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Abstract
In this paper, we present some new Gronwall-type inequalities. Explicit bounds for the
unknown functions concerned are derived based on these inequalities and the
properties of the modified Riemann-Liouville fractional derivative. The inequalities
established are of new forms compared with the existing results so far in the
literature. For illustrating the validity of the inequalities established, we apply them to
research the boundedness, quantitative property, and continuous dependence on
the initial value for the solution to a certain fractional integral equation.
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1 Introduction
Recently, with the development of the theory of differential equations, many authors
have researched various inequalities and investigated the boundedness, global existence,
uniqueness, stability, and continuous dependence on the initial value and parameters of
solutions to differential equations, integral equations as well as difference equations. The
Gronwall-Bellman inequality [, ] is widely used in the qualitative and quantitative analy-
sis of differential equations, as it can provide explicit bound for an unknown function lying
in the inequality. In the last few decades, many authors have researched various general-
izations of the Gronwall-Bellman inequality; for example, we refer the reader to [–]
and the references therein. These Gronwall-type inequalities established can be used as
a handy tool in the research of the theory of differential and integral equations as well as
difference equations. However, we notice that the existing results in the literature are in-
adequate for researching the qualitative and quantitative properties of solutions to some
fractional integral equations, for example, the following fractional integral equation:

u(t) = u() + Iα
(
f
(
t,u(t)

))
+


�(α)

∫ T


(T – s)α–f

(
s,u(s)

)
ds,

where  < α < , T ≥  is a constant, Iα denotes the Riemann-Liouville fractional integral
of order α.
So it is necessary to establish some new Gronwall-type inequalities in order to fulfill the

desired analysis result.
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The modified Riemann-Liouville fractional derivative, presented by Jumarie in [, ],
is defined by the following expression.

Definition  The modified Riemann-Liouville derivative of order α is defined by the fol-
lowing expression:

Dα
t f (t) =

{


�(–α)
d
dt

∫ t
 (t – ξ )–α(f (ξ ) – f ())dξ ,  < α < ,

(f (n)(t))(α–n), n≤ α < n + ,n ≥ .

Definition  The Riemann-Liouville fractional integral of order α on the interval [, t] is
defined by

Iαf (t) =


�( + α)

∫ t


f (s)(ds)α =


�(α)

∫ t


(t – s)α–f (s)ds.

Some important properties for themodifiedRiemann-Liouville derivative and fractional
integral are listed as follows (see [, ] and the interval concerned below is always defined
by [, t]):
(a) Dα

t tr =
�(+r)

�(+r–α) t
r–α .

(b) Dα
t (f (t)g(t)) = g(t)Dα

t f (t) + f (t)Dα
t g(t).

(c) Dα
t f [g(t)] = f ′

g [g(t)]Dα
t g(t) =Dα

g f [g(t)](g ′(t))α .
(d) Iα(Dα

t f (t)) = f (t) – f ().
(e) Iα(g(t)Dα

t f (t)) = f (t)g(t) – f ()g() – Iα(f (t)Dα
t g(t)).

(f ) Dα
t C = , where C is a constant.

The modified Riemann-Liouville derivative has many excellent characters in handling
many fractional calculus problems. Many authors have investigated various applications
of the modified Riemann-Liouville fractional derivative. For example, in [, ], the au-
thors sought exact solutions for some types of fractional differential equations based on
the modified Riemann-Liouville fractional derivative, and in [], the modified Riemann-
Liouville fractional derivative was used in fractional calculus of variations, where a frac-
tional basic problem of the calculus of variations with free boundary conditions as well as
problems with isoperimetric and holonomic constraints were considered. In [], Khan et
al. presented a fractional homotopy perturbation method (FHPM) for solving fractional
differential equations of any fractional order based on the modified Riemann-Liouville
fractional derivative. In [–], the fractional variational iteration method based on the
modified Riemann-Liouville fractional derivative was concerned. In [], a fractional vari-
ational homotopy perturbation iteration method was proposed.
Based on the analysis above, in Section , we present some new Gronwall-type inequal-

ities, based on which and some basic properties of the modified Riemann-Liouville frac-
tional derivative, we derive explicit bounds for the unknown functions concerned in these
inequalities. In Section , we apply the results established in Section  to research bound-
edness, quantitative property, and continuous dependence on the initial data for the solu-
tion to a certain fractional integral equation.

2 Main results
Lemma  Suppose  < α < , f is a continuous function, then Dα(Iαt f (t)) = f (t).
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Proof Since f is continuous, then there exists a constant M such that |f (t)| ≤ M for t ∈
[, ε], where ε > . So, for t ∈ [, ε], we have |Iαt f (t)| = | 

�(α)
∫ t
 (t – s)α–f (s)ds| ≤ M

�(α)
∫ t
 (t –

s)α– ds = M
α�(α) t

α . Then one can see Iαt f () = . Therefore,

Dα
(
Iαt f (t)

)
=


�( – α)

d
dt

{∫ t


(t – ξ )–α

(
Iαt f (ξ ) – Iαt f ()

)
dξ

}
=


�(α)�( – α)

d
dt

{∫ t


(t – ξ )–α

∫ ξ


(ξ – s)α–f (s)dsdξ

}
=


�(α)�( – α)

d
dt

{∫ t



∫ ξ


(t – ξ )–α(ξ – s)α–f (s)dsdξ

}
=


�(α)�( – α)

d
dt

{∫ t


f (s)

∫ t

s
(t – ξ )–α(ξ – s)α– dξ ds

}
.

Letting ξ = s + (t – s)x, we obtain that

Dα
(
Iαt f (t)

)
=


�(α)�( – α)

d
dt

{∫ t


f (s)

∫ 


( – x)–αxα– dxds

}
=

B(α,  – α)
�(α)�( – α)

d
dt

{∫ t


f (s)ds

}
= f (t),

where B(·, ·) denotes the beta function. The proof is complete. �

Theorem  Suppose  < α < , the functions u, g are nonnegative continuous functions
defined on t ≥ , T ≥  is a constant. If the following inequality is satisfied

u(t) ≤ C +


�(α)

∫ t


(t – s)α–g(s)u(s)ds +


�(α)

∫ T


(T – s)α–g(s)u(s)ds,

t ∈ [,T], ()

then we have the following explicit estimate for u(t):

u(t) ≤ C exp[
∫ tα

�(+α)
 g((s�( + α)) 

α )ds]

 – exp[
∫ Tα

�(+α)
 g((s�( + α)) 

α )ds]
, t ∈ [,T], ()

provided that exp[
∫ Tα

�(+α)
 g((s�( + α)) 

α )ds] < .

Proof Denote the right-hand side of () by v(t). Then we have

u(t) ≤ v(t), t ∈ [,T], ()

and, by use of Lemma  and the property (f ), we obtain

Dα
t v(t) = g(t)u(t) ≤ g(t)v(t).
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Furthermore, by the properties (a), (b), (c), we have:

Dα
t

{
v(t) exp

[
–

∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

]}

= exp

[
–

∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

]
Dα

t v(t)

+ v(t)Dα
t

{
exp

[
–

∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

]}

= exp

[
–

∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

]
Dα

t v(t)

– g(t)v(t) exp
[
–

∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

]
Dα

t

(
tα

�( + α)

)

= exp

[
–

∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

][
Dα

t v(t) – g(t)v(t)
] ≤ . ()

Substituting t with τ , fulfilling a fractional integral of order α for () with respect to τ

from  to t, we deduce that

v(t) exp
[
–

∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

]
≤ v(),

which implies

v(t)≤ exp

[∫ tα
�(+α)


g
((
s�( + α)

) 
α
)
ds

]
v(), t ∈ [,T]. ()

On the other hand, we have

v() –C = v(T)≤ exp

[∫ Tα

�(+α)


g
((
s�( + α)

) 
α
)
ds

]
v(),

which is followed by

v()≤ C

 – exp[
∫ Tα

�(+α)
 g((s�( + α)) 

α )ds]
. ()

Combining (), (), (), we can get the desired result. �

Now we study the inequality of the following form:

up(t)≤ C +
∫ t


h(s)up(s)ds +


�(α)

∫ t


(t – s)α–g(s)uq(s)ds

+
∫ T


h(s)up(s)ds +


�(α)

∫ T


(T – s)α–g(s)uq(s)ds, t ∈ [,T], ()

where  < α < , the functions u, g , h are nonnegative continuous functions defined on
t ≥ , and T ≥  is a constant, p, q are constants with p≥ q > .
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The following lemma is useful in deriving explicit bound for the function u(t) in ().

Lemma  [] Assume that a≥ , p≥ q ≥ , and p �= , then for any K > ,

a
q
p ≤ q

p
K

q–p
p a +

p – q
p

K
q
p .

Theorem  The inequality admits the following explicit estimate for u(t):

u(t) ≤
{{

p – q
p

K
q
p


�(α)

∫ t


(t – s)α–g(s) exp

[
q
p

∫ s


h(ξ )dξ

]
ds

+
C + [ p–qp K

q
p 

�(α)
∫ T
 (T – s)α–g(s) exp[ qp

∫ s
 h(ξ )dξ ]ds] exp[

∫ T
 h(s)ds]

 – exp[
∫ T
 h(s)ds]

+ exp

[∫ T


h(s)ds

]

×
({


�(α)

exp

[∫ Tα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]∫ T


(T – τ )α–a(τ )̃g(τ )

× exp

{
–

∫ τα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

}
dτ

})/(
 – exp

[∫ T


h(s)ds

])

+


�(α)
exp

[∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]∫ t


(t – τ )α–a(τ )̃g(τ )

× exp

{
–

∫ τα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

}
dτ

}

× exp

[∫ t


h(s)ds

]} 
p
, t ∈ [,T], ()

provided that exp[
∫ T
 h(s)ds] < , where K > , and

g̃(t) =
q
p
K

q–p
p g(t) exp

[
q
p

∫ t


h(ξ )dξ

]
.

Proof Denote the right-hand side of () by v(t). Then we have

u(t) ≤ v

p (t), t ∈ [,T], ()

and considering v() = C +
∫ T
 h(s)up(s)ds + 

�(α)
∫ T
 (T – s)α–g(s)uq(s)ds, it follows that

v(t)≤ v() +
∫ t


h(s)v(s)ds +


�(α)

∫ t


(t – s)α–g(s)v

q
p (s)ds, t ∈ [,T]. ()

Let z(t) = v() + 
�(α)

∫ t
 (t – s)α–g(s)v

q
p (s)ds. Then

v(t)≤ z(t) +
∫ t


h(s)v(s)ds, t ∈ [,T],

http://www.journalofinequalitiesandapplications.com/content/2014/1/4
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which implies that

v(t)≤ z(t) exp
[∫ t


h(s)ds

]
, t ∈ [,T]. ()

So

z(t) ≤ v() +


�(α)

∫ t


(t – s)α–g(s) exp

[
q
p

∫ s


h(ξ )dξ

]
z
q
p (s)ds, t ∈ [,T].

Using Lemma , we get that

z(t) ≤ v() +


�(α)

∫ t


(t – s)α–g(s) exp

[
q
p

∫ s


h(ξ )dξ

][
q
p
K

q–p
p z(s) +

p – q
p

K
q
p

]
ds

= v() +
p – q
p

K
q
p


�(α)

∫ t


(t – s)α–g(s) exp

[
q
p

∫ s


h(ξ )dξ

]
ds

+
q
p
K

q–p
p


�(α)

∫ t


(t – s)α–g(s) exp

[
q
p

∫ s


h(ξ )dξ

]
z(s)ds

= a(t) +


�(α)

∫ t


(t – s)α–̃g(s)z(s)ds, t ∈ [,T],

where g̃(t) is defined as above, and

a(t) = v() +
p – q
p

K
q
p


�(α)

∫ t


(t – s)α–g(s) exp

[
q
p

∫ s


h(ξ )dξ

]
ds.

Let w(t) = 
�(α)

∫ t
 (t – s)α–̃g(s)z(s)ds. Then

z(t) ≤ a(t) +w(t), t ∈ [,T], ()

and

Dα
t w(t) = g̃(t)z(t) ≤ a(t)̃g(t) + g̃(t)w(t).

By the properties (a), (b), and (c), we get that

Dα
t

{
w(t) exp

[
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]}

= exp

[
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]
Dα

t w(t)

+w(t)Dα
t

{
exp

[
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]}

= exp

[
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]
Dα

t w(t)

– g̃(t)w(t) exp
[
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]
Dα

t

(
tα

�( + α)

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/4
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= exp

[
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

][
Dα

t w(t) – g̃(t)w(t)
]

≤ a(t)̃g(t) exp
[
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]
, t ∈ [,T]. ()

Substituting t with τ , fulfilling a fractional integral of order α for () with respect to τ

from  to t, and using w() = , we deduce that

w(t) exp
{
–

∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

}

≤ 
�(α)

∫ t


(t – τ )α–a(τ )̃g(τ ) exp

[
–

∫ τα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]
dτ ,

which implies

w(t) ≤ 
�(α)

exp

[∫ tα
�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]

×
∫ t


(t – τ )α–a(τ )̃g(τ ) exp

{
–

∫ τα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

}
dτ . ()

Combining (), (), and (), we get that

v() –C = v(T)≤ z(T) exp
[∫ T


h(s)ds

]
≤ [

a(T) +w(T)
]
exp

[∫ T


h(s)ds

]
≤

{
v() +

p – q
p

K
q
p


�(α)

∫ T


(T – s)α–g(s) exp

[
q
p

∫ s


h(ξ )dξ

]
ds

+


�(α)
exp

[∫ Tα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]

×
∫ T


(T – τ )α–a(τ )̃g(τ ) exp

{
–

∫ τα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

}
dτ

}
× exp

[∫ T


h(s)ds

]
,

which implies

v()≤ C + [ p–qp K
q
p 

�(α)
∫ T
 (T – s)α–g(s) exp[ qp

∫ s
 h(ξ )dξ ]ds] exp[

∫ T
 h(s)ds]

 – exp[
∫ T
 h(s)ds]

+ exp

[∫ T


h(s)ds

]

×
({


�(α)

exp

[∫ Tα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

]∫ T


(T – τ )α–a(τ )̃g(τ )

× exp

{
–

∫ τα

�(+α)


g̃
((
s�( + α)

) 
α
)
ds

}
dτ

})/(
 – exp

[∫ T


h(s)ds

])
, ()

under the condition exp[
∫ T
 h(s)ds] < .

The desired result can be obtained by the combination of (), (), (), and (). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/4
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Theorem  Suppose  < α < , the function u is a nonnegative continuous function defined
on t ≥ , p, T are constants with p≥ , T ≥ , L ∈ C(R

+,R+) satisfying  ≤ L(t,u)–L(t, v)≤
M(u– v) for ∀u≥ v, t ≥ , where M >  is a constant. If the following inequality is satisfied

up(t)≤ C +


�(α)

∫ t


(t – s)α–L

(
s,u(s)

)
ds +


�(α)

∫ T


(T – s)α–L

(
s,u(s)

)
ds,

t ∈ [,T], ()

then we have the following explicit estimate for u(t):

u(t) ≤ exp[ Mtα
p�(+α)K

–p
p ]

 – exp[ MTα

p�(+α)K
–p
p ]

[
C +

Tα

α�(α)
L
(
s,
p – 
p

K

p

)]
, t ∈ [,T], ()

provided that exp[ MTα

p�(+α)K
–p
p ] < .

Proof Denote the right-hand side of () by v(t). Then we have

u(t) ≤ v

p (t), t ∈ [,T], ()

and

v(t)≤ C +


�(α)

∫ t


(t – s)α–L

(
s, v


p (s)

)
ds +


�(α)

∫ T


(T – s)α–L

(
s, v


p (s)

)
ds

≤ C +


�(α)

∫ t


(t – s)α–L

(
s,

p
K

–p
p v(s) +

p – 
p

K

p

)
ds

+


�(α)

∫ T


(T – s)α–L

(
s,

p
K

–p
p v(s) +

p – 
p

K

p

)
ds

= C +


�(α)

∫ t


(t – s)α–

[
L
(
s,

p
K

–p
p v(s) +

p – 
p

K

p

)
– L

(
s,
p – 
p

K

p

)
+ L

(
s,
p – 
p

K

p

)]
ds

+


�(α)

∫ T


(T – s)α–

[
L
(
s,

p
K

–p
p v(s) +

p – 
p

K

p

)
– L

(
s,
p – 
p

K

p

)
+ L

(
s,
p – 
p

K

p

)]
ds

≤ C +


�(α)

∫ t


(t – s)α–L

(
s,
p – 
p

K

p

)
ds +

M
p�(α)

K
–p
p

∫ t


(t – s)α–v(s)ds

+


�(α)

∫ T


(T – s)α–L

(
s,
p – 
p

K

p

)
ds +

M
p�(α)

K
–p
p

∫ T


(T – s)α–v(s)ds

= C +
tα

α�(α)
L
(
s,
p – 
p

K

p

)
+

M
p�(α)

K
–p
p

∫ t


(t – s)α–v(s)ds

+
Tα

α�(α)
L
(
s,
p – 
p

K

p

)
+

M
p�(α)

K
–p
p

∫ T


(T – s)α–v(s)ds

http://www.journalofinequalitiesandapplications.com/content/2014/1/4
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≤ C +
Tα

α�(α)
L
(
s,
p – 
p

K

p

)
+

M
p�(α)

K
–p
p

∫ t


(t – s)α–v(s)ds

+
M

p�(α)
K

–p
p

∫ T


(T – s)α–v(s)ds, t ∈ [,T]. ()

Then a suitable application of Theorem  to () yields the desired result. �

3 Applications
In this section, we present one example for the results established above, in which the
boundedness, quantitative property, and continuous dependence on the initial value for
the solutions to one certain fractional integral equation are researched.

Example Consider the following fractional integral equation:

u(t) = u() + Iα
(
f
(
t,u(t)

))
+


�(α)

∫ T


(T – s)α–f

(
s,u(s)

)
ds, t ∈ [,T], ()

where  < α < , f ∈ C(R × R,R), T ≥  is a constant, Iα denotes the Riemann-Liouville
fractional integral of order α on the interval [, t] as defined in Definition .

Theorem  For Eq. (), if |f (t,u)| ≤ M|u|, where g ∈ C(R,R+), then under the condition
exp[ MTα

�(+α) ] < , we have the following estimate:

∣∣u(t)∣∣ ≤ ∣∣u()∣∣ exp[ Mtα
�(+α) ]

 – exp[ MTα

�(+α) ]
, t ∈ [,T]. ()

Proof By Eq. () we in fact have

u(t) = u() +


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds +


�(α)

∫ T


(T – s)α–f

(
s,u(s)

)
ds,

t ∈ [,T].

So,

∣∣u(t)∣∣ ≤ ∣∣u()∣∣ + 
�(α)

∫ t


(t – s)α–

∣∣f (s,u(s))∣∣ds + 
�(α)

∫ T


(T – s)α–

∣∣f (s,u(s))∣∣ds
≤ ∣∣u()∣∣ + M

�(α)

∫ t


(t – s)α–

∣∣u(s)∣∣ds + M
�(α)

∫ T


(T – s)α–

∣∣u(s)∣∣ds,
t ∈ [,T]. ()

Then a suitable application of Theorem  to () yields the desired result. �

Remark  The result of Theorem  shows that the trivial solution to Eq. () is uniformly
stable on the initial value.

Theorem  If the function f satisfies the Lipschitz condition with |f (t,u) – f (t, v)| ≤ A|u –
v|, where A is the Lipschitz constant, then under the condition of the same initial value, Eq.
() has at most one solution.
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Proof Suppose that Eq. () has two solutions u(t), u(t) with the same initial value u().
Then we have

u(t) = u() +


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds +


�(α)

∫ T


(T – s)α–f

(
s,u(s)

)
ds, ()

u(t) = u() +


�(α)

∫ t


(t – s)α–f

(
s,u(s)

)
ds +


�(α)

∫ T


(T – s)α–f

(
s,u(s)

)
ds. ()

Furthermore,

u(t) – u(t) =


�(α)

∫ t


(t – s)α–

[
f
(
s,u(s)

)
– f

(
s,u(s)

)]
ds

+


�(α)

∫ T


(T – s)α–

[
f
(
s,u(s)

)
– f

(
s,u(s)

)]
ds, ()

which implies

∣∣u(t) – u(t)
∣∣ ≤ 

�(α)

∫ t


(t – s)α–

∣∣f (s,u(s)) – f
(
s,u(s)

)∣∣ds
+


�(α)

∫ T


(T – s)α–

∣∣f (s,u(s)) – f
(
s,u(s)

)∣∣ds
≤ A

�(α)

∫ t


(t – s)α–

∣∣u(s) – u(s)
∣∣ds

+
A

�(α)

∫ T


(T – s)α–

∣∣u(s) – u(s)
∣∣ds. ()

After a suitable application of Theorem  to () (with |u(t) – u(t)| being treated as one
independent function), we obtain that |u(t) – u(t)| ≤ , which implies u(t) ≡ u(t). So
the proof is complete. �

Theorem  Let u(t) be the solution of Eq. (), and let ũ(t) be the solution of the following
fractional integral equation:

ũ(t) = ũ() + Iα
(
f
(
t, ũ(t)

))
+


�(α)

∫ T


(T – s)α–f

(
s, ũ(s)

)
ds, t ∈ [,T]. ()

If f satisfies the Lipschitz condition with A being the Lipschitz constant, then we have the
following estimate:

∣∣u(t) – ũ(t)
∣∣ ≤ ∣∣u() – ũ()

∣∣ exp[ Mtα
�(+α) ]

 – exp[ MTα

�(+α) ]
, t ∈ [,T]. ()

Proof By Eq. () we have

ũ(t) = ũ() +


�(α)

∫ t


(t – s)α–f

(
s, ũ(s)

)
ds +


�(α)

∫ T


(T – s)α–f

(
s, ũ(s)

)
ds. ()
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So, we have

u(t) – ũ(t) = u() – ũ() +


�(α)

∫ t


(t – s)α–

[
f
(
s,u(s)

)
– f

(
s, ũ(s)

)]
ds

+


�(α)

∫ T


(T – s)α–

[
f
(
s,u(s)

)
– f

(
s, ũ(s)

)]
ds. ()

Furthermore,

∣∣u(t) – ũ(t)
∣∣ ≤ ∣∣u() – ũ()

∣∣ + 
�(α)

∫ t


(t – s)α–

∣∣f (s,u(s)) – f
(
s, ũ(s)

)∣∣ds
+


�(α)

∫ T


(T – s)α–

∣∣f (s,u(s)) – f
(
s, ũ(s)

)∣∣ds
≤ ∣∣u() – ũ()

∣∣ + A
�(α)

∫ t


(t – s)α–

∣∣u(s) – ũ(s)
∣∣ds

+
A

�(α)

∫ T


(T – s)α–

∣∣u(s) – ũ(s)
∣∣ds. ()

Applying Theorem  to (), after some basic computation, we can get the desired result.
�

Remark  The result of Theorem  shows that the solution to Eq. () depends continu-
ously on the initial value.

4 Conclusions
In this paper, we have derived new explicit bounds for the unknown functions concerned
in some new Gronwall-type inequalities. In the proof for the main results, we have used
the properties of themodifiedRiemann-Liouville fractional derivative. As for applications,
we have presented one example, in which the boundedness, uniqueness, and continuous
dependence on the initial value for the solution to a certain fractional integral equation
are investigated. Finally, we note that these inequalities can be generalized tomore general
forms, as well as be generalized to D cases.
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