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Abstract
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1 Introduction

We are concerned with the stochastic Ramsey problem in a growth model discussed by
Merton [1]. For recent contribution in this direction, we refer to [2]. A firm produces goods
according to the Cobb-Douglas production function % for capital x, where 0 < y <1 (cf.
Barro and Sala-i-Martin [3]). The stock of capital X; at time ¢ is modeled by the stochastic

differential equation
dX;=X] dt +oX;dB;, t>0,Xo=x>0,0#0,

on a complete probability space (€2, F, P) carrying a standard Brownian motion {B;} en-
dowed with the natural filtration F; generated by o (B;,s < t).

The capital stock can be consumed and the flow of consumption at time ¢ is assumed to
be written as ¢, X;. The rate of consumption ¢ = {c;} per capital stock is called an admissible
policy if {¢,} is an {F;}-progressively measurable process such that

0<¢ <1 forallt>0as. (1.1)

We denote by A the set of admissible policies. Given a policy ¢ € A, the capital stock
process {X;} obeys the equation

dX, = [X] - X,)dt + o X,dB;, Xo=x>0. (1.2)

The objective is to find an optimal policy ¢* = {c}} so as to maximize the expected dis-
counted utility of consumption

J.(c) = E|:/00 e UlcX,) dt] (1.3)
0
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over ¢ € A, where a > 0 is a discount rate and U/(x) is a utility function in C?(0,00) N
C[0, 00), which is assumed to have the following properties:

U'(c0) = U(0) = 0, U'(0+) = U(oo) = 00, u’<o. (1.4)

The Hamilton-Jacobi-Bellman (HJB for short) equation associated with this problem is

given by

aulx) = %azxzu”(x) +x’u (x) + L~[( ,u/(x)), x>0, 1.5)
where

I:I(x,y) = maXOSCSI{LI(cx) - cxy} forx,y > 0. (1.6)

This kind of economic growth problem has been studied by Kamien and Schwartz [4]
and Sethi and Thompson [5, Chapter 11]. However, the optimization problem is unsolved.
It is not guaranteed that (1.2) admits a unique positive solution {X;} and the value function
is a viscosity solution of the HJB equation. The main difficulty stems from the fact that (1.5)
is a degenerate nonlinear equation of elliptic type with the non-Lipschitz coefficient x” in
(0,00). It is also analytically studied by [6], nevertheless in the finite time horizon. The
resulting HJB equation is a parabolic partial differential equation (PDE, for short), which
is very different from the elliptic PDE dealt with in the present paper.

In this paper, we provide the existence results on a unique positive solution {X;} to (1.2)
and a classical solution u of (1.5) by the theory of viscosity solutions. For the detail of the
theory of viscosity solutions, we mention the works [7, 8] and [9]. An optimal policy is
shown to exist in terms of u.

This paper is organized as follows. In Section 2, we show that (1.2) admits a unique
positive solution. In Section 3, we show the existence of a viscosity solution u of the HJB
equation (1.5). Section 4 is devoted to the C2-regularity of its solution. In Section 5, we
present a synthesis of the optimal consumption policy.

2 Preliminaries
In this section, we show the existence of a unique solution {X;} to (1.2).

Proposition 2.1 There exists a unique positive solution {X,} = {X}} to (1.2), for each c € A,

such that
EX) < {@- e+ a0, 2.1)
E[X2] <& {20 - e+ 2P sy, (2.2)

Ve>0,3C. >0 stE[|XF-X)|]<Colx—yl+e(L+£/ +x+y), xy>0. (2.3)

Proof We setx; = th_y. Then, by Ito’s formula and (1.2),
_ 0'2 1-
dxi= (L= y)X;" dX, + —- (1= y)(=y)X," dt

2
=(1- y)|:1 - <ct + %y)xt] dt+ 1 —-y)ox.dB;, x9=x"". (2.4)
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By linearity, (2.4) has a unique solution {x,}. Since
o2
dx; =(1- V)[— <Ct + 7)/)5@] dt+(1-y)o&,dB, Xo=x"7 (2.5)

has a positive solution {;}, we see by the comparison theorem [10, Chapter 6, Theo-
rem 1.1] thatx; > &; > 0 holds almost surely (a.s.). Therefore, (1.2) admits a unique positive
solution {X;} of the form X, = x}/(lf”), which satisfies supogthE[Xf] < oo foreach T > 0.

Let 6; be the right-hand side of (2.1) and ¢, = E[X;]. Obviously, we see that 6 is a unique
solution of

db; =6] dt, 6y=x>0.
By (1.2) and Jensen’s inequality,
de, = dE[X;) = E[X] — ¢, X, | dt < ¢/ dt.

Since 6y = ¢ = x, we deduce ¢, < 6;, which implies (2.1).
Similarly, let ®; be the right-hand side of (2.2) and ®, = E[X?]. By substitution, it is easy
to see that ©, := e“’zt@t is a unique solution of

do, = 2@? dt, ©®g=x%>0.
Hence
dO, =" (20} +0%0,) dt > (20} + 02©,) dt.
Furthermore, by (1.2), Ito’s formula and Jensen’s inequality,
dd, = dE[X]]

= E[2X}* - 2¢,X} + 0 X} | dt

< (2@} + 02, dt.

Thus, we deduce ®; < ®; and &y = @y, which implies (2.2).
Next, let {Y;} denote the solution {X}} of (1.2) with Yy =y and y; = Ytlfy. Then, by (2.4)
o2
dx;—y)=-1- V)(Ct + 7)/)(96; =y dt+(1-y)o(x: —y)dBy,
which implies

0_2

t o2
x: — 9 = (%0 —yo)exp{—(l - y)(/ ¢ ds + 7yt> +(1-y)oB; - 7(1 _ ),)Zt}.
0
Setting 8 =1/(1 - y) > 1, we have

o2
E[|xt —ytlﬁ] < |xo —yOIﬁE[exp{cht — 7[”

= | =y [P < ey, (2.6)
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By Young’s inequality [11], for any &g > 0,
o =y | < B+ 5P x -y
1/1) B-1 BI(B-1)
<Bl=(=) Ix-yf+ go(xP71 4+ yP1
[ﬂ <€0> AT el )

1 B
< <5> lx —y1? + (B - 1)(20)" B (2 +5F), x,y>0.

Hence, for any € > 0, we choose C; > 0 such that
| = 5| < Cela—yIP + 6 (1L+2 +5F), xy=>o0.
Therefore, by (2.1) and (2.6), we have

E[1X: - ¥iI] = E[[+f - 5/]
< CEE[|xt—yt|’3] +8E[1+xf +yf]
< Celx—yl+€eE[1+ X, + Y]

= Cs|x—y| +8{1+2ﬂ(tﬂ +x) +2ﬂ(t/3 +y)},
which implies (2.3). .

Remark 2.1 The uniqueness for (1.2) is violated if x = 0 and ¢; is deterministic since 0 and
the limit process x; :=lim,_, ., X} satisfy (1.2) with X, = 0, and

E[x7] =E[/0t(1 - V){l - (Cs + ?V)XS‘V}dS] #0. (2.7)

3 Viscosity solutions of the HJB equation
Definition 3.1 Letu € C(0,00). Then u is called a viscosity solution of (1.5) if the following
relations are satisfied:

1 ~
au(x) < Eazxzq +x"p+Ux,p), Yp,q) €]* ux),Vx>0,

1 -
ou(x) > iazxzq +x'p+ Ux,p), Yp,q) €J> ulx),¥x>0,

where J**u(x) and J*~u(x) are the second-order superjets and subjets [7].

Define the value function u by

u(x) = supE[/oo e U(c,X,) dt:|, (3.1)
ce A 0

where the supremum is taken over all systems (2, F, P, {F;}; {B:}, {c:}).
In this section, we study the viscosity solution u of the HJB equation (1.5). Due to Propo-
sition 2.1, we can show the value function u with the following properties.
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Lemma 3.1 We assume (1.4). Then we have

O0<ulx)<i(x):i=x+C, x>0 (3.2)
for some constant ¢y > 0, and there exists C, > 0 for any p > 0 such that

’u(x)—u()/)’ <Colx—yl+pQ+x+y), xy>0. (3.3)
Proof Clearly, u is nonnegative. By concavity, there is C > 0 such that

Ux) < a2 VMg €, x> 0.

By (1.1) and (2.1), we have

E|:/ e Ulc,Xy) dt] < E[/ e_“t(aZ’U(l_y)Xt +C) dt]
0 0
0 —_
< / e“"t{a(tl/(l”’) +x) + C}dt
0

o0
= x+oz/ e A e 4 Cla,
0

which implies (3.2).
Now, let p > 0 be arbitrary. By (1.4), there is § > 0 such that U(x) < p for all x € [0, 5].

Furthermore,
|U@) -U@p)| <U'@)lx-yl, xy=4.

Thus, we obtain a constant C, > 0, depending on p > 0, such that
|L[(x)—L[(y)|§Cp|x—y|+,0, Vx,y > 0. (3.4)

By (1.1), (2.3) and (3.4), we get
’”(x) - M()/)’ = SUPE[/OO e_at‘u(CtXt) - U(Cth)’ d’{|
ce A 0

< supE[[ e ColX, - Y| + ,o}dt:|
ce A 0

SC,,/ e"”{Ce|x—y|+8(1+t1/(1_y)+x+y)}dt+p/a
0

5C{Cnglx—yl+(£+,0)(1+x+y)}, x,y>0, (3.5)

where the constant C > 0 is independent of ¢, p > 0. Replacing p by p/2C and choosing
sufficiently small ¢ > 0, we deduce (3.3). O

Remark 3.1 The continuity of u is immediate from (3.3).

Theorem 3.1 We assume (1.4). Then the value function u is a viscosity solution of (1.5).
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Proof According to [12], the viscosity property of u follows from the dynamic program-
ming principle for u, that is,

u(x) = supE|:/ e U(c,X;) dt + e‘”u(X,)], x>0 (3.6)
ce A 0

for any bounded stopping time t > 0, where the supremum is taken over all systems
(R, F, P, {F:}; (B}, {c;}). Let iu(x) be the right-hand side of (3.6). Let X, = X, and B; =
B;,, — B,, when 1 = r is non-random. Then we have

dXt = [X;’ - Etj(t] dt + O'Xt dBt, 5(() = Xr

for the shifted process ¢ = {¢;} of c by 7, i.e., ¢; = ¢4, It is easy to see that

o0
e‘”E[/ e U(cX,) dt

f,] - E[ / e G%) dt‘}',] @ as.
0

with respect to the conditional probability P(-|F,). We take &; > 0 such that ¥ < ax + §
and sufficiently large ¢, > 0 to obtain

1
—al + 50'2362{” +x7¢ < —aty+ 4 <0.
By (3.2) in Lemma 3.1, Ito’s formula and Doob’s inequality, we have

E[ sup e“”]xt(ﬁ)] §E[ sup e“”{(Xt)] <tx)+C, T>0
0<t<T 0<t<T

for some constant C > 0. Hence, approximating t by a sequence of countably valued stop-
ping times, we see that

o0
E[e*x, (0)] = E[ / e U(c,X,) dt].
T
Thus
T o0
J.(c) = E|:/ e UlcX,) dt+f e U(cX,) dt]
0 T
T
< E[f e U(c,X,) dt + e“”u(XT)].
0
Taking the supremum, we deduce u < u.

We shall show the reverse inequality in the case that T = r is constant. For any ¢ > 0, we
consider a sequence {S;:j=1,...,n + 1} of disjoint subsets of (0, 00) such that

diam(5) <8, | JSj=(0,R) and S, =[R,o0)

j=1
for 8, R > 0 chosen later. We take x; € S; and " € A such that

uly) —e <Jy(V), j=1,..,n+1 3.7)

Page 6 of 15
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By the same argument as (3.5), we note that
() = T, ()] + [ua(x) - u(y)| < Celx - y] + 2(1 +x+9y), %y>0
for some constant C, > 0. We choose 0 < § < 1 such that C,8§ < £/2. Then we have
(€Y =T, (D) | + |ux) —u(y)| <eQ+x), x%y€S),j=12,...,n (3.8)
Hence, by (3.7) and (3.8),
T () = I (1) =iy (¢7) + iy (<)
> —e(1+X,) +ulx)—¢

> 2e(1+X,)+ulX,)-¢

>-3e(1+X,)+ulX,) ifX,eS,j=1...,n (3.9)

By definition, we find ¢ € A such that
ux)—e < E|:/ e U(c,X,) dt + e‘“’u(X,)j|.
0

In view of [10, Chapter 6, Theorem 1.1], we can take c, c¥ on the same probability space.
Define

&=l + DAy X €8,j=1,...,n+1,

where 1, denotes the indicator function. Then {c}} belongs to A. Let {X]} be the solution
of

dx; = [(Xt’)y —cX]]dt +oX,dB;, Xj=x>0.

Clearly, X] = X; as. if t < r. Further, for eachj=1,...,n + 1, we have on {X, € S}

t+r

t4r
X[, =X+ / (7)) = X7 ds+ / o X' dB,
r

r

t t
=X+ / [( S'+,)y - c@XQ,] ds + f oX', dB; as.
0 0

7., coincides with the solution Xy) of (1.2) for (R, F,P,{F:};{B:}, {cy)}) a.s. on
{X, € S;} with X9 - X;. Thus, we get

Hence, X]

ol@) -2 [ et 1) a7
0

E / e (e x?) dt‘]:",]
0

=Jx (") as.on{X,e€S},j=1,...,n+1, (3.10)

where EP denotes the expectation with respect to P.

Page 7 of 15
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Now, we fix x > 0 and choose R > 0, by (2.1), (2.2) and (3.1), such that

SupE[”(Xr)l{szR}] <sup E[§ (Xr)l[szR}]
ce A ce A

< sup lE[sz + {oX,]
ceA R

< %(1 +x+x%) <e, (3.11)

where the constant Cy > 0 depends only on r, . By (3.9), (3.10) and (3.11), we have

E[/ e U(cX]) dt:| =E E|:/ e U(c;X]) dt‘}',:|:|

= E[eTx ()]

[ n+l 4
=E Z e—ar]Xr (C(I))lp(res/,]:|

L j=1

>E Z e {u(X,) - 3e(1+ Xr)}l{XrES/]:|

L j=1
> E[e{u(X;) — u(X)x,=ry } ] — 3eE[1 + X,]

> E[e"”u(X,)] —£-3eC(1+x)

for some constant C > 0 independent of ¢. Thus

u(x) > E|:/ e U(c; X)) dt + / e U(cX;) dt]
0 r

> E|:/ e U(c,X,) dt + e‘”u(X,)i| —&—-3eC(1 +x)
0

> u(x) — 2 —3sC(»1 +x).

Letting ¢ — 0, we get # < u.
In the general case, by the above argument, we note that

f,]

.7:,:| a.s.s,r>0.

u(X,) = u(Xo) > E|: f s et UEX,) dt + e u(X;)
0

s
= E|:/ e_atu(CHrXH—r) dt + e_aSM(Xs+r)
0

Hence {e *u(X;) + fos e ' U(cX;) dt} is a supermartingale. By the optional sampling the-

orem,
u(Xy) > E[/ e U(c,X;)dt + e’“’u(X,)‘fo] a.s.
0

Taking the expectation and then the supremum over .4, we conclude that & < u. Noting
the continuity of u, we obtain (3.6). O
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4 Classical solutions

In this section, using the viscosity solutions technique, we show the C?-regularity of the
viscosity solution u of (1.5). For any fixed 0 < a < b, we consider the boundary value prob-
lem

1 -
aw = icrzxzw” +x’w + U(x,w) in(a,b), (4.1)
with boundary condition
w(a) = u(a), w(b) = u(b), (4.2)

given by u.

Proposition 4.1 Let w; € Cla,b], i = 1,2, be two viscosity solutions of (3.1), (4.2). Then,
under (1.4), we have

w1 = Wjp.

Proof 1t is sufficient to show that w; < w,. Suppose that there exists xg € [a, b] such that
wy(xg) — wa(xo) > 0. Clearly, by (4.2), x9 # a, b, and we find X € (a, b) such that

0:= sup {i(x) ~ Wi} =) - ) > 0.

Define
k 2
Wi(x, y) = wi(x) — wa(y) — Elx -yl
for k > 0. Then there exists (xi, yx) € [a, b]? such that

W (xey6) = sup Wrlx,y) = Wi, x) = o, (4.3)
(x.y)€la,b)?

from which

k 2

Elxk — ykl” < wilxe) — wa(ye).
Thus

|2k —yk| > 0 ask — oo. (4.4)
Furthermore, by the definition of (xx, y«),

Wi (ks Yi) = Wi (ks X ).

Hence, by uniform continuity

k
51 — k> < waloe) —wa (i) < sup |walx) — wa(y)|
lx=yl<p

— 0 ask — ooandthen p — 0. (4.5)
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By (4.3), (4.4) and (4.5), extracting a subsequence, we have

(%, y%) = (%,%) € (a,b)* ask — oo.

(4.6)

Now, we may consider that (xx, yx) € (a, b)? for sufficiently large k. Applying Ishii’s lemma

[7] to Wi(x, ), we obtain X, Y € R such that

(k(xx = y1), X) € T wi (%),
(k= y2), Y) € " wa (),

X 0 1 -1
<3k .
0 -Y -1 1
By Definition 3.1,
1 -
aw (xx) < Eo%cﬁX + oy o+ U, 1),

1 N
aws(yx) > Eozin +yp i+ U ),

where 1 = k(xx — y). Putting these inequalities together, we get

a{wi(n) - waly)} < %Gz(xiX—in) + (o} =yl Y+ { U oo ) = Uy 1)}

=hL+L+13 say.

By (4.5) and (4.7), it is clear that

2

h= (X -2Y) = =

2
5 3k(xx —yx)> — 0 as k — oo.

Also, by (4.5)

L =k(x] = y}) k= y) < kya” Mg —yl> > 0 ask — oo.

By (1.6), (3.4), (4.5) and (4.6), we have

A

I; < maxlyu(cxk)—u(cyk)’ + ok — il I

0<c<

IA

C,lox = yil + p + klxx — yel?

— 0 ask— ooandthen p — 0.
Consequently, by (4.6), we deduce that
ap <a{wi(®) -m®)} <0,

which is a contradiction.

Theorem 4.1 We assume (1.4). Then there exists a solution u € C*(0,00) of (1.5).

(4.7)
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Proof For any 0 < a < b, we recall the boundary value problem (4.1), (4.2). Since
uo) <u'x)0-x)+Ux), x>0,
we have

Ky := sup xU'(x) < co.

0<x<a

Hence, by (1.4)

|U(cxy) = Ulexs)| < el (ca)loy — %,

K
< —0|x1 — X5, x1,% €[a,b],0<c<1.
a
Also, by (1.6)
| L1, 1) = U, 32)| = max [U(can) = Ulexn)| + [ays = 2297
Ko
< 7|x1 — x| + %1 =2l ly1l + Dlyr = 321, y1,92 > 0.

Thus the nonlinear term of (4.1) is Lipschitz. By uniform ellipticity, a standard theory of
nonlinear elliptic equations yields that there exists a unique solution w € C*(a, b) N C[a, b]
of (4.1), (4.2). For details, we refer to [13, Theorem 17.18] and [14, Chapter 5, Theorem 3.7].
Clearly, by Theorem 3.1, u is a viscosity solution of (4.1), (4.2). Therefore, by Proposi-
tion 4.1, we have w = u and u is smooth. Since a, b are arbitrary, we obtain the assertion.

O

5 Optimal consumption
In this section, we give a synthesis of the optimal policy ¢* = {c}} for the optimization
problem (1.4) subject to (1.2). We consider the stochastic differential equation

ax; =[(X;)" - n(X;)X;]dt + o X dB,, X§=x>0, (5.1)
where n(x) = I(x, u'(x)) and I(x, y) denotes the maximizer of (1.6) for x,y > 0, i.e.,

_ @) o)x iU x) <y,

. (5.2)
1 otherwise.

I(x,y)

Our objective is to prove the following.
Theorem 5.1 We assume (1.4). Then the optimal consumption policy {c}} is given by
¢ =n(X7). (5.3)

To obtain the optimal consumption policy {c}}, we should study the properties of the
value function u and the existence of strong solution {X}} of (5.1). We need the following

lemmas.
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Lemma 5.1 Under (1.4), the value function u is concave. In addition, we have

u(x)>0 forx>0, (5.4)

u'(0+) = 00. (5.5)

Proof Let x; >0, i=1,2. For any ¢ > 0, there exists ¢ € A such that
0 - -
u(x;) —e < E|:/ e_‘”LI(cgl)Xgl)) dt:|,
0

where {Xf)} is the solution of (1.2) corresponding to ¢ with X((P =x;. Let0 <& <1,and
we set

_EdXY - 8)x?
=
XM+ @-6)x?

which belongs to A. Define {X;} and {X,} by

dX; = [()_(t)y - Ez)_(:] dt +oX;dB,, Xo=£&x;+(1—£)xy,

Xo=exP+ 1-6)x2.

By concavity,

t t
X, <&xy+ 1 -8y + / [(X) —&.X;]ds + / oX,dB; as.
0 0
By the comparison theorem, we have
)~([ <X, forallt>0as.

Thus, by (1.4)

u(Ex+ (1 -8)xp) > E[ / ” e U(c,Xy) dt] > E[ / ~ et U(c,Xy) dti|
0 0
- E[ / N e U(E X" + (1 - &) x) dt]
0

ool [y -] [T eouex
0

0
> Eulxy) + (1 - &)ulxy) —e.

Therefore, letting ¢ — 0, we obtain the concavity of u.
To prove (5.4), by Theorem 4.1, we recall that u is smooth. Furthermore, we get u'(x) > 0

for x > 0. If not, then u'(ap) < 0 for some ay > 0. By concavity,

0 < u(x) <u'(ao)(x —ag) + ulag) = —00 asx — 0o,
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which is a contradiction. Suppose that #'(z) = 0 for some z > 0. Then, by concavity, we
have u'(x) = 0 for all x > z. Hence, by (1.5) and (1.6),

au(z) = au(x) = U(x,0) = U(x), x>z

This is contrary to (1.4). Thus, we obtain (5.4).
Next, by definition, we have

0< E[/ e‘“tL[()v(t)dt] <u(x), x>0,
0

where {X;} is the solution of (1.2) corresponding to ¢; = 1. As in (2.7), the limit process
Xe = limy_, o, )V(t is different from 0. Hence

0< E[/me_“tu()@)dt] <u(0+).
0

Suppose that #'(0+) < co. By (1.5) and concavity, we get #(0+) = 0, which is a contradiction.
This implies (5.5). O

Lemma 5.2 Under (1.4), there exists a unique positive strong solution {X}} of (5.1).

Proof Let {N;} be the solution of (1.2) corresponding to ¢, = 0. We can take the Brownian
motion {B;} on the canonical probability space [4, p.71]. Since 0 < n <1, the probability
measure P is defined by

t

di’/dP:exp{—/ U(Ns)/C’d s_%/ (n(Ns)/a)zdS}
0 0

for every ¢ > 0. Girsanov’s theorem yields that

t
B, :=B; + / n(Ns)/o ds is a Brownian motion under P.
0

Hence
dN; = [(N,) -~ n(N;)N;]dt + oN;dB; under P.

Thus, (5.1) admits a weak solution.
Now, by (5.2), we have

n(x)x = min{(L[/)_1 o (x),x}.

Hence, by (1.4) and concavity,

d _
%(U’) You/(x) =

u”(x) .
U ol ou(x) ~

Thus, n(x)x is nondecreasing on (0, 00). We rewrite (5.1) as the form of (2.4) to obtain
X/ >0 a.s. Then we see that the pathwise uniqueness holds for (5.1). Therefore, by the
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Yamada-Watanabe theorem [10], we deduce that (5.1) admits a unique strong solution
X;). =

Proof of Theorem 5.1 Since {c;} satisfies (1.1), it belongs to A. By Lemma 5.2, we note that
0 </ (x)x < u(x) — u(0+) < u(x), x>0.

Hence, by (2.2) and (3.2),
! 2 ! 2
E[ [Hemiox) ds} < E[ [Heut) ds}
0 0
t
< E|:/ e‘“;(XS*)st] < 00.
0
This yields that { fot e “u/ (X)X} dB;} is a martingale. By (1.6), (5.3) and Ito’s formula,
t
E[e™u(X})] = u(x) +E|:/ e“”{—au(Xs*) + (X)W (X7)
0
X (XT) + %OZ(X:)ZM”(XS*) } ds:|
t
= u(x) - E[f e U(cEXT) ds:|.
0
By (2.1) and (3.2), it is clear that

E[eu(X7)] < E[e'¢ (X7)]

< e {(1-p)e+at T ety 50 ast— oo,

Letting t — 0o, we deduce

E[/OOO e U(ciX7) dt] = u(x).

By the same calculation as above, we obtain

E[/OOO e UlcX,) dt] < u(x)

for any ¢ € A. The proof is complete. O

Remark 5.1 From the proof of Theorem 5.1, it follows that the solution u of the HJB equa-
tion (1.5) coincides with the value function. This implies that the uniqueness holds for
(1.5).

Competing interests
The author declares that they have no competing interests.


http://www.journalofinequalitiesandapplications.com/content/2014/1/391

Liu Journal of Inequalities and Applications 2014, 2014:391
http://www_ journalofinequalitiesandapplications.com/content/2014/1/391

Acknowledgements

I would like to thank Professor H Morimoto for his useful help. The research was supported by the National Natural
Science Foundation of China (11171275) and the Fundamental Research Funds for the Central Universities
(XDJK2012C045).

Received: 10 June 2014 Accepted: 24 September 2014 Published: 13 Oct 2014

References

1.
2.

10.
11.

13.
14.

Merton, RC: An asymptotic theory of growth under uncertainty. Rev. Econ. Stud. 42, 375-393 (1975)
Baten, MA, Kamil, AA: Optimal consumption in a stochastic Ramsey model with Cobb-Douglas production function.
Int. J. Math. Math. Sci. (2013). doi:10.1155/2013/684757

3. Barro, RJ, Sala-i-Martin, X: Economic Growth, 2nd edn. MIT Press, Cambridge (2004)
4.,
5
6

Kamien, MI, Schwartz, NL: Dynamic Optimization, 2nd edn. North-Holland, Amsterdam (1991)

. Sethi, SP, Thompson, GL: Optimal Control Theory, 2nd edn. Kluwer Academic, Boston (2000)
. Morimoto, H, Zhou, XY: Optimal consumption in a growth model with the Cobb-Douglas production function. SIAM

J. Control Optim. 47(6), 2991-3006 (2009)

Crandall, MG, Ishii, H, Lions, PL: User’s guide to viscosity solutions of second order partial differential equations. Bull.
Am. Math. Soc. 27, 1-67 (1992)

Koike, I: A Beginner’s Guide to Theory of Viscosity Solutions. MSJ Memoirs. Math. Soc. Japan, Tokyo (2004)

Darling, RWR, Pardous, E: Backwards SDE with random terminal time and applications to semilinear elliptic PDE. Ann.
Probab. 25, 1135-1159 (1997)

lkeda, N, Watanabe, S: Stochastic Differential Equations and Diffusion Processes. North-Holland, Amsterdam (1981)
Pales, Z: A general version of Young's inequality. Arch. Math. 58(4), 360-365 (1992)

Fleming, WH, Soner, HM: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

Gilbarg, D, Trudinger, NS: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983)

Morimoto, H: Stochastic Control and Mathematical Modeling: Applications in Economics. Cambridge University
Press, Cambridge (2010)

10.1186/1029-242X-2014-391
Cite this article as: Liu: Optimal consumption of the stochastic Ramsey problem for non-Lipschitz diffusion. Journal
of Inequalities and Applications 2014, 2014:391

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

Page 15 of 15


http://www.journalofinequalitiesandapplications.com/content/2014/1/391
http://dx.doi.org/10.1155/2013/684757

	Optimal consumption of the stochastic Ramsey problem for non-Lipschitz diffusion
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Viscosity solutions of the HJB equation
	Classical solutions
	Optimal consumption
	Competing interests
	Acknowledgements
	References


