RESEARCH

Open Access

Schur quadratic concavity of the elliptic Neuman mean and its application

Yu-Ming Chu^{1*}, Yan Zhang² and Song-Liang Qiu²

*Correspondence: chuyuming2005@126.com ¹School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article

Abstract

For x, y > 0 and $k \in [0, 1]$, we prove that the elliptic Neuman mean $N_k(x, y)$ is strictly Schur quadratically concave on $(0, \infty) \times (0, \infty)$ if and only if $k \in [\sqrt{2}/2, 1]$. As an application, the bounds for elliptic Neuman mean $N_k(x, y)$ in terms of the quadratic mean $Q(x, y) = \sqrt{(x^2 + y^2)/2}$ are presented. **MSC:** 26B25; 26E60

Keywords: elliptic Neuman mean; Schur quadratically concave; quadratic mean

1 Introduction

Let $(x, y) \in (0, \infty) \times (0, \infty)$ and $k \in [0, 1]$. Then the elliptic Neuman mean $N_k(x, y)$, see [1], is defined by

$$N_{k}(x,y) = \begin{cases} \frac{\sqrt{y^{2} - x^{2}}}{cn^{-1}(x/y,k)}, & x < y, \\ x, & x = y, \\ \frac{\sqrt{x^{2} - y^{2}}}{nc^{-1}(x/y,k)}, & y < x, \end{cases}$$
(1.1)

where $cn^{-1}(x,k) = \int_x^1 \frac{du}{\sqrt{(1-u^2)(k'^2+k^2u^2)}}$ and $nc^{-1}(x,k) = \int_1^x \frac{du}{\sqrt{(u^2-1)(k^2+k'^2u^2)}}$ are the inverse functions of Jacobian elliptic functions *cn* and *nc*, see [2, 3], respectively, and $k' = \sqrt{1-k^2}$. In particular, $cn^{-1}(0,k) = \mathcal{K}(k) = \int_0^{\pi/2} \frac{dt}{\sqrt{1-k^2 \sin^2 t}}$ is the well-known complete elliptic integral of the first kind.

In [1] Neuman proved that $N_k(x, y)$ is symmetric and homogeneous on $(0, \infty) \times (0, \infty)$, and strictly decreasing with respect to $k \in [0, 1]$ for fixed $(x, y) \in (0, \infty) \times (0, \infty)$ with $x \neq y$. In this context let us note that if a mean is homogeneous, then the order of its homogeneity must be 1; see [4].

Let us recall the notion of Schur quadratic convexity (concavity) [5–7] for a real-valued function on $(0, \infty) \times (0, \infty)$.

A real-valued function $f: (0, \infty) \times (0, \infty) \to \mathbb{R}$ is said to be strictly Schur quadratically convex on $(0, \infty) \times (0, \infty)$ if $f(x_1, x_2) < f(y_1, y_2)$ for each pair of 2-tuples $(x_1, x_2), (y_1, y_2) \in (0, \infty) \times (0, \infty)$ with $\max\{x_1, x_2\} < \max\{y_1, y_2\}$ and $x_1^2 + x_2^2 = y_1^2 + y_2^2$. f is said to be strictly Schur quadratically concave if -f is strictly Schur quadratically convex.

The main purpose of this paper is to present the range of *k* such that the elliptic Neuman mean $N_k(x, y)$ is strictly Schur quadratically concave on $(0, \infty) \times (0, \infty)$. As an application,

©2014 Chu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

an inequality between the elliptic Neuman mean $N_k(x, y)$ and the quadratic mean $Q(x, y) = \sqrt{(x^2 + y^2)/2}$ is also given.

2 Two lemmas

In order to prove our main results we need two lemmas, which we present in this section.

Lemma 2.1 (See [5, Corollary 2.1], [6, Corollary 1], [7, Corollary 1]) Suppose that f: $(0,\infty) \times (0,\infty) \rightarrow (0,\infty)$ is a continuous symmetric function. If f is differentiable in $(0,\infty) \times (0,\infty)$, then f is strictly Schur quadratically convex on $(0,\infty) \times (0,\infty)$ if and only if

$$(x-y)\left(y\frac{\partial f(x,y)}{\partial x} - x\frac{\partial f(x,y)}{\partial y}\right) > 0$$
(2.1)

for all $x, y \in (0, \infty)$ with $x \neq y$, and f is strictly Schur quadratically concave on $(0, \infty) \times (0, \infty)$ if and only if inequality (2.1) is reversed.

Lemma 2.2 Let $t \in (0, 1)$, $k \in [0, 1]$, and

$$f_k(t) = cn^{-1}(t,k) - \frac{(1+t^2)\sqrt{1-t^2}}{2t\sqrt{1-k^2+k^2t^2}}.$$
(2.2)

Then $f_k(t) < 0$ for all $t \in (0,1)$ if and only if $\sqrt{2}/2 \le k \le 1$, and there exists $\lambda = \lambda(k) \in (0,1)$ such that $f_k(t) < 0$ for $t \in (0,\lambda)$ and $f_k(t) > 0$ for $t \in (\lambda,1)$ if $k \in [0,\sqrt{2}/2)$.

Proof We distinguish for the proof two cases.

Case 1. k = 1. Then from (2.2) one has

$$f_{1}(t) = cn^{-1}(t, 1) - \frac{(1+t^{2})\sqrt{1-t^{2}}}{2t^{2}}$$

$$= \cosh^{-1}\left(\frac{1}{t}\right) - \frac{(1+t^{2})\sqrt{1-t^{2}}}{2t^{2}}$$

$$= \log(1+\sqrt{1-t^{2}}) - \log t - \frac{(1+t^{2})\sqrt{1-t^{2}}}{2t^{2}},$$

$$f_{1}(1^{-}) = 0, \qquad (2.3)$$

$$f'(t) = \frac{(1-t^2)(2-t^2)}{2t^3\sqrt{1-t^2}} > 0$$
(2.4)

for all $t \in (0,1)$. (Here and in the sequel, $f(t^-)$ and $f(t^+)$ denote, respectively, the left and right limit of f at t.)

From (2.3) and (2.4) we clearly see that $f_1(t) < 0$ for all $t \in (0, 1)$. Case 2. $0 \le k < 1$. Then (2.2) leads to

 $f_k(0^+) = -\infty, \tag{2.5}$

$$f_k(1^-) = 0,$$
 (2.6)

$$\begin{aligned} f_k'(t) &= -\frac{1}{\sqrt{(1-t^2)(1-k^2+k^2t^2)}} - \frac{-k^2t^6 + (3k^2-2)t^4 + (1-3k^2)t^2 + k^2 - 1}{2t^2\sqrt{1-t^2}(1-k^2+k^2t^2)^{3/2}} \\ &= -\frac{-k^2t^6 + (5k^2-2)t^4 + (3-5k^2)t^2 + k^2 - 1}{2t^2\sqrt{1-t^2}(1-k^2+k^2t^2)^{3/2}} \\ &= -\frac{\sqrt{1-t^2}[k^2t^4 + (2-4k^2)t^2 + k^2 - 1]}{2t^2(1-k^2+k^2t^2)^{3/2}}. \end{aligned}$$
(2.7)

Let

$$g_k(t) = k^2 t^4 + (2 - 4k^2)t^2 + k^2 - 1.$$
(2.8)

Then simple computations lead to

$$g_k(0) = k^2 - 1 < 0, \tag{2.9}$$

$$g_k(1) = 2\left(\frac{\sqrt{2}}{2} - k\right)\left(\frac{\sqrt{2}}{2} + k\right),$$
 (2.10)

$$g'_{k}(t) = 4k^{2}t^{3} + 4(1 - 2k^{2})t, \qquad (2.11)$$

$$g'_k(0) = 0,$$
 (2.12)

$$g'_k(1) = 4(1-k)(1+k) > 0,$$
 (2.13)

$$g_k''(t) = 12k^2t^2 + 4(1 - 2k^2), \tag{2.14}$$

$$g_k''(0) = 8\left(\frac{\sqrt{2}}{2} - k\right)\left(\frac{\sqrt{2}}{2} + k\right),\tag{2.15}$$

$$g_k''(1) = 4(1+k^2) > 0.$$
(2.16)

We distinguish for the proof three subcases.

Subcase 2.1. $k = \sqrt{2}/2$. Then (2.7) leads to the conclusion that

$$f_{\sqrt{2}/2}'(t) = \frac{\sqrt{2}\sqrt{1-t^2}(1-t^4)}{2t^2(1+t^2)^{3/2}} > 0$$
(2.17)

for all $t \in (0, 1)$.

Therefore, $f_{\sqrt{2}/2}(t) < 0$ for all $t \in (0, 1)$ follows from (2.6) and (2.17). Subcase 2.2. $\sqrt{2}/2 < k < 1$. Then (2.10) and (2.15) lead to

$$g_k(1) < 0,$$
 (2.18)

$$g_k''(0) < 0.$$
 (2.19)

It follows from (2.14) that g''_k is strictly increasing on (0,1), then (2.16) and (2.19) lead to the conclusion that there exists $\lambda_0 \in (0,1)$ such that g'_k is strictly decreasing on $(0, \lambda_0]$ and strictly increasing on $[\lambda_0, 1)$.

From (2.12) and (2.13) together with the piecewise monotonicity of g'_k we clearly see that there exists $\lambda_1 \in (\lambda_0, 1)$ such that g_k is strictly decreasing on $(0, \lambda_1]$ and strictly increasing on $[\lambda_1, 1)$. Then (2.9) and (2.18) lead to the conclusion that

$$g_k(t) < 0 \tag{2.20}$$

for all $t \in (0, 1)$.

It follows from (2.7) and (2.8) together with (2.20) that f_k is strictly increasing on (0,1). Therefore, $f_k(t) < 0$ for all $t \in (0,1)$ follows easily from (2.6) and the monotonicity of f_k .

Subcase 2.3. $0 \le k < \sqrt{2}/2$. Then from (2.10) and (2.11) we know that g_k is strictly increasing on (0,1) and

$$g_k(1) > 0.$$
 (2.21)

It follows from (2.9) and (2.21) together with the monotonicity of g_k that there exists $\mu_0 \in (0,1)$ such that $g_k(t) > 0$ for $t \in (0,\mu_0)$ and $g_k(t) < 0$ for $t \in (\mu_0,1)$. Then (2.7) and (2.8) lead to the conclusion that f_k is strictly increasing on $(0,\mu_0]$ and strictly decreasing on $[\mu_0,1)$. Therefore, there exists $\lambda = \lambda(k) \in (0,\mu_0) \subset (0,1)$ such that $f_k(t) < 0$ for $t \in (0,\lambda)$ and $f_k(t) > 0$ for $t \in (\lambda,1)$ follows from (2.5) and (2.6) together with the piecewise monotonicity of f_k .

3 Main results

Theorem 3.1 The elliptic Neuman mean $N_k(x, y)$ is strictly Schur quadratically concave on $(0, \infty) \times (0, \infty)$ if and only if $k \in [\sqrt{2}/2, 1]$, and $N_k(x, y)$ is not Schur quadratically convex on $(0, \infty) \times (0, \infty)$ if $k \in [0, \sqrt{2}/2)$.

Proof Since $N_k(x, y)$ is symmetric and homogeneous of degree 1, without loss of generality, we assume that x < y. Let $t = x/y \in (0, 1)$, then

$$N_k(x,y) = yN_k(t,1), \qquad \frac{\partial t}{\partial y} = -\frac{x}{y^2}, \qquad \frac{\partial t}{\partial x} = \frac{1}{y},$$
(3.1)

$$\frac{\partial N_k(x,y)}{\partial y} = N_k(t,1) - t \frac{dN_k(t,1)}{dt}, \qquad \frac{\partial N_k(x,y)}{\partial x} = \frac{dN_k(t,1)}{dt}.$$
(3.2)

Note that

$$\frac{dN_k(t,1)}{dt} = -\frac{t}{\sqrt{1-t^2}cn^{-1}(t,k)} + \frac{1}{(cn^{-1}(t,k))^2\sqrt{1-k^2+k^2t^2}}.$$
(3.3)

It follows from (1.1) and (3.2) together with (3.3) that

$$(y-x)\left(x\frac{\partial N_{k}(x,y)}{\partial y} - y\frac{\partial N_{k}(x,y)}{\partial x}\right)$$

= $x(y-x)\left[N_{k}(t,1) - \left(t + \frac{1}{t}\right)\frac{dN_{k}(t,1)}{dt}\right]$
= $\frac{2x(y-x)}{\sqrt{1-t^{2}}(cn^{-1}(t,k))^{2}}\left(cn^{-1}(t,k) - \frac{(1+t^{2})\sqrt{1-t^{2}}}{2t\sqrt{1-k^{2}+k^{2}t^{2}}}\right)$
= $\frac{2x(y-x)}{\sqrt{1-t^{2}}(cn^{-1}(t,k))^{2}}f_{k}(t),$ (3.4)

where $f_k(t)$ is defined as in Lemma 2.2.

Therefore, Theorem 3.1 follows easily from Lemmas 2.1 and 2.2 together with (3.4). \Box

Theorem 3.2 The elliptic Neuman mean $N_k(x, y)$ is strictly Schur quadratically concave (or convex, respectively) on $(0, \infty) \times (0, \infty)$ if and only if the function $N_k(t, 1)/Q(t, 1)$ is strictly increasing (or decreasing, respectively) in (0, 1), where $Q(x, y) = \sqrt{(x^2 + y^2)/2}$ is the quadratic mean of x and y.

Proof Without loss of generality, we assume that x < y. Let $t = x/y \in (0, 1)$, then from (3.1) and (3.2) together with (3.4) we get

$$\frac{d(N_k(t,1)/Q(t,1))}{dt} = -\frac{\sqrt{2}t}{(t^2+1)^{3/2}} \left(N_k(t,1) - \left(t+\frac{1}{t}\right) \frac{dN_k(t,1)}{dt} \right)$$
$$= -\frac{\sqrt{2}}{y(y-x)(t^2+1)^{3/2}} (y-x) \left(x\frac{\partial N_k(x,y)}{\partial y} - y\frac{\partial N_k(x,y)}{\partial x}\right).$$
(3.5)

Therefore, Theorem 3.2 follows easily from Lemma 2.1 and (3.5). $\hfill \Box$

Theorem 3.3 *The inequalities*

$$Q(x, y) > N_{\sqrt{2}/2}(x, y)$$
 (3.6)

and

$$Q(x,y) < \frac{\sqrt{2}\mathcal{K}(k)}{2}N_k(x,y) \tag{3.7}$$

hold for all x, y > 0 with $x \neq y$, and $k \in [0,1]$, and $N_{\sqrt{2}/2}(x, y)$ is the best possible lower elliptic Neuman mean bound for the quadratic mean Q(x, y).

Proof Without loss of generality, we assume that y > x > 0. Let $t = x/y \in (0, 1)$ and $L_k(t) = N_k(t, 1)/Q(t, 1)$. Then

$$L_{k}(t) = \frac{N_{k}(x, y)}{Q(x, y)},$$
(3.8)

$$L_k(0) = \frac{\sqrt{2}}{\mathcal{K}(k)},\tag{3.9}$$

$$L_k(1) = 1. (3.10)$$

We distinguish for the proof two cases.

Case 1. $k \in [\sqrt{2}/2, 1]$. Then from Theorems 3.1 and 3.2 we clearly see that L_k is strictly increasing on (0,1). Then (3.8)-(3.10) lead to the conclusion that

$$\frac{\sqrt{2}}{\mathcal{K}(k)} < \frac{N_k(x, y)}{Q(x, y)} < 1.$$
(3.11)

In particular, for $k = \sqrt{2}/2$ we have

$$\frac{N_{\sqrt{2}/2}(x,y)}{Q(x,y)} < 1.$$
(3.12)

Therefore, inequalities (3.6) and (3.7) follow from (3.11) and (3.12).

Case 2. $k \in [0, \sqrt{2}/2)$. Then (3.4) and (3.5) together with the Subcase 2.3 in Lemma 2.2 lead to the conclusion that there exists $\lambda = \lambda(k) \in (0, 1)$ such that $L'_k(t) > 0$ for $t \in (0, \lambda)$ and $L'_k(t) < 0$ for $t \in (\lambda, 1)$, hence L_k is strictly increasing on $(0, \lambda]$ and strictly decreasing on $[\lambda, 1)$. Therefore, $N_k(x, y) > Q(x, y)$ for all x, y > 0 with $x/y \in (\lambda, 1)$ follows from (3.8) and (3.10) together with the monotonicity of L_k on $[\lambda, 1)$, and the optimality of inequality (3.6) follows.

Note that

$$L_k(0) = \frac{\sqrt{2}}{\mathcal{K}(k)} < \frac{\sqrt{2}}{\mathcal{K}(0)} = \frac{2\sqrt{2}}{\pi} = 0.90031 \dots < 1.$$
(3.13)

From (3.8), (3.9), (3.13), and the piecewise monotonicity of L_k we clearly see that

$$\frac{N_k(x,y)}{Q(x,y)} = L_k(t) > L_k(0) = \frac{\sqrt{2}}{\mathcal{K}(k)}.$$
(3.14)

Therefore, inequality (3.7) follows from (3.14).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

¹School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China. ²School of Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China.

Acknowledgements

This research was supported by the Natural Science Foundation of China under Grants 11171307 and 61374086, and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004.

Received: 13 July 2014 Accepted: 8 October 2014 Published: 16 Oct 2014

References

- 1. Neuman, E: On one-parameter family of bivariate means. Aequ. Math. 83(1-2), 191-197 (2012)
- 2. Carlson, BC: Special Functions of Applied Mathematics. Academic Press, New York (1977)
- 3. Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)
- 4. Matkowski, J: Convex functions with respect to a mean and a characterization of quasi-arithmetic means. Real Anal. Exch. 29(1), 229-246 (2003/2004)
- 5. Yang, Z-H: Schur power convexity of Gini means. Bull. Korean Math. Soc. 50(2), 485-498 (2013)
- 6. Yang, Z-H: Schur power convexity of the Daróczy means. Math. Inequal. Appl. 16(3), 751-762 (2013)
- 7. Yang, Z-H: Schur power convexity of Stolarsky means. Publ. Math. (Debr.) 80(1-2), 43-66 (2012)

10.1186/1029-242X-2014-397

Cite this article as: Chu et al.: Schur quadratic concavity of the elliptic Neuman mean and its application. Journal of Inequalities and Applications 2014, 2014:397