
∂x

∣∣∣
x=

= (p – ) < , lim
x→+

∂f(x,p)
∂x

= +∞. (.)

It follows from Lemma . and (.) that there exists λ ∈ (, ) such that f(x,p) is
strictly increasing with respect to x on (,λ] and strictly decreasing with respect to x on
[λ, ). This in conjunction with (.) leads to the conclusion that there exists λ ∈ (, )
such that f(x,p) <  for x ∈ (,λ) and f(x,p) >  for x ∈ (λ, ).
Note that

f(x,p) = xpf(x,p). (.)

Therefore, Lemma . follows from (.) and (.) together with the piecewise positive
and negative of f(x,p) on (, ). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/401
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Lemma . Let f : (, )×R→R be defined by

f (x,p) = log
U(,x)
Mp(,x)

= log
 – x√

 arctan –x√
x

–

p
log

 + xp


(p �= ), (.)

f (x, ) = lim
p→

log
U(,x)
Mp(,x)

= log
 – x√

 arctan –x√
x

–


logx. (.)

Then the following statements are true:
() f (x,p) is strictly increasing with respect to x on (, ) if and only if p ≥ /;
() f (x,p) is strictly decreasing with respect to x on (, ) if and only if p≤ /;
() If / < p < /, then there exists μ ∈ (, ) such that f (x,p) is strictly increasing with

respect to x on (,μ] and strictly decreasing with respect to x on [μ, ).

Proof It follows from (.) and (.) that

∂f (x,p)
∂x

=
 + xp–√

( – x)( + xp) arctan –x√
x

f(x,p), (.)

where f(x,p) is defined by (.).
Therefore, parts () and () follow from Lemma . and (.).
Next, we prove part (). If / < p < /, then (.) leads to

f
(
+,p

)
= +∞, f(,p) = . (.)

FromLemma . and (.) we clearly see that there existsμ ∈ (, ) such that f(x,p) > 
for x ∈ (,μ) and f(x,p) <  for x ∈ (μ, ).
Therefore, part () follows from (.) and the fact that f(x,p) >  for x ∈ (,μ) and

f(x,p) <  for x ∈ (μ, ). �

3 Main results
Theorem . The double inequality

Mp(a,b) <U(a,b) <Mq(a,b)

holds for all a,b >  with a �= b if and only if p ≤ p =  log/( logπ – log) = . · · ·
and q ≥ /.

Proof Since both the Yang mean U(a,b) and the rth power mean Mr(a,b) are symmetric
and homogeneous of degree , without loss of generality, we assume that a =  and b = x ∈
(, ).
We first prove that the inequality U(,x) <Mq(,x) holds for all x ∈ (, ) if and only if

q ≥ /.
If q = /, then from (.) and Lemma .() we get

log
U(,x)

M/(,x)
= f

(
x,



)
< f

(
–,




)
=  (.)

for all x ∈ (, ).
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Therefore, U(,x) < Mq(,x) for all x ∈ (, ) and q ≥ / follows from (.) and the
monotonicity of the function q → Mq(,x).
IfU(,x) <Mq(,x), then (.) and (.) lead to f (x,q) <  for all x ∈ (, ). In particular,

we have

lim
x→–

f (x,q)
( – x)

=



(


– q

)
≤ 

and q ≥ /.
Next, we prove that the inequality U(,x) >Mp(,x) holds for all x ∈ (, ) if and only if

p≤ p.
If U(,x) >Mp(,x) holds for all x ∈ (, ), then (.) leads to f (x,p) >  for all x ∈ (, ).

In particular, we have

f
(
+,p

)
=

(

p
+



)
log – logπ ≥ . (.)

We claim that p ≤ p. Indeed, p ≤ p follows from (.) if p > , and p < p is obvious if
p < .
If p = p, then (.) leads to

f
(
+,p

)
= f (,p) = . (.)

It follows from (.) and (.) together with Lemma .() that

log
U(,x)
Mp (,x)

= f (x,p) >  (.)

for all x ∈ (, ).
Therefore,U(,x) >Mp(,x) for all x ∈ (, ) and p ≤ p follows from (.) and themono-

tonicity of the function p→Mp(,x). �

Theorem . Let a,b >  with a �= b. Then the double inequality

/

π
M/(a,b) <U(a,b) <

/

π
M/(a,b)

holds with the best possible constants //π and //π .

Proof It follows from Lemma .() and () together with (.) that

log
U(,x)

M/(,x)
= f

(
x,




)
< f

(
+,




)
= log

/

π
(.)

and

log
U(,x)

M/(,x)
= f

(
x,



)
> f

(
+,




)
= log

/

π
(.)

for all x ∈ (, ).
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Therefore, //πM/(,x) <U(,x) < //πM/(,x) for all x ∈ (, ) follows from (.)
and (.), and the optimality of the parameters //π and //π follows from the mono-
tonicity of the functions f (x, /) and f (x, /). �

Remark . For all a,a,b,b >  with a/b < a/b < . Then from Lemma .() and
() together with (.) we clearly see that the Ky Fan type inequalities

Mp(a,b)
Mp(a,b)

<
U(a,b)
U(a,b)

<
Mq(a,b)
Mq(a,b)

hold if and only if p≥ / and q ≤ /.

Let p ∈ R and Lp(a,b) = (ap+ + bp+)/(ap + bp) be the pth Lehmer mean of two positive
real numbers and a and b. Then the function f(x,p) defined by (.) can be rewritten as

f(x,p) = ( – x)
[
A(,x)Lp–(,x)
G(,x)Q(,x)

–


U(,x)

]
. (.)

From Lemma . and (.) we get Remark ..

Remark . The double inequality

G(a,b)Q(a,b)
A(a,b)Lp–(a,b)

<U(a,b) <
G(a,b)Q(a,b)
A(a,b)Lq–(a,b)

holds for all a,b >  with a �= b if and only if p≥ / and q ≤ /.
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