Optimal power mean bounds for Yang mean

Zhen-Hang Yang ${ }^{1}$, Li-Min Wu ${ }^{2}$ and Yu-Ming Chu ${ }^{1 *}$

Correspondence: chuyuming2005@126.com
${ }^{1}$ School of mathematics and Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article

Abstract

In this paper, we prove that the double inequality $M_{p}(a, b)<U(a, b)<M_{q}(a, b)$ holds for all $a, b>0$ with $a \neq b$ if and only if $p \leq 2 \log 2 /(2 \log \pi-\log 2)=0.8684 \cdots$ and $q \geq 4 / 3$, where $U(a, b)$ and $M_{r}(a, b)$ are the Yang and r th power means of a and b, respectively. MSC: 26E60 Keywords: Yang mean; power mean; Neuman-Sándor mean

1 Introduction

Let $p \in \mathbb{R}$ and $a, b>0$ with $a \neq b$. Then the p th power mean $M_{p}(a, b)$ of a and b is given by

$$
M_{p}(a, b)=\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p} \quad(p \neq 0), \quad M_{0}(a, b)=\sqrt{a b} .
$$

The main properties for the power mean are given in [1]. It is well known that $M_{p}(a, b)$ is strictly increasing with respect to $p \in \mathbb{R}$ for fixed $a, b>0$ with $a \neq b$. Many classical means are the special cases of the power mean, for example, $M_{-1}(a, b)=2 a b /(a+b)=H(a, b)$ is the harmonic mean, $M_{0}(a, b)=\sqrt{a b}=G(a, b)$ is the geometric mean, $M_{1}(a, b)=(a+b) / 2=$ $A(a, b)$ is the arithmetic mean, and $M_{2}(a, b)=\sqrt{\left(a^{2}+b^{2}\right) / 2}=Q(a, b)$ is the quadratic mean.

Let $L(a, b)=(b-a) /(\log b-\log a), P(a, b)=(a-b) /[2 \arcsin ((a-b) /(a+b))], M(a, b)=$ $(a-b) /\left[2 \sinh ^{-1}((a-b) /(a+b))\right], I(a, b)=\left(a^{a} / b^{b}\right)^{1 /(a-b)} / e$ and $T(a, b)=(a-b) /[2 \arctan ((a-$ $b) /(a+b))]$ be the logarithmic, first Seiffert, Neuman-Sándor, identric, and second Seiffert means of two distinct positive real numbers a and b, respectively. Then it is well known that the inequalities

$$
\begin{aligned}
H(a, b) & <G(a, b)<L(a, b)<P(a, b) \\
& <I(a, b)<A(a, b)<M(a, b)<T(a, b)<Q(a, b)
\end{aligned}
$$

hold for all $a, b>0$ with $a \neq b$.
Recently, the bounds for certain bivariate means in terms of the power mean have been the subject of intensive research. Seiffert [2] proved that the inequalities

$$
\frac{2}{\pi} M_{1}(a, b)<P(a, b)<M_{1}(a, b)<T(a, b)<M_{2}(a, b)
$$

hold for all $a, b>0$ with $a \neq b$.

Jagers [3] proved that the double inequality

$$
M_{1 / 2}(a, b)<P(a, b)<M_{2 / 3}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$.
In $[4,5]$, Hästö established that

$$
P(a, b)>M_{\log 2 / \log \pi}(a, b), \quad P(a, b)>\frac{2 \sqrt{2}}{\pi} M_{2 / 3}(a, b)
$$

for all $a, b>0$ with $a \neq b$.
Witkowski [6] proved that the double inequality

$$
\frac{2 \sqrt{2}}{\pi} M_{2}(a, b)<T(a, b)<\frac{4}{\pi} M_{1}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$.
In [7], Costin and Toader presented the result that

$$
M_{\log 2 /(\log \pi-\log 2)}(a, b)<T(a, b)<M_{5 / 3}(a, b)
$$

for all $a, b>0$ with $a \neq b$.
Chu and Long [8] proved that the double inequality

$$
M_{p}(a, b)<M(a, b)<M_{q}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $p \leq \log 2 / \log [2 \log (1+\sqrt{2})]=1.224 \cdots$ and $q \geq 4 / 3$.

The following sharp bounds for the logarithmic and identric means in terms of the power means can be found in the literature [9-16]:

$$
\begin{aligned}
& M_{0}(a, b)<L(a, b)<M_{1 / 3}(a, b), \quad M_{2 / 3}(a, b)<I(a, b)<M_{\log 2}(a, b), \\
& M_{0}(a, b)<L^{1 / 2}(a, b) I^{1 / 2}(a, b)<M_{1 / 2}(a, b), \\
& M_{\log 2 /(1+\log 2)}(a, b)<\frac{L(a, b)+I(a, b)}{2}<M_{1 / 2}(a, b)
\end{aligned}
$$

for all $a, b>0$ with $a \neq b$.
Recently, Yang [17] introduced the Yang mean $U(a, b)$ of two distinct positive real numbers a and b as follows:

$$
U(a, b)=\frac{a-b}{\sqrt{2} \arctan \frac{a-b}{\sqrt{2 a b}}},
$$

and he proved that the inequalities

$$
\begin{aligned}
& P(a, b)<U(a, b)<T(a, b), \quad \frac{G(a, b) T(a, b)}{A(a, b)}<U(a, b)<\frac{P(a, b) Q(a, b)}{A(a, b)}, \\
& Q^{1 / 2}(a, b)\left[\frac{2 G(a, b)+Q(a, b)}{3}\right]^{1 / 2}<U(a, b)<Q^{2 / 3}(a, b)\left[\frac{G(a, b)+Q(a, b)}{2}\right]^{1 / 3},
\end{aligned}
$$

$$
\frac{G(a, b)+Q(a, b)}{2}<U(a, b)<\left[\frac{2}{3}\left(\frac{G(a, b)+Q(a, b)}{2}\right)^{1 / 2}+\frac{1}{3} Q^{1 / 2}(a, b)\right]^{2}
$$

hold for all $a, b>0$ with $a \neq b$.
In [18], Yang et al. presented several sharp bounds for the Yang mean $U(a, b)$ in terms of the geometric mean $G(a, b)$ and quadratic mean $Q(a, b)$.
The main purpose of this article is to find the greatest value p and the least value q such that the double inequality

$$
M_{p}(a, b)<U(a, b)<M_{q}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$.

2 Lemmas

In order to prove our main results we need several lemmas, which we present in this section.

Lemma 2.1 Let $f_{1}:(0,1) \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
f_{1}(x, p)=\frac{\left(1-x^{2}\right)\left(1+x^{p}\right)}{\sqrt{x}\left(1+x^{2}\right)\left(1+x^{p-1}\right)}-\sqrt{2} \arctan \frac{1-x}{\sqrt{2 x}} . \tag{2.1}
\end{equation*}
$$

Then
(1) $f_{1}(x, p)$ is strictly decreasing with respect to x on $(0,1)$ if and only if $p \geq 4 / 3$;
(2) $f_{1}(x, p)$ is strictly increasing with respect to x on $(0,1)$ if and only if $p \leq 1 / 2$.

Proof It follows from (2.1) that

$$
\begin{equation*}
\frac{\partial f_{1}(x, p)}{\partial x}=\frac{(1-x) x^{p-1 / 2}}{2\left(1+x^{2}\right)^{2}\left(x+x^{p}\right)^{2}} f_{2}(x, p) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{align*}
f_{2}(x, p)= & x^{1-p}\left(-1+x-5 x^{2}-3 x^{3}\right)+x^{p}\left(3+5 x-x^{2}+x^{3}\right)-(2 p-1) \\
& +4 x-4 x^{3}+(2 p-1) x^{4} . \tag{2.3}
\end{align*}
$$

(1) If $f_{1}(x, p)$ is strictly decreasing with respect to x on $(0,1)$, then (2.2) leads to the conclusion that $f_{2}(x, p)<0$ for all $x \in(0,1)$. In particular, from (2.3) we have

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} \frac{f_{2}(x, p)}{1-x}=-24\left(p-\frac{4}{3}\right) \leq 0 . \tag{2.4}
\end{equation*}
$$

Therefore, $p \geq 4 / 3$ follows from (2.4).
If $p \geq 4 / 3$, then it follows from (2.3) that

$$
\begin{align*}
\frac{\partial f_{2}(x, p)}{\partial p}= & {\left[x^{p}\left(x^{3}-x^{2}+5 x+3\right)+x^{1-p}\left(3 x^{3}+5 x^{2}-x+1\right)\right] \log x } \\
& -2\left(1-x^{4}\right)<0 \tag{2.5}
\end{align*}
$$

for all $x \in(0,1)$.

Equation (2.3) and inequality (2.5) lead to the conclusion that

$$
\begin{align*}
f_{2}(x, p) \leq & f_{2}\left(x, \frac{4}{3}\right)=-\frac{x^{-1 / 3}}{3}\left(1-x^{2 / 3}\right)^{3} \\
& \times\left(3 x^{8 / 3}+5 x^{7 / 3}+9 x^{2}+12 x^{5 / 3}+6 x^{4 / 3}+12 x+9 x^{2 / 3}+5 x^{1 / 3}+3\right)<0 \tag{2.6}
\end{align*}
$$

for all $x \in(0,1)$.
Therefore, $f_{1}(x, p)$ is strictly decreasing with respect to x on $(0,1)$ follows from (2.2) and (2.6).
(2) If $f_{1}(x, p)$ is strictly increasing with respect to x on $(0,1)$, then (2.2) leads to the conclusion that $f_{2}(x, p)>0$ for all $x \in(0,1)$. In particular, we have $f_{2}\left(0^{+}, p\right) \geq 0$ and we assert that $p \leq 1 / 2$. Indeed, from (2.3) we clearly see that $f_{2}\left(0^{+}, p\right)=-\infty$ for $p>1, f_{2}\left(0^{+}, 1\right)=-2$, $f_{2}\left(0^{+}, 0\right)=4, f_{2}\left(0^{+}, p\right)=\infty$ for $p<0$, and $f_{2}\left(0^{+}, p\right)=1-2 p$ for $0<p<1$.

If $p \leq 1 / 2$, then inequality (2.5) holds again. It follows from (2.3) and (2.5) that

$$
\begin{equation*}
f_{2}(x, p) \geq f_{2}\left(x, \frac{1}{2}\right)=2 x^{1 / 2}(1-x)\left(x^{2}+2 x^{3 / 2}+4 x+2 x^{1 / 2}+1\right)>0 \tag{2.7}
\end{equation*}
$$

for all $x \in(0,1)$.
Therefore, $f_{1}(x, p)$ is strictly increasing with respect to x on $(0,1)$ follows from (2.2) and (2.7).

Lemma 2.2 Let $f_{1}:(0,1) \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by (2.1). Then
(1) $f_{1}(x, p)>0$ for all $x \in(0,1)$ if and only if $p \geq 4 / 3$;
(2) $f_{1}(x, p)<0$ for all $x \in(0,1)$ if and only if $p \leq 1 / 2$.

Proof (1) If $f_{1}(x, p)>0$ for all $x \in(0,1)$, then from (2.1) and the L'Hôpital rules we have

$$
\lim _{x \rightarrow 1^{-}} \frac{f_{1}(x, p)}{(1-x)^{3}}=\frac{1}{12}(3 p-4) \geq 0
$$

and $p \geq 4 / 3$.
If $p \geq 4 / 3$, then (2.1) and Lemma 2.1(1) lead to the conclusion that $f_{1}(x, p)>f_{1}(1, p)=0$ for all $x \in(0,1)$.
(2) If $f_{1}(x, p)<0$ for all $x \in(0,1)$, then $f_{1}\left(0^{+}, p\right) \leq 0$. We claim that $p \leq 1 / 2$. Indeed, it follows from (2.1) that $f_{1}\left(0^{+}, p\right)=+\infty$ if $p>1 / 2$.

If $p \leq 1 / 2$, then (2.1) and Lemma 2.1(2) lead to the conclusion that $f_{1}(x, p)<f_{1}(1, p)=0$ for all $x \in(0,1)$.

Lemma 2.3 Let $f_{3}:(0,1) \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\begin{align*}
f_{3}(x, p)= & -x^{1-2 p}+x^{2-2 p}-5 x^{3-2 p}-3 x^{4-2 p}+3+5 x-x^{2}+x^{3} \\
& -(2 p-1) x^{-p}+4 x^{1-p}-4 x^{3-p}+(2 p-1) x^{4-p} . \tag{2.8}
\end{align*}
$$

Then $\partial^{4} f_{3}(x, p) / \partial x^{4}<0$ for all $x \in(0,1)$ if $p \in(1,4 / 3)$.

Proof It follows (2.8) that

$$
\begin{equation*}
x^{p+4} \frac{\partial^{4} f_{3}(x, p)}{\partial x^{4}}=x^{1-p}\left(a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right)+b_{4} x^{4}+b_{3} x^{3}+b_{1} x+b_{0} \tag{2.9}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{3}=-3(2 p-1)(2 p-2)(2 p-3)(2 p-4)<0, \tag{2.10}\\
& a_{2}=-10 p(2 p-1)(2 p-2)(2 p-3)>0, \tag{2.11}\\
& a_{1}=2 p(2 p-1)(2 p+1)(2 p-2)>0, \tag{2.12}\\
& a_{0}=-2 p(2 p-1)(2 p+1)(2 p+2)<0, \tag{2.13}\\
& b_{4}=(2 p-1)(p-1)(p-2)(p-3)(p-4)<0, \tag{2.14}\\
& b_{3}=-4 p(p-1)(p-2)(p-3)<0, \tag{2.15}\\
& b_{1}=4 p(p-1)(p+1)(p+2)>0, \tag{2.16}\\
& b_{0}=-p(2 p-1)(p+1)(p+2)(p+3)<0 . \tag{2.17}
\end{align*}
$$

From (2.11)-(2.13) and (2.16) together with (2.17) we get

$$
\begin{align*}
& a_{2} x^{2}+a_{1} x+a_{0}<a_{2}+a_{1}+a_{0}=-4 p(2 p-1)\left(10 p^{2}-21 p+17\right)<0, \tag{2.18}\\
& b_{1} x+b_{0}<b_{1}+b_{0}=-p(p+2)(p+1)\left(2 p^{2}+p+1\right)<0 \tag{2.19}
\end{align*}
$$

for all $x \in(0,1)$.
Therefore, Lemma 2.3 follows easily from (2.9), (2.10), (2.14), (2.15), (2.18), and (2.19).

Lemma 2.4 Let $f_{3}:(0,1) \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by (2.8). Then $\partial^{2} f_{3}(x, p) / \partial x^{2}<0$ for all $x \in$ $(0,1)$ if $p \in(1 / 2,4 / 3)$.

Proof It follows from (2.8) that

$$
\begin{align*}
x^{p+2} \frac{\partial^{2} f_{3}(x, p)}{\partial x^{2}}= & 6 x^{p+3}+(2 p-1)(p-3)(p-4) x^{4}-2 x^{p+2} \\
& -3(2 p-3)(2 p-4) x^{4-p}-5(2 p-2)(2 p-3) x^{3-p} \\
& +(2 p-1)(2 p-2) x^{2-p}-2 p(2 p-1) x^{1-p} \\
& -4(p-2)(p-3) x^{3}+4 p(p-1) x-p(2 p-1)(p+1), \tag{2.20}\\
\left.\frac{\partial^{2} f_{3}(x, p)}{\partial x^{2}}\right|_{x=1}= & -48\left(\frac{4}{3}-p\right)\left(\frac{3}{2}-p\right)<0, \tag{2.21}\\
\left.\frac{\partial^{3} f_{3}(x, p)}{\partial x^{3}}\right|_{x=1}= & 88 p^{3}-300 p^{2}+380 p-144 . \tag{2.22}
\end{align*}
$$

We divide the proof into two cases.
Case 1. $p \in(1 / 2,1]$. Then from

$$
(2 p-1)(p-3)(p-4)>0, \quad-3(2 p-3)(2 p-4)<0, \quad-5(2 p-2)(2 p-3) \leq 0,
$$

$$
\begin{aligned}
& (2 p-1)(2 p-2) \leq 0, \quad-2 p(2 p-1)<0, \quad-4(p-2)(p-3)<0, \\
& 4 p(p-1)<0, \quad-p(2 p-1)(p+1)<0, \\
& 0<x^{4} \leq x^{p+3}<x^{4-p} \leq x^{3} \leq x^{p+2}<x^{3-p} \leq x^{2}<x^{2-p} \leq x<x^{1-p} \leq 1
\end{aligned}
$$

and (2.20) we clearly see that

$$
\begin{aligned}
x^{p+2} \frac{\partial^{2} f_{3}(x, p)}{\partial x^{2}}< & {[6+(2 p-1)(p-3)(p-4)] x^{4-p}+[-2-3(2 p-3)(2 p-4)} \\
& -5(2 p-2)(2 p-3)+(2 p-1)(2 p-2)-2 p(2 p-1) \\
& -4(p-2)(p-3)+4 p(p-1) \\
& -p(2 p-1)(p+1)] x^{4-p} \\
= & -8(3 p-4)(2 p-3) x^{4-p}<0
\end{aligned}
$$

for all $x \in(0,1)$.
Case 2. $p \in(1,4 / 3]$. Then (2.22) leads to

$$
\begin{equation*}
\left.\frac{\partial^{3} f_{3}(x, p)}{\partial x^{3}}\right|_{x=1}=88(p-1)\left(p-\frac{53}{44}\right)^{2}+\frac{887}{22}(p-1)+24>0 \tag{2.23}
\end{equation*}
$$

It follows from Lemma 2.3 and (2.23) that $\partial^{2} f_{3}(x, p) / \partial x^{2}$ is strictly increasing with respect to x on $(0,1)$.

Therefore, $\partial^{2} f_{3}(x, p) / \partial x^{2}<0$ for all $x \in(0,1)$ follows from (2.21) and the monotonicity of the $\partial^{2} f_{3}(x, p) / \partial x^{2}$ with respect to x on the interval $(0,1)$.

Lemma 2.5 Let $_{1}:(0,1) \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by (2.1). Then there exists $\lambda \in(0,1)$ such that $f_{1}(x, p)$ is strictly decreasing with respect to x on the interval $(0, \lambda]$ and strictly increasing with respect to x on the interval $[\lambda, 1)$ if $p \in(1 / 2,4 / 3)$.

Proof Let $f_{2}(x, p)$ and $f_{3}(x, p)$ be defined by (2.3) and (2.8), respectively. Then from (2.8) we clearly see that

$$
\begin{align*}
& f_{3}(1, p)=0, \quad f_{3}\left(0^{+}, p\right)=-\infty, \tag{2.24}\\
& \left.\frac{\partial f_{3}(x, p)}{\partial x}\right|_{x=1}=8(3 p-4)<0, \quad \lim _{x \rightarrow 0^{+}} \frac{\partial f_{3}(x, p)}{\partial x}=+\infty . \tag{2.25}
\end{align*}
$$

It follows from Lemma 2.4 and (2.25) that there exists $\lambda_{0} \in(0,1)$ such that $f_{3}(x, p)$ is strictly increasing with respect to x on $\left(0, \lambda_{0}\right.$] and strictly decreasing with respect to x on $\left[\lambda_{0}, 1\right)$. This in conjunction with (2.24) leads to the conclusion that there exists $\lambda \in(0,1)$ such that $f_{3}(x, p)<0$ for $x \in(0, \lambda)$ and $f_{3}(x, p)>0$ for $x \in(\lambda, 1)$.

Note that

$$
\begin{equation*}
f_{2}(x, p)=x^{p} f_{3}(x, p) . \tag{2.26}
\end{equation*}
$$

Therefore, Lemma 2.5 follows from (2.2) and (2.26) together with the piecewise positive and negative of $f_{3}(x, p)$ on $(0,1)$.

Lemma 2.6 Letf : $(0,1) \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
\begin{align*}
& f(x, p)=\log \frac{U(1, x)}{M_{p}(1, x)}=\log \frac{1-x}{\sqrt{2} \arctan \frac{1-x}{\sqrt{2 x}}}-\frac{1}{p} \log \frac{1+x^{p}}{2} \quad(p \neq 0), \tag{2.27}\\
& f(x, 0)=\lim _{p \rightarrow 0} \log \frac{U(1, x)}{M_{p}(1, x)}=\log \frac{1-x}{\sqrt{2} \arctan \frac{1-x}{\sqrt{2 x}}}-\frac{1}{2} \log x . \tag{2.28}
\end{align*}
$$

Then the following statements are true:
(1) $f(x, p)$ is strictly increasing with respect to x on $(0,1)$ if and only if $p \geq 4 / 3$;
(2) $f(x, p)$ is strictly decreasing with respect to x on $(0,1)$ if and only if $p \leq 1 / 2$;
(3) If $1 / 2<p<4 / 3$, then there exists $\mu \in(0,1)$ such that $f(x, p)$ is strictly increasing with respect to x on $(0, \mu]$ and strictly decreasing with respect to x on $[\mu, 1)$.

Proof It follows from (2.27) and (2.28) that

$$
\begin{equation*}
\frac{\partial f(x, p)}{\partial x}=\frac{1+x^{p-1}}{\sqrt{2}(1-x)\left(1+x^{p}\right) \arctan \frac{1-x}{\sqrt{2 x}}} f_{1}(x, p), \tag{2.29}
\end{equation*}
$$

where $f_{1}(x, p)$ is defined by (2.1).
Therefore, parts (1) and (2) follow from Lemma 2.2 and (2.29).
Next, we prove part (3). If $1 / 2<p<4 / 3$, then (2.1) leads to

$$
\begin{equation*}
f_{1}\left(0^{+}, p\right)=+\infty, \quad f_{1}(1, p)=0 . \tag{2.30}
\end{equation*}
$$

From Lemma 2.5 and (2.30) we clearly see that there exists $\mu \in(0,1)$ such that $f_{1}(x, p)>0$ for $x \in(0, \mu)$ and $f_{1}(x, p)<0$ for $x \in(\mu, 1)$.
Therefore, part (3) follows from (2.29) and the fact that $f_{1}(x, p)>0$ for $x \in(0, \mu)$ and $f_{1}(x, p)<0$ for $x \in(\mu, 1)$.

3 Main results

Theorem 3.1 The double inequality

$$
M_{p}(a, b)<U(a, b)<M_{q}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $p \leq p_{0}=2 \log 2 /(2 \log \pi-\log 2)=0.8684 \cdots$ and $q \geq 4 / 3$.

Proof Since both the Yang mean $U(a, b)$ and the r th power mean $M_{r}(a, b)$ are symmetric and homogeneous of degree 1 , without loss of generality, we assume that $a=1$ and $b=x \in$ $(0,1)$.

We first prove that the inequality $U(1, x)<M_{q}(1, x)$ holds for all $x \in(0,1)$ if and only if $q \geq 4 / 3$.

If $q=4 / 3$, then from (2.27) and Lemma 2.6(1) we get

$$
\begin{equation*}
\log \frac{U(1, x)}{M_{4 / 3}(1, x)}=f\left(x, \frac{4}{3}\right)<f\left(1^{-}, \frac{4}{3}\right)=0 \tag{3.1}
\end{equation*}
$$

for all $x \in(0,1)$.

Therefore, $U(1, x)<M_{q}(1, x)$ for all $x \in(0,1)$ and $q \geq 4 / 3$ follows from (3.1) and the monotonicity of the function $q \rightarrow M_{q}(1, x)$.
If $U(1, x)<M_{q}(1, x)$, then (2.27) and (2.28) lead to $f(x, q)<0$ for all $x \in(0,1)$. In particular, we have

$$
\lim _{x \rightarrow 1^{-}} \frac{f(x, q)}{(1-x)^{2}}=\frac{1}{8}\left(\frac{4}{3}-q\right) \leq 0
$$

and $q \geq 4 / 3$.
Next, we prove that the inequality $U(1, x)>M_{p}(1, x)$ holds for all $x \in(0,1)$ if and only if $p \leq p_{0}$.

If $U(1, x)>M_{p}(1, x)$ holds for all $x \in(0,1)$, then (2.27) leads to $f(x, p)>0$ for all $x \in(0,1)$. In particular, we have

$$
\begin{equation*}
f\left(0^{+}, p\right)=\left(\frac{1}{p}+\frac{1}{2}\right) \log 2-\log \pi \geq 0 \tag{3.2}
\end{equation*}
$$

We claim that $p \leq p_{0}$. Indeed, $p \leq p_{0}$ follows from (3.2) if $p>0$, and $p<p_{0}$ is obvious if $p<0$.

If $p=p_{0}$, then (2.27) leads to

$$
\begin{equation*}
f\left(0^{+}, p_{0}\right)=f\left(1, p_{0}\right)=0 . \tag{3.3}
\end{equation*}
$$

It follows from (2.27) and (3.3) together with Lemma 2.6(3) that

$$
\begin{equation*}
\log \frac{U(1, x)}{M_{p_{0}}(1, x)}=f\left(x, p_{0}\right)>0 \tag{3.4}
\end{equation*}
$$

for all $x \in(0,1)$.
Therefore, $U(1, x)>M_{p}(1, x)$ for all $x \in(0,1)$ and $p \leq p_{0}$ follows from (3.4) and the monotonicity of the function $p \rightarrow M_{p}(1, x)$.

Theorem 3.2 Let $a, b>0$ with $a \neq b$. Then the double inequality

$$
\frac{2^{5 / 4}}{\pi} M_{4 / 3}(a, b)<U(a, b)<\frac{2^{5 / 2}}{\pi} M_{1 / 2}(a, b)
$$

holds with the best possible constants $2^{5 / 4} / \pi$ and $2^{5 / 2} / \pi$.

Proof It follows from Lemma 2.6(1) and (2) together with (2.27) that

$$
\begin{equation*}
\log \frac{U(1, x)}{M_{1 / 2}(1, x)}=f\left(x, \frac{1}{2}\right)<f\left(0^{+}, \frac{1}{2}\right)=\log \frac{2^{5 / 2}}{\pi} \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\log \frac{U(1, x)}{M_{4 / 3}(1, x)}=f\left(x, \frac{4}{3}\right)>f\left(0^{+}, \frac{4}{3}\right)=\log \frac{2^{5 / 4}}{\pi} \tag{3.6}
\end{equation*}
$$

for all $x \in(0,1)$.

Therefore, $2^{5 / 4} / \pi M_{4 / 3}(1, x)<U(1, x)<2^{5 / 2} / \pi M_{1 / 2}(1, x)$ for all $x \in(0,1)$ follows from (3.5) and (3.6), and the optimality of the parameters $2^{5 / 4} / \pi$ and $2^{5 / 2} / \pi$ follows from the monotonicity of the functions $f(x, 1 / 2)$ and $f(x, 4 / 3)$.

Remark 3.1 For all $a_{1}, a_{2}, b_{1}, b_{2}>0$ with $a_{1} / b_{1}<a_{2} / b_{2}<1$. Then from Lemma 2.6(1) and (2) together with (2.27) we clearly see that the Ky Fan type inequalities

$$
\frac{M_{p}\left(a_{2}, b_{2}\right)}{M_{p}\left(a_{1}, b_{1}\right)}<\frac{U\left(a_{2}, b_{2}\right)}{U\left(a_{1}, b_{1}\right)}<\frac{M_{q}\left(a_{2}, b_{2}\right)}{M_{q}\left(a_{1}, b_{1}\right)}
$$

hold if and only if $p \geq 4 / 3$ and $q \leq 1 / 2$.

Let $p \in \mathbb{R}$ and $L_{p}(a, b)=\left(a^{p+1}+b^{p+1}\right) /\left(a^{p}+b^{p}\right)$ be the p th Lehmer mean of two positive real numbers and a and b. Then the function $f_{1}(x, p)$ defined by (2.1) can be rewritten as

$$
\begin{equation*}
f_{1}(x, p)=(1-x)\left[\frac{A(1, x) L_{p-1}(1, x)}{G(1, x) Q^{2}(1, x)}-\frac{1}{U(1, x)}\right] . \tag{3.7}
\end{equation*}
$$

From Lemma 2.2 and (3.7) we get Remark 3.2.

Remark 3.2 The double inequality

$$
\frac{G(a, b) Q^{2}(a, b)}{A(a, b) L_{p-1}(a, b)}<U(a, b)<\frac{G(a, b) Q^{2}(a, b)}{A(a, b) L_{q-1}(a, b)}
$$

holds for all $a, b>0$ with $a \neq b$ if and only if $p \geq 4 / 3$ and $q \leq 1 / 2$.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Z-HY provided the main idea and carried out the proof of Lemmas 2.1 and 2.2. L-MW carried out the proof of Lemmas 2.3-2.6. Y-MC carried out the proof of Theorems 3.1 and 3.2. All authors read and approved the final manuscript.

Author details

${ }^{1}$ School of mathematics and Computation Science, Hunan City University, Yiyang, 413000, China. ${ }^{2}$ Department of Mathematics, Huzhou University, Huzhou, 313000, China

Acknowledgements

This research was supported by the Natural Science Foundation of China under Grants 11171307 and 61374086, and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004

Received: 23 June 2014 Accepted: 25 September 2014 Published: 16 Oct 2014

References

1. Bullen, PS, Mitrinović, DS, Vasić, PM: Means and Their Inequalities. Reidel, Dordrecht (1988)
2. Seiffert, HJ: Aufgabe $\beta 16$. Ginkgo-Wurzel 29, 221-222 (1995)
3. Jagers, AA: Solution of problem 887. Nieuw Arch. Wiskd. 12, 230-231 (1994)
4. Hästö, PA: A monotonicity property of ratios of symmetric homogeneous means. JIPAM. J. Inequal. Pure Appl. Math. 3(5), Article 71 (2002)
5. Hästö, PA: Optimal inequalities between Seiffert's mean and power mean. Math. Inequal. Appl. 7(1), 47-53 (2004)
6. Witkowski, A: Interpolations of Schwab-Borchardt mean. Math. Inequal. Appl. 16(1), 193-206 (2013)
7. Costin, I, Toader, G: Optimal evaluations of some Seiffert-type means by power means. Appl. Math. Comput. 219(9), 4745-4754 (2013)
8. Chu, Y-M, Long, B-Y: Bounds of the Neuman-Sándor mean using power and identric means. Abstr. Appl. Anal. 2013 Article ID 832591 (2013)
9. Alzer, H: Ungleichungen für Mittelwerte. Arch. Math. 47(5), 422-426 (1986)
10. Alzer, H: Ungleichungen für (e/a) ${ }^{a}(b / e)^{b}$. Elem. Math. 40, 120-123 (1985)
11. Burk, F: The geometric, logarithmic, and arithmetic mean inequality. Am. Math. Mon. 94(6), 527-528 (1987)
12. Lin, TP: The power mean and the logarithmic mean. Am. Math. Mon. 81, 879-883 (1974)
13. Pittenger, AO: Inequalities between arithmetic and logarithmic means. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 678(715), 15-18 (1980)
14. Pittenger, AO: The symmetric, logarithmic and power means. Publ. Elektroteh. Fak. Univ. Beogr., Ser. Mat. Fiz. 678(715), 19-23 (1980)
15. Stolarsky, KB: The power and generalized logarithmic means. Am. Math. Mon. 87(7), 545-548 (1980)
16. Alzer, H, Qiu, S-L: Inequalities for means in two variables. Arch. Math. 80(2), 201-215 (2003)
17. Yang, Z-H: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013 Article ID 541 (2013)
18. Yang, Z-H, Chu, Y-M, Song, Y-Q, Li, Y-M: A sharp double inequality for trigonometric functions and its applications Abstr. Appl. Anal. 2014, Article ID 592085 (2014)

[^0] 2014, 2014:401

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review

Immediate publication on acceptance
Open access: articles freely available online
High visibility within the field
Retaining the copyright to your article

[^0]: 10.1186/1029-242X-2014-401

 Cite this article as: Yang et al.: Optimal power mean bounds for Yang mean. Journal of Inequalities and Applications

