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Abstract
Four common fixed point theorems for a pair of weakly compatible mappings
satisfying contractive conditions of integral type in metric spaces are proved. The
existence result of bounded solutions for a system of functional equations arising in
dynamic programming is discussed by using one of the common fixed point
theorems obtained in this paper. An example is given to illustrate that our results
extend properly two fixed point theorems due to Branciari and Rhoades.
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1 Introduction and preliminaries
In , Branciari [] proved an interesting fixed point theorem for a single-valued con-
tractive mapping of integral type satisfying an analog of the Banach contraction principle
inmetric spaces. Afterwardsmany researchers [–] extended the result of Branciari and
obtained a lot of fixed point and common fixed point theorems for various single-valued
and multi-valued mappings involving a large amount of general contractive conditions of
integral type in metric spaces, modular spaces, symmetric spaces, fuzzy metric spaces,
cone metric spaces, uniform spaces, and Hausdorff topological spaces etc.
Liu et al. [] and Rhoades [] got the existence, uniqueness, and iterative approxi-

mations of fixed points for general contractive mappings of integral type, Djoudi and
Merghadi [] and Vijayaraju et al. [] showed several common fixed point theorems for
a pair of weakly compatible mappings satisfying certain contractive mappings of integral
type, Altun and Türkoǧlu [], Altun et al. [] and Djoudi and Aliouche [] discussed a few
common fixed point theorems for two pairs of weakly compatible mappings satisfying
an implicit relation and contractive conditions of integral type, respectively, Suzuki []
proved that Meir-Keeler contractions of integral type are still Meir-Keeler contractions,
Jachymski [] discussed that most contractive conditions of integral type given recently
by many authors coincide with classical ones and got a new contractive condition of in-
tegral type which is independent of classical ones, and Sintunavarat and Kumam [, ]
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proved Gregus-type common fixed point theorems for tangential multi-valued mappings
satisfying strict general contractive conditions of integral type in metric spaces.
Beygmohammadi andRazani [],Hussain and Salimi [], andMongkolkeha andKumam

[] presented more general fixed point and common fixed point theorems for some
integral-type contractions in modular spaces. Murthy et al. [] proved common fixed
point theorems for different variant of compatible mappings, satisfying a contractive con-
dition of integral type in fuzzy metric spaces. De la Sen [] investigated the existence
of fixed points and best proximity points of p-cyclic self-mappings in a set of subsets of
a certain uniform space under integral-type contractive conditions. Khojasteh et al. []
obtained a fixed point theorem of an integral-type contraction in complete cone metric
spaces. Aliouche [] proved a common fixed point theorem for two pairs of weakly com-
patible mappings satisfying a contractive condition of integral type in symmetric spaces.
Altun and Türkoǧlu [] established two fixed point and common fixed point theorems
for mappings satisfying contractive conditions of integral type in Hausdorff d-complete
topological spaces.
However, to the best of our knowledge, no one studied the existence and uniqueness

problems of common fixed points for a pair of contractive mappings of integral type sat-
isfying (.), (.), (.), and (.), respectively.
The aim of this paper is to show the existence and uniqueness of common fixed points

for the four kinds of weakly compatible mappings (.), (.), (.), and (.) in metric
spaces under weaker conditions. As an application, we use Theorem . to study solvabil-
ity of system of functional equations (.). Our results extend, improve, and unify The-
orem . of Branciari [], Theorems .-. of Liu et al. [], Theorem  of Rhoades [],
Theorem  of Bhakta and Mitra [], Theorem . of Liu and Kang [], and Theorem .
of Liu et al. []. A nontrivial example with uncountably many points is included.
Throughout this paper we assume thatR+ = [,+∞),N = {}∪N, whereN denotes the

set of all positive integers, and

� =
{
ϕ: ϕ :R+ →R

+ satisfies the requirement that ϕ is Lebesgue integrable,

summable on each compact subset of R+ and
∫ ε


ϕ(t)dt >  for each ε > 

}
,

� =
{
ψ : ψ :R+ →R

+ is upper semi-continuous,

ψ() =  and ψ(t) >  for each t > 
}
.

Recall that a pair of self-mappings f and g in a metric space (X,d) are said to be weakly
compatible if they commute at their coincidence points.
The following lemma plays an important role in this paper.

Lemma . ([]) Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a.
Then

lim
n→∞

∫ rn


ϕ(t)dt =

∫ a


ϕ(t)dt.
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Lemma. ([]) Let E be a set, p and q : E →R bemappings. If opty∈E p(y) and opty∈E q(y)
are bounded, then

∣∣∣opt
y∈E

p(y) – opt
y∈E

q(y)
∣∣∣ ≤ sup

y∈E

∣∣p(y) – q(y)
∣∣.

2 Common fixed point theorems
Now we show the existence and uniqueness of common fixed points for four classes of
weakly compatible mappings satisfying contractive conditions of integral type.

Theorem . Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where (ϕ,ψ) ∈ � × � and

M(x, y) = max

{
d(gx, gy),d(fx, gx),d(fy, gy),

d(fx, gy) + d(fy, gx)


,

d(fx, gy)d(fy, gx)
 + d(gx, gy)

,
d(fx, gx)d(fy, gx)
[ + d(gx, gy)]

,
d(fy, gy)d(fx, gy)
[ + d(gx, gy)]

}
, ∀x, y ∈ X. (.)

If f (X) ⊆ g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

Proof Firstly we prove that f and g have at most one common fixed point in X. Suppose
that f and g possess two common fixed points a,b ∈ X and a 	= b. It follows from (.),
(.), and (ϕ,ψ) ∈ � × � that

M(a,b) = max

{
d(ga, gb),d(fa, ga),d(fb, gb),

d(fa, gb) + d(fb, ga)


,

d(fa, gb)d(fb, ga)
 + d(ga, gb)

,
d(fa, ga)d(fb, ga)
[ + d(ga, gb)]

,
d(fb, gb)d(fa, gb)
[ + d(ga, gb)]

}

= max

{
d(a,b), , ,d(a,b),

d(a,b)
 + d(a,b)

, , 
}

= d(a,b)

and
∫ d(a,b)


ϕ(t)dt =

∫ d(fa,fb)


ϕ(t)dt ≤ ψ

(∫ M(a,b)


ϕ(t)dt

)

= ψ

(∫ d(a,b)


ϕ(t)dt

)

<
∫ d(a,b)


ϕ(t)dt,

which is impossible.
Secondly we show that f and g have a common fixed point in X. Let x be an arbitrary

point inX. Since f (X)⊆ g(X), it follows that there exists a sequence {xn}n∈N inX satisfying
fxn = gxn+ for each n ∈N. Put dn = d(fxn, fxn+) for all n ∈N.
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Assume that dn =  for some n ∈N. It follows that

fxn = fxn+ = gxn+. (.)

Because f and g are weakly compatible, by (.) we get

f xn+ = fgxn+ = gfxn+ = gxn+. (.)

Now we assert that fxn+ = f xn+. Otherwise we infer that in view of (.)-(.) and
(ϕ,ψ) ∈ � × �

M(fxn+,xn+)

=max

{
d(gfxn+, gxn+),d

(
f xn+, gfxn+

)
,d(fxn+, gxn+),

d(f xn+, gxn+) + d(fxn+, gfxn+)


,
d(f xn+, gxn+)d(fxn+, gfxn+)

 + d(gfxn+, gxn+)
,

d(f xn+, gfxn+)d(fxn+, gfxn+)
[ + d(gfxn+, gxn+)]

,
d(fxn+, gxn+)d(f xn+, gxn+)

[ + d(gfxn+, gxn+)]

}

=max

{
d
(
f xn+, fxn+

)
, , ,d

(
f xn+, fxn+

)
,

d(f xn+, fxn+)d(fxn+, f xn+)
 + d(f xn+, fxn+)

, , 
}

= d
(
f xn+, fxn+

)

and

∫ d(f xn+,fxn+)


ϕ(t)dt ≤ ψ

(∫ M(fxn+,xn+)


ϕ(t)dt

)

= ψ

(∫ d(f xn+,fxn+)


ϕ(t)dt

)

<
∫ d(f xn+,fxn+)


ϕ(t)dt,

which is absurd. Therefore fxn+ = f xn+, which together with (.) means that fxn+ is
a common fixed point of f and g in X.
Assume that dn 	=  for all n ∈ N. Observe that

dn–d(fxn+, fxn–)
( + dn–)

≤ d(fxn+, fxn–)


≤ dn– + dn


≤ max{dn–,dn}, ∀n ∈N. (.)

It follows from (.) and (.) that

M(xn,xn+)

=max

{
d(gxn, gxn+),d(fxn, gxn),d(fxn+, gxn+),

http://www.journalofinequalitiesandapplications.com/content/2014/1/394
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d(fxn, gxn+) + d(fxn+, gxn)


,
d(fxn, gxn+)d(fxn+, gxn)

 + d(gxn, gxn+)
,

d(fxn, gxn)d(fxn+, gxn)
[ + d(gxn, gxn+)]

,
d(fxn+, gxn+)d(fxn, gxn+)

[ + d(gxn, gxn+)]

}

=max

{
d(fxn–, fxn),d(fxn, fxn–),d(fxn+, fxn),

d(fxn, fxn) + d(fxn+, fxn–)


,
d(fxn, fxn)d(fxn+, fxn–)

 + d(fxn–, fxn)
,

d(fxn, fxn–)d(fxn+, fxn–)
[ + d(fxn–, fxn)]

,
d(fxn+, fxn)d(fxn, fxn)
[ + d(fxn–, fxn)]

}

=max

{
dn–,dn–,dn,

d(fxn+, fxn–)


, ,
dn–d(fxn+, fxn–)

( + dn–)
, 

}

=max{dn–,dn}, ∀n ∈N. (.)

If dn > dn– for some n ∈ N, using (.), (.), and (ϕ,ψ) ∈ � × � , we conclude that

∫ dn


ϕ(t)dt =

∫ d(fxn ,fxn+)


ϕ(t)dt ≤ ψ

(∫ M(xn ,xn+)


ϕ(t)dt

)

= ψ

(∫ dn


ϕ(t)dt

)

<
∫ dn


ϕ(t)dt,

which is a contradiction. Hence dn ≤ dn– for each n ∈ N. Consequently, the sequence
{dn}n∈N is nondecreasing and bounded, which imply that there exists a constantW with
limn→∞ dn =W ≥ .
Next we show that W = . Otherwise W > . Taking the upper limit in (.) and using

(.), (ϕ,ψ) ∈ � × � , and Lemma ., we infer that

∫ W


ϕ(t)dt = lim sup

n→∞

∫ dn


ϕ(t)dt = lim sup

n→∞

∫ d(fxn ,fxn+)


ϕ(t)dt

≤ lim sup
n→∞

ψ

(∫ M(xn ,xn+)


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ dn–


ϕ(t)dt

)

≤ ψ

(
lim sup
n→∞

∫ dn–


ϕ(t)dt

)
= ψ

(∫ W


ϕ(t)dt

)

<
∫ W


ϕ(t)dt,

which is impossible. Therefore,W = , that is,

lim
n→∞dn = . (.)

Now we prove that {fxn}n∈N is a Cauchy sequence. Suppose that {fxn}n∈N is not a
Cauchy sequence, which means that there exist a constant ε >  and two sequences
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{m(p)}n∈N and {n(p)}n∈N in N such that m(p) < n(p) <m(p + ) and

d(fxm(p), fxn(p)) ≥ ε, d(fxm(p), fxn(p)–) < ε, ∀p ∈N. (.)

Note that

d(fxm(p), fxn(p)) ≤ d(fxn(p)–, fxm(p)) + dn(p)–, ∀p ∈N;
∣∣d(fxm(p), fxn(p)) – d(fxm(p), fxn(p)–)

∣∣ ≤ dn(p)–, ∀p ∈N;
∣∣d(fxm(p), fxn(p)) – d(fxm(p)–, fxn(p))

∣∣ ≤ dm(p)–, ∀p ∈ N;
∣∣d(fxm(p)–, fxn(p)–) – d(fxm(p)–, fxn(p))

∣∣ ≤ dn(p)–, ∀p ∈N.

(.)

By virtue of (.)-(.), we deduce that

ε = lim
p→∞d(fxn(p), fxm(p)) = lim

p→∞d(fxm(p), fxn(p)–)

= lim
p→∞d(fxm(p)–, fxn(p)) = lim

p→∞d(fxm(p)–, fxn(p)–). (.)

In light of (.), (.), (.), (.), (ϕ,ψ) ∈ � × � , and Lemma ., we conclude that

lim
p→∞M(xm(p),xn(p))

= lim
p→∞max

{
d(gxm(p), gxn(p)),d(fxm(p), gxm(p)),d(fxn(p), gxn(p)),

d(fxm(p), gxn(p)) + d(fxn(p), gxm(p))


,
d(fxm(p), gxn(p))d(fxn(p), gxm(p))

 + d(gxm(p), gxn(p))
,

d(fxm(p), gxm(p))d(fxn(p), gxm(p))
[ + d(gxm(p), gxn(p))]

,
d(fxn(p), gxn(p))d(fxm(p), gxn(p))

[ + d(gxm(p), gxn(p))]

}

= lim
p→∞max

{
d(fxm(p)–, fxn(p)–),d(fxm(p), fxm(p)–),d(fxn(p), fxn(p)–),

d(fxm(p), fxn(p)–) + d(fxn(p), fxm(p)–)


,
d(fxm(p), fxn(p)–)d(fxn(p), fxm(p)–)

 + d(fxm(p)–, fxn(p)–)
,

d(fxm(p), fxm(p)–)d(fxn(p), fxm(p)–)
[ + d(fxm(p)–, fxn(p)–)]

,
d(fxn(p), fxn(p)–)d(fxm(p), fxn(p)–)

[ + d(fxm(p)–, fxn(p)–)]

}

=max

{
ε, , , ε,

ε

 + ε
, , 

}

= ε

and

∫ ε


ϕ(t)dt = lim sup

p→∞

∫ d(fxm(p),fxn(p))


ϕ(t)dt ≤ lim sup

p→∞
ψ

(∫ M(xm(p),xn(p))


ϕ(t)dt

)

≤ ψ

(
lim sup
p→∞

∫ M(xm(p),xn(p))


ϕ(t)dt

)
= ψ

(∫ ε


ϕ(t)dt

)

<
∫ ε


ϕ(t)dt,
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which is a contradiction. Hence {fxn}n∈N is a Cauchy sequence. Since g(X) is complete,
there exist a, z ∈ X with

lim
n→∞ fxn = lim

n→∞ gxn = a = gz. (.)

Suppose that fz 	= a. Making use of (.), (.), (.), and (ϕ,ψ) ∈ � × � and Lemma .,
we arrive at

lim
n→∞M(z,xn) = lim

n→∞max

{
d(gz, gxn),d(fz, gz),d(fxn, gxn),

d(fz, gxn) + d(fxn, gz)


,
d(fz, gxn)d(fxn, gz)

 + d(gz, gxn)
,

d(fz, gz)d(fxn, gz)
[ + d(gz, gxn)]

,
d(fxn, gxn)d(fz, gxn)
[ + d(gz, gxn)]

}

= max

{
d(a,a),d(fz,a),d(a,a),

d(fz,a) + d(a,a)


,

d(fz,a)d(a,a)
 + d(a,a)

,
d(fz,a)d(a,a)
[ + d(a,a)]

,
d(a,a)d(fz,a)
[ + d(a,a)]

}

= max

{
,d(fz,a), ,

d(fz,a)


, , , 
}

= d(fz,a)

and

∫ d(fz,a)


ϕ(t)dt = lim sup

n→∞

∫ d(fz,fxn)


ϕ(t)dt ≤ lim sup

n→∞
ψ

(∫ M(z,xn)


ϕ(t)dt

)

≤ ψ

(
lim sup
n→∞

∫ M(z,xn)


ϕ(t)dt

)
= ψ

(∫ d(fz,a)


ϕ(t)dt

)

<
∫ d(fz,a)


ϕ(t)dt,

which is a contradiction. Thus a = fz = gz. Since f and g are weakly compatible, it follows
that

fa = f z = fgz = gfz = gz = ga. (.)

Suppose that a 	= fa. In view of (.), (.) (.), and (ϕ,ψ) ∈ � × � , we infer that

M(z, gz) = max

{
d(gz, ggz),d(fz, gz),d(fgz, ggz),

d(fz, ggz) + d(fgz, gz)


,

d(fz, ggz)d(fgz, gz)
 + d(gz, ggz)

,
d(fz, gz)d(fgz, gz)
[ + d(gz, ggz)]

,
d(fgz, ggz)d(fz, ggz)
[ + d(gz, ggz)]

}

= max

{
d(a, fa), , ,

d(a, fa) + d(fa,a)


,
d(a, fa)
 + d(a, fa)

, , 
}

= d(a, fa)

http://www.journalofinequalitiesandapplications.com/content/2014/1/394
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and
∫ d(a,fa)


ϕ(t)dt =

∫ d(fz,fgz)


ϕ(t)dt ≤ ψ

(∫ M(z,gz)


ϕ(t)dt

)

= ψ

(∫ d(a,fa)


ϕ(t)dt

)

<
∫ d(a,fa)


ϕ(t)dt,

which is absurd. Hence a = fa. It follows from (.) that f and g have a common fixed
point a ∈ X. This completes the proof. �

Theorem . Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where (ϕ,ψ) ∈ � × � and

M(x, y) = max

{
d(gx, gy),d(fx, gx),d(fy, gy),

d(fy, gx) + d(fx, gy)


,

d(fx, gy)d(fy, gx)
 + d(fx, fy)

,
d(fx, gy)d(fx, gx)
[ + d(fx, fy)]

,
d(fy, gx)d(fy, gy)
[ + d(fx, fy)]

}
, ∀x, y ∈ X. (.)

If f (X) ⊆ g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

Proof Firstly we prove that f and g have at most one common fixed point in X. Suppose
that f and g possess two common fixed points a,b ∈ X and a 	= b. It follows from (.),
(.), and (ϕ,ψ) ∈ � × � that

M(a,b) = max

{
d(ga, gb),d(ga, fa),d(fb, gb),

d(fb, ga) + d(fa, gb)


,

d(fa, gb)d(fb, ga)
 + d(fa, fb)

,
d(fa, gb)d(fa, ga)
[ + d(fa, fb)]

,
d(fb, ga)d(fb, gb)
[ + d(fa, fb)]

}

= max

{
d(a,b), , ,d(a,b),

d(a,b)
 + d(a,b)

, , 
}

= d(a,b)

and
∫ d(a,b)


ϕ(t)dt =

∫ d(fa,fb)


ϕ(t)dt ≤ ψ

(∫ M(a,b)


ϕ(t)dt

)

= ψ

(∫ d(a,b)


ϕ(t)dt

)

<
∫ d(a,b)


ϕ(t)dt,

which is absurd.

http://www.journalofinequalitiesandapplications.com/content/2014/1/394
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Secondly we show that f and g have a common fixed point in X. Let x be an arbitrary
point inX. Since f (X)⊆ g(X), it follows that there exists a sequence {xn}n∈N inX satisfying
fxn = gxn+ for each n ∈N. Put dn = d(fxn, fxn+) for all n ∈N.
Assume that dn =  for some n ∈ N. Now we assert that fxn+ = f xn+. Otherwise we

infer that in light of (.), (.), (.), (.), and (ϕ,ψ) ∈ � × �

M(fxn+,xn+)

=max

{
d(gfxn+, gxn+),d

(
f xn+, gfxn+

)
,d(fxn+, gxn+),

d(fxn+, gfxn+) + d(f xn+, gxn+)


,
d(f xn+, gxn+)d(fxn+, gfxn+)

 + d(f xn+, fxn+)
,

d(f xn+, gxn+)d(f xn+, gfxn+)
[ + d(f xn+, fxn+)]

,
d(fxn+, gfxn+)d(fxn+, gxn+)

[ + d(f xn+, fxn+)]

}

=max

{
d
(
f xn+, fxn+

)
, , ,d

(
f xn+, fxn+

)
,

d(f xn+, fxn+)d(fxn+, f xn+)
 + d(f xn+, fxn+)

, , 
}

= d
(
f xn+, fxn+

)

and
∫ d(f xn+,fxn+)


ϕ(t)dt ≤ ψ

(∫ M(fxn+,xn+)


ϕ(t)dt

)

= ψ

(∫ d(f xn+,fxn+)


ϕ(t)dt

)

<
∫ d(f xn+,fxn+)


ϕ(t)dt,

which is absurd. Therefore fxn+ = f xn+, which together which (.) means that fxn+
is a common fixed point of f and g in X.
Suppose that dn 	=  for all n ∈N. Using (.), (.), and (.), we deduce that

M(xn,xn+)

=max

{
d(gxn, gxn+),d(fxn, gxn),d(fxn+, gxn+),

d(fxn+, gxn) + d(fxn, gxn+)


,
d(fxn, gxn+)d(fxn+, gxn)

 + d(fxn, fxn+)
,

d(fxn, gxn+)d(fxn, gxn)
[ + d(fxn,xn+)]

,
d(fxn+, gxn)d(fxn+, gxn+)

[ + d(fxn, fxn+)]

}

=max

{
d(fxn–, fxn),d(fxn, fxn–),d(fxn+, fxn),

d(fxn+, fxn–) + d(fxn, fxn)


,
d(fxn, fxn)d(fxn+, fxn–)

 + d(fxn, fxn+)
,

d(fxn, fxn)d(fxn, fxn–)
[ + d(fxn, fxn+)]

,
d(fxn+, fxn–)d(fxn+, fxn)

[ + d(fxn, fxn+)]

}
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=max

{
dn–,dn–,dn,

d(fxn+, fxn–)


, , ,
d(fxn+, fxn–)dn

( + dn)

}

=max{dn–,dn}. (.)

If dn > dn– for some n ∈ N, making use of (.), (.), and (ϕ,ψ) ∈ � × � , we obtain

∫ dn


ϕ(t)dt =

∫ d(fxn ,fxn+)


ϕ(t)dt ≤ ψ

(∫ M(xn ,xn+)


ϕ(t)dt

)

= ψ

(∫ dn


ϕ(t)dt

)

<
∫ dn


ϕ(t)dt,

which is impossible. Thus dn ≤ dn– for each n ∈N. Hence the sequence {dn}n∈N is nonde-
creasing and bounded, which imply that there exists a constantQwith limn→∞ dn =Q ≥ .
Next we show that Q = . Otherwise Q > . Taking the upper limit in (.) and using

(.), (ϕ,ψ) ∈ � × � , and Lemma ., we infer that

∫ Q


ϕ(t)dt = lim sup

n→∞

∫ dn


ϕ(t)dt = lim sup

n→∞

∫ d(fxn ,fxn+)


ϕ(t)dt

≤ lim sup
n→∞

ψ

(∫ M(xn ,xn+)


ϕ(t)dt

)
= lim sup

n→∞
ψ

(∫ dn–


ϕ(t)dt

)

≤ ψ

(
lim sup
n→∞

∫ dn–


ϕ(t)dt

)
= ψ

(∫ Q


ϕ(t)dt

)

<
∫ Q


ϕ(t)dt,

which is absurd. Therefore, Q = , that is,

lim
n→∞dn = , ∀n ∈N. (.)

Now we claim that {fxn}n∈N is a Cauchy sequence. Suppose that {fxn}n∈N is not a
Cauchy sequence. According to (.), (.), (.), (.), and (ϕ,ψ) ∈ � × � and Lem-
ma ., we have

lim
p→∞M(xm(p),xn(p))

= lim
p→∞max

{
d(gxm(p), gxn(p)),d(fxm(p), gxm(p)),d(fxn(p), gxn(p)),

d(fxn(p), gxm(p)) + d(fxm(p), gxn(p))


,
d(fxm(p), gxn(p))d(fxn(p), gxm(p))

 + d(fxm(p), fxn(p))

d(fxm(p), gxn(p))d(fxm(p), gxm(p))
[ + d(fxm(p), fxn(p))]

,
d(fxn(p), gxm(p))d(fxn(p), gxn(p))

[ + d(fxm(p), fxn(p))]

}

= lim
p→∞max

{
d(fxm(p)–, fxn(p)–),d(fxm(p), fxm(p)–),d(fxn(p), fxn(p)–),

d(fxn(p), fxm(p)–) + d(fxm(p), fxn(p)–)


,
d(fxm(p), fxn(p)–)d(fxn(p), fxm(p)–)

 + d(fxm(p), fxn(p))
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d(fxm(p), fxn(p)–)d(fxm(p), fxm(p)–)
[ + d(fxm(p), fxn(p))]

,
d(fxn(p), fxm(p)–)d(fxn(p), fxn(p)–)

[ + d(fxm(p), fxn(p))]

}

=max

{
ε, , , ε,

ε

 + ε
, , 

}

= ε (.)

and

∫ ε


ϕ(t)dt ≤ lim sup

p→∞

∫ d(fxm(p),fxn(p))


ϕ(t)dt ≤ lim sup

p→∞
ψ

(∫ M(xm(p),xn(p))


ϕ(t)dt

)

≤ ψ

(
lim sup
p→∞

∫ M(xm(p),xn(p))


ϕ(t)dt

)
≤ ψ

(∫ ε


ϕ(t)dt

)

<
∫ ε


ϕ(t)dt,

which is a contradiction. Hence {fxn}n∈N is a Cauchy sequence. Since g(X) is complete,
there exist a, z ∈ X such that

lim
n→∞ fxn = lim

n→∞ gxn = a = gz. (.)

Suppose that fz 	= a. By means of (.), (.), (.), (ϕ,ψ) ∈ � × � and Lemma ., we
arrive at

lim
n→∞M(z,xn) = lim

n→∞max

{
d(gz, gxn),d(fz, gz),d(fxn, gxn),

d(fxn, gz) + d(fz, gxn)


,
d(fz, gxn)d(fxn, gz)

 + d(fz, fxn)
,

d(fz, gxn)d(fz, gz)
[ + d(fz, fxn)]

,
d(fxn, gz)d(fxn, gxn)
[ + d(fz, fxn)]

}

= max

{
d(a,a),d(fz,a),d(a,a),

d(a,a) + d(fz,a)


,

d(fz,a)d(a,a)
 + d(a,a)

,
d(fz,a)d(fz,a)
[ + d(fz,a)]

,
d(a,a)d(a,a)
[ + d(fz,a)]

}

= max

{
,d(fz,a), ,

d(fz,a)


, ,
d(fz,a)

[ + d(fz,a)]
, 

}

= d(fz,a)

and

∫ d(fz,a)


ϕ(t)dt = lim sup

n→∞

∫ d(fz,fxn)


ϕ(t)dt ≤ lim sup

n→∞
ψ

(∫ M(z,xn)


ϕ(t)dt

)

≤ ψ

(
lim sup
n→∞

∫ M(z,xn)


ϕ(t)dt

)
= ψ

(∫ d(fz,a)


ϕ(t)dt

)

<
∫ d(fz,a)


ϕ(t)dt,
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which is a contradiction. Therefore, a = fz = gz. Because f and g are weakly compatible, it
follows that

fa = f z = fgz = gfz = gz = ga. (.)

Suppose that a 	= fa. In view of (.), (.) (.), and (ϕ,ψ) ∈ � × � , we acquire

M(z, gz) = max

{
d
(
gz, gz

)
,d(fz, gz),d

(
fgz, gz

)
,
d(fgz, gz) + d(fz, gz)


,

d(fz, gz)d(fgz, gz)
 + d(fz, fgz)

,
d(fz, gz)d(fz, gz)
[ + d(fz, fgz)]

,
d(fgz, gz)d(fgz, gz)
[ + d(fz, fgz)]

}

= max

{
d(a, fa), , ,

d(fa,a) + d(a, fa)


,
d(a, fa)
 + d(a, fa)

, , 
}

= d(a, fa)

and

∫ d(a,fa)


ϕ(t)dt =

∫ d(fz,fgz)


ϕ(t)dt ≤ ψ

(∫ M(z,gz)


ϕ(t)dt

)

= ψ

(∫ d(a,fa)


ϕ(t)dt

)

<
∫ d(a,fa)


ϕ(t)dt,

which is absurd. Hence a = fa. It follows from (.) that f and g have a common fixed
point a ∈ X. This completes the proof. �

Similar to the arguments of Theorems . and ., we conclude the following results and
omit their proofs.

Theorem . Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where (ϕ,ψ) ∈ � × � and

M(x, y) = max

{
d(gx, gy),d(fx, gx),d(fy, gy),

d(fy, gx) + d(fx, gy)


,
d(fx, gy)d(fy, gx)
 + d(gx, gy)

,

min

{
d(fx, gx)d(fy, gx)
 + d(gx, gy)

,
d(fy, gy)d(fx, gy)
 + d(gx, gy)

}}
, ∀x, y ∈ X. (.)

If f (X) ⊆ g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

http://www.journalofinequalitiesandapplications.com/content/2014/1/394


Liu et al. Journal of Inequalities and Applications 2014, 2014:394 Page 13 of 19
http://www.journalofinequalitiesandapplications.com/content/2014/1/394

Theorem . Let (X,d) be a metric space and let f and g be weakly compatible self-
mappings on X satisfying

∫ d(fx,fy)


ϕ(t)dt ≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, (.)

where (ϕ,ψ) ∈ � × � and

M(x, y) = max

{
d(gx, gy),d(fx, gx),d(fy, gy),

d(fy, gx) + d(fx, gy)


,
d(fx, gy)d(fx, gx)
 + d(fy, gx)

,

min

{
d(fx, gy)d(fx, gx)

 + d(fx, fy)
,
d(fy, gx)d(fy, gy)
 + d(fx, fy)

}}
, ∀x, y ∈ X. (.)

If f (X) ⊆ g(X) and g(X) is complete, then f and g have a unique common fixed point in X.

Remark . In case f = g and ψ(t) = ct for each t ∈ R
+, where c is a constant in (, ),

then Theorems .-. reduce to four results which include Theorem . in [] and The-
orem  in [] as special cases. Example . below shows that Theorems .-. extend
substantially Theorem . in [] and Theorem  in [].

Example . Let X = R
+ be endowed with the Euclidean metric d(x, y) = |x – y| for all

x, y ∈ X. Let f : X → X be defined by

fx =

⎧⎨
⎩
, ∀x ∈ X – {},
, x = .

Now we prove that Theorem . in [] and Theorem  in [] cannot be used to prove
the existence of fixed points of the mapping f in X. Suppose that there exist ϕ ∈ � and
c ∈ [, ) satisfying the condition of Theorem  in [], that is,

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ m(x,y)


ϕ(t)dt, ∀x, y ∈ X, (.)

where

m(x, y) =max

{
d(x, y),d(x, fx),d(y, fy),



[
d(y, fx) + d(x, fy)

]}
, ∀x, y ∈ X. (.)

Taking (x, y) = (, ) and using (.), (.), ϕ ∈ �, and c ∈ [, ), we get

m(x, y) = max

{
d(x, y),d(x, fx),d(y, fy),



[
d(y, fx) + d(x, fy)

]}

= max

{
d(, ),d(, ),d(, ),



[
d(, ) + d(, )

]}

= 
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and

∫ 


ϕ(t)dt =

∫ d(fx,fy)


ϕ(t)dt ≤ c

∫ m(x,y)


ϕ(t)dt = c

∫ 


ϕ(t)dt

<
∫ 


ϕ(t)dt,

which is a contradiction. Note that Theorem  in [] is a generalization of Theorem .
in []. Therefore, Theorem . in [] is also futile in proving the existence of fixed points
for the mapping f in X.
Define three mappings g : X → X and ϕ,ψ :R+ →R

+ by

gx =

⎧⎪⎪⎨
⎪⎪⎩
, ∀x ∈ X \ {, },
, x = ,

, x = ,

ϕ(t) =
ln( + t)
 + t

, ∀t ∈R
+

and

ψ(t) =

⎧⎨
⎩
 sin t, ∀t ∈ [, ],

t, ∀t ∈ (, +∞).

It is clear that (ϕ,ψ) ∈ � × � , f and g are weakly compatible in X, f (X) = {, } ⊆
{, , } = g(X) and g(X) is complete. Let x, y ∈ X with x < y. In order to verify (.), (.),
(.), and (.) hold, we have to consider the following four possible cases:
Case . x, y ∈ X \ {}. It follows that

∫ d(fx,fy)


ϕ(t)dt =

∫ d(,)


ϕ(t)dt = ≤ ψ

(∫ Mi(x,y)


ϕ(t)dt

)
, ∀i ∈ {, , , }.

Case . x =  and y = . Observe that ψ is strictly increasing in (, +∞) and

Mi(x, y) ≥ d(gx, gy) = d(, ) = , ∀i ∈ {, , , }.

It is easy to verify that

∫ d(fx,fy)


ϕ(t)dt =

∫ d(,)


ϕ(t)dt =

∫ 


ϕ(t)dt =



ln  <



< 

<


ln  =ψ

(


ln 

)
= ψ

(∫ 


ϕ(t)dt

)

≤ ψ

(∫ Mi(x,y)


ϕ(t)dt

)
, ∀i ∈ {, , , }.

Case . x =  and y ∈ (, )∪ (,+∞). Note that ψ is strictly increasing in (, +∞) and

Mi(x, y) ≥ d(gx, gy) = d(, ) = , ∀i ∈ {, , , }.
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It is clear that

∫ d(fx,fy)


ϕ(t)dt =

∫ d(,)


ϕ(t)dt =

∫ 


ϕ(t)dt =



ln  <



< 

<


ln  =ψ

(


ln 

)
= ψ

(∫ 


ϕ(t)dt

)

≤ ψ

(∫ Mi(x,y)


ϕ(t)dt

)
, ∀i ∈ {, , , }.

Case . x <  and y = . Note that ψ is strictly increasing in (, +∞) and

Mi(x, y) ≥ d(gx, gy) = d(, ) = , ∀i ∈ {, , , }.

Clearly we have

∫ d(fx,fy)


ϕ(t)dt =

∫ d(,)


ϕ(t)dt =

∫ 


ϕ(t)dt =



ln  <



< 

<


ln  =ψ

(


ln 

)
= ψ

(∫ 


ϕ(t)dt

)

≤ ψ

(∫ Mi(x,y)


ϕ(t)dt

)
, ∀i ∈ {, , , }.

That is, (.), (.), (.), and (.) hold. Hence each of Theorems .-. guarantees
that f and g possess a unique common fixed point in X.

Finally, we use Theorem . to discuss solvability of the following system of functional
equations arising in dynamic programming:

f (x) = opt
y∈D

{
u(x, y) +H

(
x, y, f

(
a(x, y)

))}
, ∀x ∈ S,

g(x) = opt
y∈D

{
v(x, y) +G

(
x, y, g

(
b(x, y)

))}
, ∀x ∈ S,

(.)

where opt stands for sup or inf, Z and Y are Banach spaces, S ⊆ Z is the state space,D ⊆ Y
is the decision space, x and y signify the state and decision vectors, respectively, a and
b represent the transformations of the process, f (x) and g(x) denote the optimal return
functions with the initial state x, B(S) denotes the Banach space of all bounded real-valued
functions on S with norm

‖w‖ = sup
{∣∣w(x)∣∣ : x ∈ S

}
for any w ∈ B(S).

Example . Let u, v : S × D → R, a,b : S × D → S, H ,G : S × D × R → R and (ϕ,ψ) ∈
� × � satisfy the following conditions:

u, v,H and G are bounded; (.)

fgh = gfh for each h ∈ B(S) with fh = gh; (.)

f
(
B(S)

) ⊆ g
(
B(S)

)
and g

(
B(S)

)
are complete (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/394


Liu et al. Journal of Inequalities and Applications 2014, 2014:394 Page 16 of 19
http://www.journalofinequalitiesandapplications.com/content/2014/1/394

and
∫ |H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|


ϕ(t)dt ≤ ψ

(∫ M∗
 (h,w)


ϕ(t)dt

)
,

∀(x, y,h,w) ∈ S ×D× B(S)× B(S), (.)

where the mappings f and g are defined by

fh(x) = opt
y∈D

{
u(x, y) +H

(
x, y,h

(
a(x, y)

))}
, ∀(x,h) ∈ S × B(S),

gh(x) = opt
y∈D

{
v(x, y) +G

(
x, y,h

(
b(x, y)

))}
, ∀(x,h) ∈ S × B(S)

(.)

and

M∗
 (h,w) = max

{
‖gh – gw‖,‖fh – gh‖,‖fw – gw‖,

‖fh – gw‖ + ‖fw – gh‖


,
‖fh – gw‖‖fw – gh‖

 + ‖gh – gw‖ ,

‖fh – gh‖‖fw – gh‖
( + ‖gh – gw‖) ,

‖fw – gw‖‖fh – gw‖
( + ‖gh – gw‖)

}
, ∀h,w ∈ B(S). (.)

Then the system of functional equations (.) has a unique common solution w ∈ B(S).

Proof It follows from (.) that there existsM >  satisfying

sup
{∣∣u(x, y)∣∣, ∣∣v(x, y)∣∣, ∣∣H(x, y, t)

∣∣, ∣∣G(x, y, t)∣∣ : (x, y, t) ∈ S ×D×R
} ≤ M. (.)

It is easy to see that f and g are self-mappings in B(S) by (.), (.), and Lemma .. It
is clear that Theorem . in [] and ϕ ∈ � yield, for each ε > : there exists δ ∈ (,M)
satisfying

∫
C

ϕ(t)dt < ε, ∀C ⊆ [, M] withm(C)≤ δ, (.)

wherem(C) denotes the Lebesgue measure of C.
Let (x,h,w) ∈ S × B(S) × B(S). Suppose that opty∈D = infy∈D. Clearly (.) implies that

there exist y, z ∈ D satisfying

fh(x) > u(x, y) +H
(
x, y,h

(
a(x, y)

))
– δ;

fw(x) > u(x, z) +H
(
x, z,w

(
a(x, z)

))
– δ;

fh(x) ≤ u(x, z) +H
(
x, z,h

(
a(x, z)

))
;

fw(x) ≤ u(x, y) +H
(
x, y,w

(
a(x, y)

))
,

which means that

fh(x) – fw(x) >H
(
x, y,h

(
a(x, y)

))
–H

(
x, y,w

(
a(x, y)

))
– δ

≥ –max
{∣∣H(

x, y,h
(
a(x, y)

))
–H

(
x, y,w

(
a(x, y)

))∣∣,
∣∣H(

x, z,h
(
a(x, z)

))
–H

(
x, z,w

(
a(x, z)

))∣∣} – δ
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and

fh(x) – fw(x) < H
(
x, z,h

(
a(x, z)

))
–H

(
x, z,w

(
a(x, z)

))
+ δ

≤ max
{∣∣H(

x, y,h
(
a(x, y)

))
–H

(
x, y,w

(
a(x, y)

))∣∣,∣∣H(
x, z,h

(
a(x, z)

))
–H

(
x, z,w

(
a(x, z)

))∣∣} + δ,

which yield

∣∣fh(x) – fw(x)
∣∣ < max

{∣∣H(
x, y,h

(
a(x, y)

))
–H

(
x, y,w

(
a(x, y)

))∣∣,∣∣H(
x, z,h

(
a(x, z)

))
–H

(
x, z,w

(
a(x, z)

))∣∣} + δ

= max
{∣∣H(

x, y,h
(
a(x, y)

))
–H

(
x, y,w

(
a(x, y)

))∣∣ + δ,∣∣H(
x, z,h

(
a(x, z)

))
–H

(
x, z,w

(
a(x, z)

))∣∣ + δ
}
. (.)

Similarly we infer that (.) holds also for opty∈D = supy∈D. Combining (.), (.), and
(.), we arrive at

∫ |fh(x)–fw(x)|


ϕ(t)dt ≤ max

{∫ |H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|+δ


ϕ(t)dt,

∫ |H(x,z,h(a(x,z)))–H(x,z,w(a(x,z)))|+δ


ϕ(t)dt

}

= max

{∫ |H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|


ϕ(t)dt

+
∫ |H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|+δ

|H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|
ϕ(t)dt,

∫ |H(x,z,h(a(x,z)))–H(x,z,w(a(x,z)))|


ϕ(t)dt

+
∫ |H(x,z,h(a(x,z)))–H(x,z,w(a(x,z)))|+δ

|H(x,z,h(a(x,z)))–H(x,z,w(a(x,z)))|
ϕ(t)dt

}

≤ max

{∫ |H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|


ϕ(t)dt,

∫ |H(x,z,h(a(x,z)))–H(x,z,w(a(x,z)))|


ϕ(t)dt

}

+max

{∫ |H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|+δ

|H(x,y,h(a(x,y)))–H(x,y,w(a(x,y)))|
ϕ(t)dt,

∫ |H(x,z,h(a(x,z)))–H(x,z,w(a(x,z)))|+δ

|H(x,z,h(a(x,z)))–H(x,z,w(a(x,z)))|
ϕ(t)dt

}

≤ ψ

(∫ M∗
 (h,w)


ϕ(t)dt

)
+ ε, ∀(x,h,w) ∈ S × B(S)× B(S),

which means that

∫ ‖fh–fw‖


ϕ(t)dt ≤ ψ

(∫ M∗
 (h,w)


ϕ(t)dt

)
+ ε, ∀h,w ∈ B(S),
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letting ε → + in the above inequality, we deduce that

∫ ‖fh–fw‖


ϕ(t)dt ≤ ψ

(∫ M∗
 (h,w)


ϕ(t)dt

)
, ∀h,w ∈ B(S).

Thus Theorem . ensures that the mappings f and g have a unique common fixed point
w ∈ B(S), which is a unique common solution of the system of functional equations (.).
This completes the proof. �

Remark . The conclusion of Example . generalizes and improves Theorems .-.
in [], Theorem  in [], Theorem . in [], and Theorem . in [].
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