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Abstract

The concept of lacunary statistical convergence was introduced in intuitionistic fuzzy
n-normed spaces in Sen and Debnath (Math. Comput. Model. 54:2978-2985, 2011).
In this article, we introduce the notion of lacunary A-statistically convergent and
lacunary A-statistically Cauchy sequences in an intuitionistic fuzzy n-normed space.
Also, we give their properties using lacunary density and prove relation between
these notions.
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1 Introduction

Fuzzy set theory was introduced by Zadeh [1] in 1965. This theory has been applied not
only in different branches of engineering such as in nonlinear dynamic systems [2], in the
population dynamics [3], in the quantum physics [4], but also in many fields of mathe-
matics such as in metric and topological spaces [5-7], in the theory of functions [8, 9], in
the approximation theory [10]. 2-normed and #-normed linear spaces were initially intro-
duced by Géahler [11, 12] and further studied by Kim and Cho [13], Malceski [14] and Gu-
nawan and Mashadi [15]. Vijayabalaji and Narayanan [16] defined fuzzy n-normed linear
space. After Saadati and Park [17] introduced the concept of intuitionistic fuzzy normed
space, Vijayabalaji et al. [18] defined the notion of intuitionistic fuzzy n-normed space.
The notion of statistical convergence was investigated by Steinhaus [19] and Fast [20].
Then a lot of authors applied this concept to probabilistic normed spaces [21, 22], ran-
dom 2-normed spaces [23] and finally intuitionistic fuzzy normed spaces [24, 25]. Fridy
and Orhan [26] introduced the idea of lacunary statistical convergence. Using this idea,
Mursaleen and Mohiuddine [27], Sen and Debnath [28] investigated lacunary statisti-
cal convergence in intuitionistic fuzzy normed spaces and intuitionistic fuzzy n-normed
spaces, respectively. The idea of difference sequences was introduced by Kizmaz [29]
where Ax = (Axy) = xx — xx41. Basarir [30] introduced the A-statistical convergence of
sequences. Bilgin [31] introduced the definition of lacunary strongly A-convergence of
fuzzy numbers. Hazarika [32] gave the definition of lacunary generalized difference statis-
tical convergence in random 2-normed spaces. Also, the generalized difference sequence
spaces were studied by various authors [33—35]. In this article, we shall introduce lacunary
A-statistical convergence and lacunary A-statistically Cauchy sequences in IFnNLS.
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2 Preliminaries, background and notation

In this section, we give the basic definitions.

Definition 2.1 ([27]) A binary operation *: [0,1] x [0,1] — [0, 1] is said to be a continuous
t-norm if it satisfies the following conditions:
(i) * is associative and commutative,
(ii) * is continuous,
(iii) ax1=aforall a € [0,1],
(iv) a* b <c*dwhenevera <cand b <d for each a,b,c,d € [0,1].

Definition 2.2 ([27]) Abinaryoperationo: [0,1] x [0,1] — [0, 1] is said to be a continuous
t-conorm if it satisfies the following conditions:
(i) o isassociative and commutative,
(ii) o is continuous,
(iii) ao 0 =a forall a € [0,1],
(iv) aob <cod whenevera <cand b <d for each a,b,c,d € [0,1].

Definition 2.3 ([27]) Let n € N and X be a real vector space of dimension d > n (here we
allow it to be infinite). A real-valued function ||e,...,e] on X x --- x X = X" satisfying the
following four properties:
(i) ll#1,%2,...,%4] = 0 if and only if x1,%5, ..., %, are linearly dependent,

(ii) %1,%2,...,%, are invariant under any permutation,

(i) [lx1, %25 ..., 0%, = || l|%1, %2, ..., %] for any o € R,

(iv) llxn, %2, %01,y + 21 < Ml %25 X, YN+ %1, %2, 00 %01, 211,
is called an #-norm on X and the pair is called an n-normed space.

Definition 2.4 ([28]) An IFnNLS is the five-tuple (X, u, v, *,0) where X is a linear space
over a field F, % is a continuous t-norm, o is a continuous ¢-conorm, u, v are fuzzy sets
on X” x (0,00), u denotes the degree of membership and v denotes the degree of non-
membership of (x,,%,,...,%,,1) € X" x (0, 00) satisfying the following conditions for every
(%1, %2,...,%,) € X and s, £ > 0:
) mwx, X0, %0, ) + UK, X0, X, E) <1,
) Xy, x0,...,%,,8) > 0,

) m(x,x2,...,%,,t) =1if and only if x1, %9, ..., %, are linearly dependent,
(iv) wm(x1,22,...,%,,¢) is invariant under any permutation of x,xs,...,%,,

Y (i, Xy Cp ) = (XD Xy s Xy ﬁ) forallc #0,c € F,

) (X1, %2, .5 X, S) % (01, X, 5 X, E) < (K1, XDy Ky + X, S+ E),
(vii) w(xr,%9,...,%,, 1) : (0,00) — [0,1] is continuous in ¢,
lim;_, o0 (X1, %2, ..., %, £) = 1 and limy_, o (1, %9,...,%,,£) = 0,
V(X1,%2, .. .50, 1) < 1,
(X1, %2, .., %, ) = 0 if and only if w1, %, ..., x, are linearly dependent,

)
)
)
(xi) v(x1,%2,...,%,,t) is invariant under any permutation of x1, %y, ...,%,,
) v(X1, %0, . .., CXy ) = UK, %2, .00 5 %0, ﬁ) forallc#0,c€F,
) U(X1,%0,. .0, %,8) 0 UKL, X2, ..o, X 8) = UKL, X2, Xy + X, S + 1)
) v(x1,%2,...,%,t) : (0,00) = [0,1] is continuous in £,

)

limy_ oo (%1, %2, ..., %y, ) = 0 and lim;_, ¢ v(x1,%2,...,%,,£) = 1.
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Example 2.1 ([28]) Let (X, |e,...,®|) be an n-normed linear space. Also let a * b = ab and
aob=min{a + b,1} for all a,b € [0,1],

t %1, %2, . ., Xl
WX, %y ek t) = ———————— and  v(xp,%0,.. ., %, ) = ———— 7
t+||xlrx2"~)xn” t+||x1:x2wu;xn”

Then (X, i, v, *,0) is an IFNNLS.

Definition 2.5 ([26]) A lacunary sequence is an increasing integer sequence 6 = {k,} such
that ko = 0 and %, = k, — k,.; — 00 as r — 0o. The intervals determined by 6 will be de-

noted by I, = (k,_1, k,] and the ratio k]:il will be abbreviated as g,. Let K € N. The number

1
89(1():limh—|{kelrzkel(}|

is said to be the 6-density of K, provided the limit exists.

Definition 2.6 ([28]) Let 6 be a lacunary sequence. A sequence x = {x;} of numbers is
said to be lacunary statistically convergent (or Sg-convergent) to the number L if for every
€ > 0, the set K(¢) has 6-density zero, where

K(e)={keN:|x - L| > ¢}.
In this case, we write Sy-limx = L.

3 A-Convergence and lacunary A-statistical convergence in IFnNLS
In this section, we define A-convergence and lacunary A-statistical convergence in intu-

itionistic fuzzy n-normed spaces.

Definition 3.1 Let (X, i, v, *,0) be an IFnNLS. A sequence x = {x;} in X is said to be
A-convergent to L € X with respect to the intuitionistic fuzzy n-norm (u, v)" if, for ev-
ery € >0, t >0 and y1,%2,...,¥4-1 € X, there exists kp € N such that u(y1,¥2,..., Y01,
Axp —L,t) >1—¢e and v(y1,¥2,.--»Yn-1, Axx — L, t) < ¢ for all k > ko, where k € N and
Axy = (xx — %k41). It is denoted by (u, v)"-lim Ax = L or Axy — L as k — oo.

Definition 3.2 Let (X, u, v, *,0) be an IFnNLS. A sequence x = {x;} in X is said to be
lacunary A-statistically convergent or Sg(A)-convergent to L € X with respect to the in-

tuitionistic fuzzy n-norm (u, v)" provided that for every ¢ > 0, ¢ > 0 and y1,%s, ..., ¥u1 € X,

SH(A)({/( eN: M(yl,yZ;uqyn—lr Axk _L; t) =< l1-¢

or U(y1, Y2, -»Yn-1, Ak — L, 1) > £}) = 0,
or, equivalently,

89(A)({ke N: w1, y2 o0 Y1, Ax—L,t) >1—¢

and v(y1, Y2, -»Yu-1, Axi — L, t) < 8}) =1.
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It is denoted by Sp V" (A)-limx = L or xx — L(Sp(A)). Using Definition 3.2 and prop-

erties of the 6-density, we can easily obtain the following lemma.

Lemma 3.1 Let (X, i, v,*,0) be an IFnNLS and 0 be a lacunary sequence. Then, for every
£>0,t>0and y1,ys,...,Yn-1 € X, the following statements are equivalent:
(i) Sy (A)-limx =1L,
(ii) do(A){k € N: 1,92, yn1, Dag = L,£) <1—¢}) =
So(A){k eN:v(y1, ¥ s Yn1, Axk — L, t) > 6}) = 0,
(ili) So(A)({k e N: vy, y25 -« s Yu1, Axk — L, £) > 1 — € and v(y1, Y2, .« ., Y1, Axk — L, t) <
e} =1,
() So(AY{k € N: 0,320 st A — L, £) > 1= ) =
So(A){k eN:v(yL Y2, .o s Yu1, Axk — L,t) <€}) =1,
(v) So-lim pu(y1, 925+, Yn-1, Axy — L, t) =1 and Sp-limv(yy,¥a,. .., Yp-1, Axx — L, £) = 0.

Proceeding exactly in a similar way as in [36], the following theorem can be proved.
Theorem 3.1 Let (X, i, v, *,0) be an IFnNLS and 0 be a lacunary sequence. If a sequence
x = {xx} in X is lacunary A-statistically convergent or Sy(A)-convergent to L € X with re-

spect to the intuitionistic fuzzy n-norm (i, v)", Sy W0 (A)-limx is unique.

Theorem 3.2 Let (X, u,v,*,0) be an IFuNLS and 6 be a lacunary sequence. If (u,v)"-
lim Ax = L, then Ss"" (A)-limx = L.

Proof Let (u,v)"-lim Ax = L. Then, for every ¢ >0, ¢t >0 and y1,s,...,¥,1 € X, there ex-

ists ko € N such that u(y1,y2,...,¥n-1, Axx — L, £) >1—eand v(y1, ¥2, .. ., Yu-1, Axx — L, t) < &
for all k > ko. Hence the set

{keN:,u(yl,yz,...,yn,l,Axk—L,t) <l-¢

or v(¥1, Y25+« »Yn-1, Axg — L, £) > 8}
has a finite number of terms. Since every finite subset of N has lacunary density zero,

89(A)({k eN: M()/l,yz,u.,yy,_l, Axk _Ly t) = 1-¢

or U(yl:er ey Yn-1» Axk _Lr t) = 8}) = 01
that is, Sp“¥" (A)-limx = L.

It follows from the following example that the converse of Theorem 3.2 is not true in

general.
Example 3.1 Consider X = R” with

X111 vt X

llcr, %2, ..., %ull = abs | | ,
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where x; = (x;1,%2,...,%iy) € R"foreachi=1,2,...,n,andletaxb = ab,aob = min{a + b, 1}
for all a,b € [0,1]. Now, for all y;,y,,...,¥,-1,% € R" and ¢ > 0, u(y1,¥2,--» Yu-1,%,t) =
t _ _yiyzseyn-1xl n :
TR and v(y1, 92, .- Yu-1, % t) = Tk Then (R”, i, v, *, 0) is an IFnNLS.
Let I, and 4, be as defined in Definition 2.5. Define a sequence x = {x;} whose terms are

given by
(n=[hr]+1) (=n+[Vhy]) noos
(f,O,...,O)ER lflfkfn_[\/h_r],
X = (—%k2+%k,0,...,0)eR” ifn—[h]+1<k<n,
(-in* = 3n,0,...,0) €R" ifk>n
such that
(k,0,...,00eN ifn—[Vh]+1<k<n,
Axy =

(0,0,...,0) e N otherwise.
For every 0 < ¢ <1 and for any y1,¥2,...,¥,-1 € X, £ >0, let

K(e,t)={k el : uO1, 92, Yn1, A —L,t) <1—¢

or U(Y1, Y25+ > Y1, A — L, 1) > €},

Now,

et
K(e,t) = {k €L el Y, Yoty Al 2 17— > O}

c{kel : Axy = (k,0,...,0) e R"}.

Thus we have hl, kel :keK(,t)}] < % — 0 as r — 0o. Hence Sy (A)-limx = 0.
On the other hand, x = {x;} in X is not A-convergent to 0 with respect to the intuition-
istic fuzzy n-norm since

t
t+ ”yl)yZ)' . ';yn_l, Aka

/‘L(ylyyZ; ey Yn-1s Axk’ t) =

ifn—[Vh]+l<k<n,

1, otherwise,

t
— ) t+lyny2seyn-1, 8%l

<1

and

ly1, 525+ s Y1, Ai ||
E+ 1Y Y2s s Ynets Al

U(yl;yZyn 3 Yn-15 Axk; t) =

191,920+ n-1, A% | ifr— [m] +l<k<n,

E+ 1159251, D% ||
0, otherwise

>0.

This completes the proof of the theorem. d
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Theorem 3.3 Let (X, 4, v, *, o) be an IFuNLS. Then S (A)-limx = L ifand only if there
exists an increasing sequence K = {k,} of the natural numbers such that §y(A)(K) =1 and

(e, v)"-limgegx Axg = L.

Proof Necessity. Suppose that Sy (A)-limx = L. Then, for every yi,ya,...,¥n1 € X,
t>0andj=1,2,...,

1
K(j,t) = {keN:u(yl,yg,...,y,,_l,Axk—L,t)>1— -
]
1
and v(y1, Y2, .. -» V-1, Axg — L, t) < —,} and
J

1
M(j,t) = {kGN:M(yl,yz,...,ynprk—L,t) <1--
]

or V(YL Y2, o> Yn-1, Axi — L, t) > ;}
Then 84(A)(M(j, t)) = 0 since
K(j,t) DK(j+1,2) (3.1)
and
8o(A)(K(j, 1)) =1 (3.2)

for t >0 and j = 1,2,.... Now we have to show that for k € K(j,t) suppose that for
some k € K(j,t), x = {xx} not A-convergent to L with respect to the intuitionistic
fuzzy n-norm (u,v)". Therefore there is « > 0 and a positive integer ko such that
LY oY1, Axk — Lt) <1 —a or v(y1, Y2, .- > Yu-1, Axx — L, t) > « for all k > ky. Let
o> } and

K(o,0) = {k e N: pu(y, 92 Yot Ak = L, ) > 1 -«

and v(y1, Y2, » V-1, Axg — L, t) < a}.

Then 8y(A)(K(e, t)) = 0. Since o > }, by (3.1) we have 8y(A)(K(j, £)) = 0, which contradicts
by equation (3.2).

Sufficiency. Suppose that there exists an increasing sequence K = {k,} of the natural
numbers such that 8, (A)(K) =1 and (i, v)"-limgex Axy = L, i.e., for every y1,¥a,...,Yu-1 €
X, € >0 and t > 0, there exists no € N such that w(y1,¥2,...,¥u-1, Axx —L,2) >1 — ¢ and
V(L Y2 s Y1, Axg — L, ) < €.

Let

M(e,t) =={k e N: uy1,y2 ..., yn1, Axx = L,t) <1-¢
or U(yljyzy-'-xyn—li Axk _Lr t) = 8}

g _{kn0+1: kn0+2¢ . }
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and consequently 8y(A)(M(e,£)) <1-1=0. Hence Sp " (A)-limax = L. This completes
proof of the theorem. d

Theorem 3.4 Let (X, i, v, %, 0) be an IFnNLS. Then Sy (A)-limx = L ifand only if there
exist a convergent sequence y = {yx} and a lacunary A-statistically null sequence z = {z;}
with respect to the intuitionistic fuzzy n-norm (u,v)" such that (u,v)"-limy = L, Ax =

¥+ Az and 8o(A){keN: Az =0}) =1.

Proof Necessity. Suppose that S;**)" (A)-limx = L and

1
K(j,t) = {keN:u(yl,yg,...,y,,_l,Axk—L,t)>1— -
]
1
and v(y1, Y2, .- » V-1, Axg — L, t) < —,}.
]

Using Theorem 3.3 for any y1,%s,...,y,-1 € X, £ >0 and j € N, we can construct an in-
creasing index sequence {r;} of the natural numbers such that r; € K(j, £), 84 (A)(K(j, 1)) = 1,

and so we can conclude that for all 7 > r; (j € N),

1

1
{ke],:,u(yl,yz,...,y,,_l,Axk—L,t)>1—}

j-1
i

1
and v(y1, Y2, .. s Yn-1, Ax — L, t) < —.}
]

We define y = {yx} and z = {z;} as follows. If 1 < k < 1, we set yx = Axx and zx = 0. Now
suppose that j > 1 and r; < k < rj,1. If k € K(j, 1), i.e., w(y1,y2, . Yno1, Axg — L, £) > 1 — ]1
and v(y1, Y2, .., Yu-1, Axg — L, t) < %, we set yx = Axy and Az; = 0. Otherwise yx = L and
Azy = Axx — L. Hence it is clear that Ax =y + Az.

We claim that (u,v)"-limy = L. Let ¢ > } If k € K(j,t) for all k > rj, Wy, ¥25-+ .5 Yn-15
vk —L,t) >1—¢ and v(y1,¥2,...,¥n-1,Yk — L, t) < €. Since & was arbitrary, we have proved
the claim.

Next we claim that z = {z;} is a lacunary A-statistically null sequence with respect to
the intuitionistic fuzzy n-norm (u,v)", i.e., S (A)-limz = 0. It suffices to see that
80(A)({k € N: Az; = 0}) =1 to prove the claim. This follows from observing that

{k €1, : Az =0}

< kel :nGrys....yn1, Az ) > 1= and V(Y1 s, ..., Y1, Azis 1) < £}

for any r e Nand ¢ > 0.
We show that if § > 0 and j € N such that 11 < 6, then

%erL:Aa:OH>1—8

for all r > r;. Recall from the construction that if k € K(j, t), then Az = 0 for r; < k < rj,1.
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Now, for t >0 and s € N, let
1
K(s,t) = {ke N,y Y1, Axg =L £) >1— =
s
1
and v(y1,%2, .- > Yu-1, Axg — L, ) < —}.
s
For s >jand ry < k <rg1 by (3.2),

1
K(s,t) = {keN:pc(yl,yz,...,y,,_l,Axk—L,t)>1— -
s

1
and v(y1,Y2, .- > Yu-1, Axg — L, ) < —}
s

C{keN: Az =0}
Consequently, if r; < k <rgy; and s > j, then
1
h—|{/< €l,: Az =0}

1
>
_hr

1
{k € Ir : M(yl:yZ)"wyn—l; Axk _L’ t) >1- ;

1
and v(y1, Y2, .- -> V-1, Axx — L, t) < —H
s

1 1
>l-->1-->1-6.
S J

Hence we get 85(A)({k € N: Azx = 0}) = 1, which establishes the claim.
Sufficiency. Let x, y and z be sequences such that (u,v)”-limy = L, Ax = y + Az and
30(A)({k € N: Azi = 0}) = 1. Then, for any y1,%s,...,¥4-1 € X, € >0 and t > 0, we have
{k eN: 1,y Yn1, Axk — L, t) <1—¢g or v(y1,¥2, -« » Yn-1, Axy — L, £) > 8}
ClkeN: w12 o Yn1,0k — Lit) <1 =€ or vy, ¥, Yu-1 Yk — Lo £) > €}
UfkeN: Az #0}.

Therefore

So(A)({k e N: i, y2 .. Yn1 A = Lt) <1-¢
or V(YL, Y2, Yu-1, Axk — L, t) > 8})
<8 ({keN:uLy2 o yur k= Lt) <1 =g 0or v, 92, Yu1, Yk — L, ) > €})
+89(A)({k € N: Az #0}).

Since (u, v)"-limy = L, the set

{keN:u@LY2 - Yn1, 9k = Lot) <1 = or V(1,20 o Y1, Yk — Lo £) > €}
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contains at most finitely many terms and thus

89({1( eN: /’L()/I)yZ""!yn—liyk -L, t) <l-e¢or U(ylryZ!”"yn—l)yk -L, t) = 8})
Also by hypothesis, §g(A)({k € N: Az #0}). Hence,

SQ(A)({k eN: M(yl;yZ,-u,yn—lr Axk -1, t) <l-e¢

or U(yl;yb ey Yn-15 Axk - L: t) > 8}) = 0;
and consequently Sy W) (A)-limax = L. O

4 A-Cauchy and lacunary A-statistically Cauchy sequences in IFnNLS
In this section, we introduce the notion of Cauchy sequences and lacunary statistically
Cauchy sequences in IFnNLS.

Definition 4.1 Let (X, u, v, *,0) be an IFnNLS. A sequence x = {x¢} in X is said to be
A-Cauchy with respect to the intuitionistic fuzzy n-norm (u, v)" if, for every ¢ >0, ¢ >0
and y1,¥2,...,¥,-1 € X, there exists ko € N such that w(y1,¥2,.. ., Vu-1, Axk — Axy, ) >1— ¢
and V(YL Y2« > V-1, Axk — Axyy, t) < € for all k, m > k.

Definition 4.2 Let (X, i, v, *,0) be an IFnNLS. A sequence x = {x;} in X is said to be
lacunary A-statistically Cauchy or Sg(A)-Cauchy with respect to the intuitionistic fuzzy
n-norm (u, v)" if, for every ¢ > 0, £ > 0 and y1, 2, ..., ¥u-1 € X, there exists anumber m € N
satisfying

SQ(A)({k eN:uW1,¥2, - Yu1, Axg — Axpy, £) <1—¢

or V(Y1 Y25+« +» Yn-1) AXg — AXyyy, ) > e}) =0.

Theorem 4.1 Let (X, i1, v,*,0) be an IFuNLS. If a sequence x = {x} in X is lacunary A-
statistically convergent with respect to the intuitionistic fuzzy n-norm (i, v)" if and only if
itis lacunary A-statistically Cauchy with respect to the intuitionistic fuzzy n-norm (u, v)".

Proof Letx = {x;} be alacunary A-statistically convergent sequence which converges to L.
For a given ¢ > 0, choose s >0 such that (1-¢) % (1-¢)>1-sand eo¢e <s. Let

Ale,t) = {keN:u(yl,y2,...,y,,_1,Axk—L,t/2)51—8

or U(y1, Y2, > Yn-1, A — L, 1/2) > e}
Then, for any ¢ > 0 and y1,¥2,..., Y1 € X,
g (A) (A(Sr t)) =0, (41)

which implies that 84(A)(A¢(e, £)) = 1.
Let g € A%(e,t). Then

MY s Yn1s Axg — L, t/2) > 1 — &
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and
V1, Y2s s Y1, Ak — L, £/2) < €.
Now, let

B(s,t) = {k € N: (1, ¥2, . » Yn1, Ak — Ay, t) <1 -3
Or U(Y1, 525+ » Y1, AXg — Axg, ) > s}.
We need to show that B(s,t) C A(e, t). Let k € B(s,t) N A¢(e,t). Hence u(y1,¥2,---»¥n-1
Axg — Axg,t) <1 —s and u(y,¥2, ... ¥n-1, Axx — L, t/2) > 1 — ¢, in particular, u(y1,2,
oos¥n-1, Axg — L, t/2) >1—¢. Then
1—s> u(yny2 - Y1, Axk — Axy, t)
= M(yl,yb ceos Yn-1s Axk - Lr t/2) * M(yl:yZ’ ceosVn-1» qu - Lr t/2)
>SA-¢g)x(1-¢)>1-s5,
which is not possible. On the other hand, v(y1,¥2;...,¥u-1, Axk — Axy, t) > s and v(y1, Y2,
vy ¥n-1, Axg — L, t/2) < &, in particular, v(y1,¥2,. .., Yu-1, A%y — L, /2) < £. Hence,
S <UL Y2+ Yn1, DXk — Axg, )
= U(yl’yb e Vn-1s Axk - L’ t/2) o U(yl:yZ: ceosYn-1s qu - L: t/z)
<E0EKLS,
which is not possible. Hence B(s,t) C A(g,t) and by (4.1) 84(A)(B(g,t)) = 0. This proves
that x is lacunary A-statistically Cauchy with respect to the intuitionistic fuzzy n-norm
(,v)".

Conversely, let x = {x;} be lacunary A-statistically Cauchy but not lacunary A-statisti-
cally convergent with respect to the intuitionistic fuzzy n-norm (u, v)”". For a given ¢ > 0,
choose s > 0 such that (1-¢) % (1-¢) >1 -5 and ¢ o ¢ < s. Since x is not lacunary A-
convergent

M()/byz, e Yn-1» Axk - Axm’ t)
> ﬂ(yl:y% e Yn-1s AXk - Lr t/2) * M()’l,yz, vy Yn-15 qu - L’ t/z)
>SA-g)x(1-¢e)>1-s5,

U(yl»yZ) ey Yn-1s Axk - Axm, t)
S U(yl’yz’ e ,J’n—l» A.X‘k - L’ t/2) o U(yl:yZ, o :yn—h qu - L; t/2)

<E0E<S.
Therefore 8o (A)(E(s, t)) = 0, where

B(s,t) = {k € N: w1, 92, » Yu-1, At — Axg,t) <1 -

Oor VY1, Y2, -+ s V-1, AXg — Axg, t) > s}
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and so 89(A)(E(s,t)) = 1, which is a contradiction, since x was lacunary A-statistically
Cauchy with respect to the intuitionistic fuzzy n-norm (u,v)”. So, x must be lacunary

A-statistically convergent with respect to the intuitionistic fuzzy n-norm (u, v)". O

Corollary 4.1 Let (X, 1, v, *,0) be an IFnNLS and 0 be a lacunary sequence. Then, for any
sequence x = {x} in X, the following conditions are equivalent:
(i) x is Sg(A)-convergent with respect to the intuitionistic fuzzy n-norm (i, v)”.
(il) x is Sp(A)-Cauchy with respect to the intuitionistic fuzzy n-norm (i, v)".
(ili) There exists an increasing sequence K = {k,} of the natural numbers such that
80 (A)(K) =1 and the subsequence {xx,} is So(A)-Cauchy with respect to the
intuitionistic fuzzy n-norm (u, v)".
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