
Li et al. Journal of Inequalities and Applications 2014, 2014:400
http://www.journalofinequalitiesandapplications.com/content/2014/1/400

RESEARCH Open Access

New periodic solutions of singular
Hamiltonian systems with fixed energies
Fengying Li1*, Qingqing Hua2 and Shiqing Zhang2

*Correspondence:
lify0308@163.com
1School of Economic and
Mathematics, Southwestern
University of Finance and
Economics, Chengdu, Sichuan
611130, P.R. China
Full list of author information is
available at the end of the article

Abstract
By using the variational minimizing method with a special constraint and the direct
variational minimizing method without constraint, we study second-order
Hamiltonian systems with a singular potential V ∈ C2(Rn\O,R) and V ∈ C1(R2\O,R),
which may have an unbounded potential well, and prove the existence of non-trivial
periodic solutions with a prescribed energy. Our results can be regarded as
complements of the well-known theorems of Benci-Gluck-Ziller-Hayashi and
Ambrosetti-Coti Zelati and so on.
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1 Introduction
Seifert [] in  and Rabinowitz [, ] in  and  studied classical second-order
Hamiltonian systems without singularity, based on their work, Benci [, ] and Gluck and
Ziller [] and Hayashi [] used a Jacobi metric and very complicated geodesic methods
and algebraic topology to study the periodic solutions with a fixed energy of the following
system:

q̈ +V ′(q) =O, (.)



|q̇| +V (q) = h. (.)

They proved a very general theorem.

Theorem . Suppose V ∈ C(Rn,R), if

{
x ∈ Rn|V (x) ≤ h

}
is bounded and non-empty, then (.)-(.) has a periodic solution with energy h.
Furthermore, if

V ′(x) �=O, ∀x ∈ {
x ∈ Rn|V (x) = h

}
,

then (.)-(.) has a nonconstant periodic solution with energy h.
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For the existence of multiple periodic solutions for (.)-(.) with compact energy sur-
faces, we can refer to Groessen [] and Long [] and the references therein.
In the  paper of Ambrosetti and Coti Zelati [], Clark-Ekeland’s dual action princi-

ple, Ambrosetti-Rabinowitz’s mountain pass theorem etc. were used to study the existence
of T-periodic solutions of the second-order equation

–ẍ =∇U(x),

where

U = V ∈ C(�;R)

is such that

U(x)→ ∞, x → � = ∂�;

here � ⊂ Rn is a bounded and convex domain, and they got the following result.

Theorem . Suppose that
(i) U(O) =  =minU ;
(ii) U(x)≤ θ (x,∇U(x)) for some θ ∈ (,  ) and for all x near � (superquadraticity

near �);
(iii) (U ′′(x)y, y)≥ k|y| for some k >  and for all (x, y) ∈ � ×RN .

Let ωN be the greatest eigenvalue of U ′′() and T = (/ωN )/. Then –ẍ = ∇U(x) has for
each T ∈ (,T) a periodic solution with minimal period T .

For Cr systems, a natural interesting problem is if

{
x ∈ Rn|V (x) ≤ h

}
is unbounded: can we get a nonconstant periodic solution for the system (.)-(.)?
In , Offin [] firstly generalized Theorem . to some non-compact cases under

V ∈ C(Rn,R) and complicated geometrical assumptions on potential wells, but it seems
to be difficult to verify this for concrete potentials under the geometrical conditions.
In , Rabinowitz [] studied multiple periodic solutions for classical Hamiltonian

systems with potential V ∈ C(R×Rn,R), where V (q, . . . ,qn; t) is Ti-periodic in positions
qi ∈ R and is T-periodic in t.
In , using Clark-Ekeland’s dual variational principle and Ambrosetti-Rabinowitz’s

mountain pass lemma, Coti Zelati et al. [] studied Hamiltonian systems with convex
potential wells, they got the following result.

Theorem. Let� be a convex open subset of Rn containing the origin O. Let V ∈ C(�,R)
be such that

(V) V (q) ≥ V (O) = , ∀q ∈ �.
(V) ∀q �=O, V ′′(q) > .
(V) ∃ω > , s.t. V (q) ≤ ω

 ‖q‖, ∀‖q‖ < ε.
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(V) V ′′(q)– → , ‖q‖ → , or
(V)′ V ′′(q)– → , q → ∂�.

Then, for every T < π√
ω
, (.) has a solution with minimal period T .

In Theorems . and ., the authors assumed the convex conditions for potentials and
potential wells so that they can apply Clark-Ekeland’s dual variational principle; we notice
that Theorems .-. essentially made the following assumption:

V (x) → ∞, x → � = ∂�.

So all the potential wells are bounded.
For singular Hamiltonian systems with a fixed energy h ∈ R, Ambrosetti and Coti Zelati

in [, ] used Ljusternik-Schnirelmann theory on a C manifold to get the following
theorem.

Theorem . (Ambrosetti and Coti Zelati []) Suppose V ∈ C(Rn\{O},R) satisfies
V (q) → –∞, q →  and
(A) V ′(u) · u + (V ′′(u)u,u) �= , ∀u �= ;
(A) V ′(u) · u > , ∀u �= ;
(A) ∃α > , s.t. V ′(u) · u≤ –αV (u), ∀u �= ;
(A) ∃β > , r > , s.t. V ′(u) · u ≥ –βV (u),  < |u| < r;
(A) V (u) + 

V
′(u)u≤ , ∀u �= .

Then (.)-(.) has at least one nonconstant periodic solution.

Besides Ambrosetti-Coti Zelati, many other mathematicians [–] studied singular
Hamiltonian systems, here we only mention a related recent paper of Carminati, Sere and
Tanaka []. They used complex variational and topological methods to generalize Pisani’s
results [], and they got the following theorem.

Theorem . Suppose h > , L >  and V ∈ C∞(Rn\{O},R) satisfies V (q) → –∞, q → 
and
(B) V (q) ≤ , ∀q �= ;
(B) V (q) + 

V
′(q)q ≤ h, ∀|q| ≥ eL ;

(B) V (q) + 
V

′(q)q ≥ h, ∀|q| ≤ e–L ;
(A) ∃β > , r > , s.t. V ′(q) · q ≥ –βV (q),  < |q| < r.

Then (.)-(.) has at least one periodic solution with the given energy h and whose action
is at most πr with

r =max
{[

(
h –V (q)

)] 
 ; |q| = 

}
.

Theorem . Suppose h > , ρ > , and V ∈ C∞(Rn\{O},R) satisfies V (q) → –∞, q → 
and (B), (A) and

(B)′ lim|q|→+∞ V ′(q) =O;
(B)′ V (q) + 

V
′(q)q ≥ h, ∀|q| ≤ ρ.

Then (.)-(.) has at least one periodic solution with the given energy h whose action is at
most πr.
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By using the variational minimizing method with a special constraint, we obtain the
following result.

Theorem . Suppose V ∈ C(Rn\{O},R) and V (q) → –∞, q →  and satisfies (A)-(A)
and

(A)′ ∃β > , s.t. V ′(q) · q ≥ –βV (q),  < |q| < +∞;
(A)′ V (–q) = V (q), ∀q �=O.

Then for any h > , (.)-(.) has at least one nonconstant periodic solution with the given
energy h.

Using the direct variational minimizing method, we get the following theorem.

Theorem . Suppose V ∈ C(R\{O},R) and V (q) → –∞, q →  and satisfies

(B)′ V (q) < h, ∀q �=O;
(P)′ V ′(u) →O, ‖u‖ → +∞;
(A)′ ∃α > , μ > , s.t. V ′(u) · u≤ –αV (u) +μ, ∀u �= ;
(A) ∃β > , r > , s.t. V ′(u) · u ≥ –βV (u),  < |u| < r.

Then for any h > μ
α
, (.)-(.) has at least one nonconstant periodic solution with the given

energy h.

Corollary . Suppose α = β >  and

V (x) = –|x|–α .

Then for any h > , (.)-(.) has at least one nonconstant periodic solution with the given
energy h.

Remark In Theorem ., the assumption on regularity for potential V is weaker than
Theorems .-.. Comparing Theorem . with Theorem ., our (B)′ is also weaker
than (B), and (A)′ is also different from (B)-(B) and (B)′.

2 A few lemmas
Let

H =W ,(R/Z,Rn) = {
u : R→ Rn,u ∈ L, u̇ ∈ L,u(t + ) = u(t)

}
.

Then the standard H norm is equivalent to

‖u‖ = ‖u‖H =
(∫ 


|u̇| dt

)/

+
∣∣u()∣∣.

Let

� =
{
u ∈H|u(t) �=O,∀t}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/400
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Lemma . ([]) Let

F =
{
u ∈ H

∣∣∣ ∫ 



(
V (u) +



V ′(u)u

)
dt = h

}
.

If (A) holds, then F is a C manifold with codimension  in H. Let

f (u) =



∫ 


|u̇| dt

∫ 


V ′(u)udt

and let ũ ∈ F be such that f ′ (̃u) =O and f (̃u) > . Set


T =

∫ 
 V

′ (̃u)̃udt∫ 
 | ˙̃u| dt .

If (A) holds, then q̃(t) = ũ(t/T) is a nonconstant T-periodic solution for (.)-(.).More-
over, if (A) holds, then f (u) ≥  on F and f (u) = , u ∈ F if and only if u is constant.

Lemma. ([, ]) Let f (u) = 

∫ 
 |u̇| dt ∫ 

 (h–V (u))dt and ũ ∈ � be such that f ′ (̃u) =O
and f (̃u) > . Set


T =

∫ 
 (h –V (̃u))dt


∫ 
 | ˙̃u| dt .

Then q̃(t) = ũ(t/T) is a nonconstant T-periodic solution for (.)-(.). Furthermore, if
V (x) < h, ∀x �= O, then f (u) ≥  on � and f (u) = , u ∈ � if and only if u is a nonzero
constant.

Lemma . (Sobolev-Rellich-Kondrachov [, ])

W ,(R/Z,Rn) ⊂ C
(
R/Z,Rn)

and the imbedding is compact.

Lemma . ([, ]) Let q ∈W ,(R/TZ,Rn).
() If q() = q(T) =O, then we have the Friedrics-Poincaré inequality:

∫ T



∣∣q̇(t)∣∣ dt ≥
(

π

T

) ∫ T



∣∣q(t)∣∣ dt.
() If

∫ T
 q(t)dt = , then we have Wirtinger’s inequality:

∫ T



∣∣q̇(t)∣∣ dt ≥
(
π
T

) ∫ T



∣∣q(t)∣∣ dt
and Sobolev’s inequality:

∫ T



∣∣q̇(t)∣∣ dt ≥ 
T

∣∣q(t)∣∣∞.
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Lemma . (Eberlein-Shmulyan []) A Banach space X is reflexive if and only if any
bounded sequence in X has a weakly convergent subsequence.

Definition . (Tonelli []) Let X be a Banach space, f : X → R.
(i) If for any {xn} ⊂ X strongly converges to x : xn → x, we have

lim inf f (xn) ≥ f (x),

then we call f (x) lower semi-continuous at x.
(ii) If for any {xn} ⊂ X weakly converges to x : xn ⇀ x, we have

lim inf f (xn) ≥ f (x),

then we call f (x) weakly lower semi-continuous at x.

Using the famous Ekeland variational principle, Ekeland proved the following.

Lemma . (Ekeland []) Let X be a Banach space, F ⊂ X be a closed (weakly closed)
subset, let δ(x,x) be the geodesic distance between two points x and x in X, δ(x,F) be
the geodesic distance between x and the set F . Suppose that � defined on X is Gateaux-
differentiable and lower semi-continuous (or weakly lower semi-continuous) and assume
�|F restricted on F is bounded from below. Then there is a sequence {xn} ⊂ F such that

δ(xn,F) → ,

�(xn) → inf
F

�,

(
 + ‖xn‖

)∥∥�|′F (xn)
∥∥ → .

Definition . ([, ]) Let X be a Banach space, F ⊂ X be a closed subset. Suppose that
� defined on X is Gateaux-differentiable, if sequence {xn} ⊂ F is such that

δ(xn,F) → ,

�(xn) → c,(
 + ‖xn‖

)∥∥�|′F (xn)
∥∥ → ,

then {xn} has a strongly convergent subsequence.
Then we say that f satisfies the (CPS)c,F condition at the level c for the closed subset

F ⊂ X.

We notice that if F = X, then the above condition is the classical Cerami-Palais-Smale
condition [].
We can give a weaker condition than the (CPS)c,F condition.

Definition . Let X be a Banach space, F ⊂ X be a weakly closed subset. Suppose that
� defined on X is Gateaux-differentiable, if sequence {xn} ⊂ F such that

δ(xn,F) → ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/400
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�(xn) → c,∥∥�|′F (xn)
∥∥ → ,

then {xn} has a weakly convergent subsequence.
Then we say that f satisfies the (WCPS)c,F condition.

Lemma . (Gordon []) Let V satisfy the so-called Gordon strong force condition:
There exists a neighborhood N of O and a function U ∈ C(�,R) such that:
(i) lims→U(x) = –∞;
(ii) –V (x) ≥ |U ′(x)| for every x ∈N – {O}.
Let

∂� =
{
u ∈H =W ,(R/Z,Rn), ∃t,u(t) =O

}
.

Then we have∫ 


V (u)dt → –∞, ∀un ⇀ u ∈ ∂�.

Let

∂� =
{
u ∈H =W ,(R/Z,Rn), ∃t,u(t) = 

}
.

Then we have∫ 


V (u)dt → –∞, ∀un ⇀ u ∈ ∂�.

By Lemmas . and ., it is easy to prove the following.

Lemma . Let X be a Banach space, let F ⊂ X be a weakly closed subset. Suppose that
� defined on F is Gateaux-differentiable and weakly lower semi-continuous and bounded
from below on F . If � satisfies the (CPS)inf�,F condition or the (WCPS)inf�,F condition, and
suppose that

�(un) → +∞, un ⇀ u ∈ ∂�,

then � attains its infimum on F .

The next lemma is a variant on the classical Tonelli’s theorem, whose proof is easy, so
we omit its proof.

Lemma . Let X be a Banach space, F ⊂ X be a weakly closed subset. Suppose that φ(u)
is defined on an open subset � ⊂ X and is Gateaux-differentiable on � and weakly lower
semi-continuous and bounded from below on �∩ F , if φ is coercive, that is, φ(x)→ +∞ as
‖x‖ → +∞, and suppose that

φ(un) → +∞, un ⇀ u ∈ ∂�,

then φ attains its infimum on � ∩ F .

http://www.journalofinequalitiesandapplications.com/content/2014/1/400
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3 The proof of Theorem 1.7
By the symmetrical condition (A)′, it is easy to prove that the critical point of the func-
tional f on � is also the critical point of the functional f on �.
Let

∂� =
{
u ∈H =W ,(R/Z,Rn),u(t + /) = –u(t), ∃t,u(t) = 

}
.

Lemma . Assume (A)′ holds, then for any weakly convergent sequence un ⇀ u ∈ ∂�,
we have

f (un) → +∞.

Proof Similar to the proof of Zhang []. �

Lemma . F ∩ � is a weakly closed subset in H.

Proof Let {un} ⊂ F ∩� be a weakly convergent sequence, we use the embedding theorem
to find which uniformly converges to u ∈H.
Nowwe claim u ∈ �, and then it is obvious that u ∈ F . In fact, if u ∈ ∂�, by V (q) → –∞,

q →  and the condition (A)′ we have

–V (u) ≥ C|u|–β ,  < |u| < r′ < r.

So V (u) satisfies Gordon’s strong force condition, and by his lemma, we have

∫ 


–V (un)dt → +∞, ∀un ⇀ u ∈ ∂�.

The condition (A)′ implies

V (un) +


〈
V ′(un),un

〉 ≥ (
 –

β



)
V (un).

Hence

h =
∫ 



[
V (un) +



〈
V ′(un),un

〉]
dt → +∞.

This is a contradiction. �

Lemma . f (u) is weakly lower semi-continuous on F ∩ �

Proof For any {un} ⊂ F : un ⇀ u, then by Sobolev’s embedding theorem and functional
analysis, we have uniform convergence:

∣∣un(t) – u(t)
∣∣∞ → .

http://www.journalofinequalitiesandapplications.com/content/2014/1/400
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(i) If u ∈ �, then by V ∈ C(Rn\{},R), we have
∣∣V (

un(t)
)
–V (u(t)

∣∣∞ → .

It’s well known that the norm is weakly lower semi-continuous, we have

lim inf‖un‖ ≥ ‖u‖.

Hence

lim inf f (un) = lim inf

(



∫ 


|u̇n| dt

)∫ 



(
h –V (un)

)
dt,

≥ 


∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt = f (u).

(ii) If u ∈ ∂�, then by our assumption on V which satisfies Gordon’s strong force
condition, we have∫ 


–V (un)dt → +∞, ∀un ⇀ u ∈ ∂�.

() If u≡ , then

|un|∞ → , n→ +∞.

Then similar to the proof in [], we have

f (un) ≥ |un|–β
∞ → +∞, n→ +∞.

So in this case we have

lim inf f (un) = +∞ ≥ f (u).

() If u �= , then by the weakly lower semi-continuity for norm, we have

lim inf‖un‖ ≥ ‖u‖ > .

So by Gordon’s lemma, we have

lim inf f (un) = lim inf

(



∫ 


|u̇n| dt

)∫ 



(
h –V (un)

)
dt = +∞

≥ 


∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt = f (u). �

Lemma . The functional f (u) has a positive lower bound on F .

Proof By the definitions of f (u) and F and the assumption (A), we have

f (u) =



∫ 


|u̇| dt

∫ 



(
V ′(u)u

)
dt ≥ , ∀u ∈ F . �

http://www.journalofinequalitiesandapplications.com/content/2014/1/400
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By the definitions of the functional f (u) and its domain �, and the conditions on the
energy h >  and the potential V (u) < , it is easy to prove the following lemma.

Lemma . The functional f (u) is coercive.

Furthermore, we claim that

c = inf
F∩�

f (u) > ,

since otherwise, u(t) = const attains the infimum , then by the symmetry of �, we
have u(t)≡ o, which contradicts the definition of �. Now by Lemmas .-. and Lem-
mas . and ., we know f (u) attains the infimum on F , furthermore we know that the
minimizer is nonconstant.

4 The proof of Theorem 1.8
In order to prove the Cerami-Palais-Smale type condition and get a nonconstant periodic
solution in non-symmetrical case, we need to add a topological condition, we know that
there are winding numbers (degrees) in the planar case, so we define

� =
{
u ∈ �,deg(u) �= 

}
.

Lemma . If un ⇀ u ∈ ∂�, then f (un)→ +∞.

Proof By V satisfying Gordon’s strong force condition, we have

∫ 


–V (un)dt → +∞, ∀un ⇀ u ∈ ∂�.

() If u ≡ , then by Sobolev’s embedding theorem, we have

|un|∞ → , n→ +∞.

Then by deg(un) �= , we have c >  such that

c|un|∞ ≤ ‖u̇n‖L

and ‖u̇n‖L is an equivalent norm ofW , and

f (un)≥ c|un|–β
∞ → +∞, n→ +∞.

So in this case, we have

lim inf f (un) = +∞ ≥ f (u).

() If u �= , then by the weakly lower semi-continuity for the norm, we have

lim inf‖un‖ ≥ ‖u‖ > .

http://www.journalofinequalitiesandapplications.com/content/2014/1/400
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So by Gordon’s lemma, we have

lim inf f (un) = lim inf

(



∫ 


|u̇n| dt

)∫ 



(
h –V (un)

)
dt = +∞

=



∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt = f (u). �

Lemma . Under the assumptions of Theorem .,

f (u) =



∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt

satisfies the (CPS)+ condition on �, that is, if {un} ⊂ � satisfies

f (un) → c > ,
(
 + ‖un‖

)
f ′(un) →O, (.)

then {un} has a strongly convergent subsequence in �.

Proof Since f ′(un) makes sense, we know

{un} ⊂ �.

We claim
∫ 
 |u̇n| dt is bounded. In fact, by f (un) → c, we have

–


‖u̇n‖L ·

∫ 


V (un)dt → c –

h

‖u̇n‖L . (.)

By (A)′ we have

〈
f ′(un),un

〉
= ‖u̇n‖L ·

∫ 



(
h –V (un) –



〈
V ′(un),un

〉)
dt

≥ ‖u̇n‖L
∫ 



[
h –

μ


–

(
 –

α



)
V (un)

]
dt. (.)

By (.) and (.) we have

〈
f ′(un),un

〉 ≥
(
h –

μ



)
‖u̇n‖L +

(
 –

α



)(
c – h‖u̇n‖L

)

=
(

α


h –

μ



)
‖u̇n‖L +C, (.)

where C = ( – α
 )c, α > , h > μ

α
. So ‖u̇n‖ ≤ C.

Then we claim |un()| is bounded.
We notice that

f ′(un) ·
(
un – un()

)
=

∫ 


|u̇n| dt

∫ 



(
h –V (un)

)
dt

http://www.journalofinequalitiesandapplications.com/content/2014/1/400
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–



∫ 


|u̇n| dt

∫ 



〈
V ′(un),un – un()

〉
dt

= f (un) –



∫ 


|u̇n|

∫ 



〈
V ′(un),un – un()

〉
dt. (.)

If |un()| is unbounded, then there is a subsequence, still denoted by un s.t. |un()| → +∞.
Since

‖u̇n‖ ≤M,

we have

min
≤t≤

∣∣un(t)∣∣ ≥ ∣∣un()∣∣ – ‖u̇n‖ → +∞, as n→ +∞. (.)

By Friedrics-Poincaré’s inequality and the condition (P), we have

∫ 



∣∣u̇n(t)∣∣ dt ≥ π
∫ 



∣∣un(t) – un()
∣∣ dt, (.)

∫ 


V ′(un)

(
un – un()

)
dt → , (.)

f ′(un) ·
(
un – un()

) → . (.)

So f (un) → , which contradicts f (un) → c > , hence un() is bounded, and ‖un‖ =
‖u̇n‖L + |un()| is bounded. Furthermore, similar to the proof of Ambrosetti and Coti
Zelati [], un strongly converges to u ∈ �. �

It is easy to prove the following.

Lemma . Under the assumption (B)′, f (u) ≥  on �, that is, f has a lower bound.

Lemma . Under the assumptions of Theorem ., f (u) is weakly lower semi-continuous
on the closure �̄ of �.

Now we can prove our Theorem ., in fact, by Lemma ., we know that the infimum
of f on � is equal to the infimum of f on the closure of �. Furthermore, we can prove
the infimum of f on � is greater than zero, otherwise if it is zero, the corresponding
minimizer must be constant, then the winding number is zero, which is a contradiction.
Now by the above lemmas, especially Lemma ., we know that f attains the positive
infimum on � and the corresponding minimizer must be nonconstant.
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