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1 Introduction
We are concerned with the stochastic Ramsey problem in a growth model discussed by
Merton []. For recent contribution in this direction, we refer to []. A firmproduces goods
according to the Cobb-Douglas production function xγ for capital x, where  < γ <  (cf.
Barro and Sala-i-Martin []). The stock of capital Xt at time t is modeled by the stochastic
differential equation

dXt = Xγ
t dt + σXt dBt , t > ,X = x > ,σ �= ,

on a complete probability space (�,F ,P) carrying a standard Brownian motion {Bt} en-
dowed with the natural filtration Ft generated by σ (Bs, s≤ t).
The capital stock can be consumed and the flow of consumption at time t is assumed to

be written as ctXt . The rate of consumption c = {ct} per capital stock is called an admissible
policy if {ct} is an {Ft}-progressively measurable process such that

 ≤ ct ≤  for all t ≥  a.s. (.)

We denote by A the set of admissible policies. Given a policy c ∈ A, the capital stock
process {Xt} obeys the equation

dXt =
[
Xγ
t – ctXt

]
dt + σXt dBt , X = x > . (.)

The objective is to find an optimal policy c∗ = {c∗t } so as to maximize the expected dis-
counted utility of consumption

Jx(c) = E
[∫ ∞


e–αtU(ctXt)dt

]
(.)
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over c ∈ A, where α >  is a discount rate and U(x) is a utility function in C(,∞) ∩
C[,∞), which is assumed to have the following properties:

U ′(∞) =U() = , U ′(+) =U(∞) = ∞, U ′′ < . (.)

The Hamilton-Jacobi-Bellman (HJB for short) equation associated with this problem is
given by

αu(x) =


σ xu′′(x) + xγu′(x) + Ũ

(
x,u′(x)

)
, x > , (.)

where

Ũ(x, y) =max≤c≤
{
U(cx) – cxy

}
for x, y > . (.)

This kind of economic growth problem has been studied by Kamien and Schwartz []
and Sethi and Thompson [, Chapter ]. However, the optimization problem is unsolved.
It is not guaranteed that (.) admits a unique positive solution {Xt} and the value function
is a viscosity solution of theHJB equation. Themain difficulty stems from the fact that (.)
is a degenerate nonlinear equation of elliptic type with the non-Lipschitz coefficient xγ in
(,∞). It is also analytically studied by [], nevertheless in the finite time horizon. The
resulting HJB equation is a parabolic partial differential equation (PDE, for short), which
is very different from the elliptic PDE dealt with in the present paper.
In this paper, we provide the existence results on a unique positive solution {Xt} to (.)

and a classical solution u of (.) by the theory of viscosity solutions. For the detail of the
theory of viscosity solutions, we mention the works [, ] and []. An optimal policy is
shown to exist in terms of u.
This paper is organized as follows. In Section , we show that (.) admits a unique

positive solution. In Section , we show the existence of a viscosity solution u of the HJB
equation (.). Section  is devoted to the C-regularity of its solution. In Section , we
present a synthesis of the optimal consumption policy.

2 Preliminaries
In this section, we show the existence of a unique solution {Xt} to (.).

Proposition . There exists a unique positive solution {Xt} = {Xx
t } to (.), for each c ∈A,

such that

E[Xt] ≤
{
( – γ )t + x–γ

}/(–γ ), (.)

E
[
X
t
] ≤ eσt{( – λ)t + x(–λ)}/(–λ), λ := ( + γ )/, (.)

∀ε > ,∃Cε >  s.t. E
[∣∣Xx

t –Xy
t
∣∣] ≤ Cε|x – y| + ε

(
 + t/(–γ ) + x + y

)
, x, y > . (.)

Proof We set xt = X–γ
t . Then, by Ito’s formula and (.),

dxt = ( – γ )X–γ
t dXt +

σ 


( – γ )(–γ )X–γ

t dt

= ( – γ )
[
 –

(
ct +

σ 


γ

)
xt

]
dt + ( – γ )σxt dBt , x = x–γ . (.)
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By linearity, (.) has a unique solution {xt}. Since

dx̂t = ( – γ )
[
–
(
ct +

σ 


γ

)
x̂t

]
dt + ( – γ )σ x̂t dBt , x̂ = x–γ (.)

has a positive solution {x̂t}, we see by the comparison theorem [, Chapter , Theo-
rem .] that xt ≥ x̂t >  holds almost surely (a.s.). Therefore, (.) admits a unique positive
solution {Xt} of the form Xt = x/(–γ )

t , which satisfies sup≤t≤T E[X
t ] < ∞ for each T ≥ .

Let θt be the right-hand side of (.) and φt = E[Xt]. Obviously, we see that θt is a unique
solution of

dθt = θ
γ
t dt, θ = x > .

By (.) and Jensen’s inequality,

dφt = dE[Xt] = E
[
Xγ
t – ctXt

]
dt ≤ φ

γ
t dt.

Since θ = φ = x, we deduce φt ≤ θt , which implies (.).
Similarly, let 
t be the right-hand side of (.) and �t = E[X

t ]. By substitution, it is easy
to see that 
̄t := e–σt
t is a unique solution of

d
̄t = 
̄λ
t dt, 
̄ = x > .

Hence

d
t = eσt(
̄λ
t + σ 
̄t

)
dt ≥ (


λ
t + σ 
t

)
dt.

Furthermore, by (.), Ito’s formula and Jensen’s inequality,

d�t = dE
[
X
t
]

= E
[
Xλ

t – ctX
t + σ X

t
]
dt

≤ (
�λ

t + σ �t
)
dt.

Thus, we deduce �t ≤ 
t and � =
, which implies (.).
Next, let {Yt} denote the solution {Xy

t } of (.) with Y = y and yt = Y –γ
t . Then, by (.)

d(xt – yt) = –( – γ )
(
ct +

σ 


γ

)
(xt – yt)dt + ( – γ )σ (xt – yt)dBt ,

which implies

xt – yt = (x – y) exp
{
–( – γ )

(∫ t


cs ds +

σ 


γ t

)
+ ( – γ )σBt –

σ 


( – γ )t

}
.

Setting β = /( – γ ) > , we have

E
[|xt – yt|β

] ≤ |x – y|βE
[
exp

{
σBt –

σ 


t
}]

=
∣∣x–γ – y–γ

∣∣/(–γ ) ≤ |x – y|. (.)
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By Young’s inequality [], for any ε > ,

∣∣xβ – yβ
∣∣ ≤ β

(
xβ– + yβ–)|x – y|

≤ β

[

β

(

ε

)β

|x – y|β +
β – 

β

{
ε

(
xβ– + yβ–)}β/(β–)

]

≤
(


ε

)β

|x – y|β + (β – )(ε)β/(β–)
(
xβ + yβ

)
, x, y≥ .

Hence, for any ε > , we choose Cε >  such that

∣∣xβ – yβ
∣∣ ≤ Cε|x – y|β + ε

(
 + xβ + yβ

)
, x, y≥ .

Therefore, by (.) and (.), we have

E
[|Xt – Yt|

]
= E

[∣∣xβ
t – yβ

t
∣∣]

≤ CεE
[|xt – yt|β

]
+ εE

[
 + xβ

t + yβ
t
]

≤ Cε|x – y| + εE[ +Xt + Yt]

≤ Cε|x – y| + ε
{
 + β

(
tβ + x

)
+ β

(
tβ + y

)}
,

which implies (.). �

Remark . The uniqueness for (.) is violated if x =  and ct is deterministic since  and
the limit process χt := limx→+Xx

t satisfy (.) with X = , and

E
[
χ
–γ
t

]
= E

[∫ t


( – γ )

{
 –

(
cs +

σ 


γ

)
χ –γ
s

}
ds

]
�= . (.)

3 Viscosity solutions of the HJB equation
Definition. Let u ∈ C(,∞). Then u is called a viscosity solution of (.) if the following
relations are satisfied:

αu(x)≤ 

σ xq + xγ p + Ũ(x,p), ∀(p,q) ∈ J,+u(x),∀x > ,

αu(x)≥ 

σ xq + xγ p + Ũ(x,p), ∀(p,q) ∈ J,–u(x),∀x > ,

where J,+u(x) and J,–u(x) are the second-order superjets and subjets [].

Define the value function u by

u(x) = sup
c∈A

E
[∫ ∞


e–αtU(ctXt)dt

]
, (.)

where the supremum is taken over all systems (�,F ,P, {Ft}; {Bt}, {ct}).
In this section, we study the viscosity solution u of the HJB equation (.). Due to Propo-

sition ., we can show the value function u with the following properties.
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Lemma . We assume (.). Then we have

 ≤ u(x)≤ ζ (x) := x + ζ, x >  (.)

for some constant ζ > , and there exists Cρ >  for any ρ >  such that

∣∣u(x) – u(y)
∣∣ ≤ Cρ |x – y| + ρ( + x + y), x, y > . (.)

Proof Clearly, u is nonnegative. By concavity, there is C̄ >  such that

U(x)≤ α–/(–γ )x + C̄, x≥ .

By (.) and (.), we have

E
[∫ ∞


e–αtU(ctXt)dt

]
≤ E

[∫ ∞


e–αt(α–/(–γ )Xt + C̄

)
dt

]

≤
∫ ∞


e–αt{α(

t/(–γ ) + x
)
+ C̄

}
dt

= x + α

∫ ∞


e–αtt/(–γ ) dt + C̄/α,

which implies (.).
Now, let ρ >  be arbitrary. By (.), there is δ >  such that U(x) ≤ ρ for all x ∈ [, δ].

Furthermore,

∣∣U(x) –U(y)
∣∣ ≤U ′(δ)|x – y|, x, y≥ δ.

Thus, we obtain a constant Cρ > , depending on ρ > , such that

∣∣U(x) –U(y)
∣∣ ≤ Cρ |x – y| + ρ, ∀x, y≥ . (.)

By (.), (.) and (.), we get

∣∣u(x) – u(y)
∣∣ ≤ sup

c∈A
E
[∫ ∞


e–αt∣∣U(ctXt) –U(ctYt)

∣∣dt]

≤ sup
c∈A

E
[∫ ∞


e–αt{Cρ |Xt – Yt| + ρ

}
dt

]

≤ Cρ

∫ ∞


e–αt{Cε|x – y| + ε

(
 + t/(–γ ) + x + y

)}
dt + ρ/α

≤ C
{
CρCε|x – y| + (ε + ρ)( + x + y)

}
, x, y > , (.)

where the constant C >  is independent of ε, ρ > . Replacing ρ by ρ/C and choosing
sufficiently small ε > , we deduce (.). �

Remark . The continuity of u is immediate from (.).

Theorem . We assume (.). Then the value function u is a viscosity solution of (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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Proof According to [], the viscosity property of u follows from the dynamic program-
ming principle for u, that is,

u(x) = sup
c∈A

E
[∫ τ


e–αtU(ctXt)dt + e–ατu(Xτ )

]
, x >  (.)

for any bounded stopping time τ ≥ , where the supremum is taken over all systems
(�,F ,P, {Ft}; {Bt}, {ct}). Let ū(x) be the right-hand side of (.). Let X̃t = Xt+r and B̃t =
Bt+r – Br , when τ = r is non-random. Then we have

dX̃t =
[
X̃γ
t – c̃tX̃t

]
dt + σ X̃t dB̃t , X̃ = Xr

for the shifted process c̃ = {c̃t} of c by r, i.e., c̃t = ct+r . It is easy to see that

eαrE
[∫ ∞

r
e–αtU(ctXt)dt

∣∣∣Fr

]
= E

[∫ ∞


e–αtU(c̃tX̃t)dt

∣∣∣Fr

]
= JXr (c̃) a.s.

with respect to the conditional probability P(·|Fr). We take ζ >  such that xγ ≤ αx + ζ

and sufficiently large ζ >  to obtain

–αζ +


σ xζ ′′ + xγ ζ ′ ≤ –αζ + ζ ≤ .

By (.) in Lemma ., Ito’s formula and Doob’s inequality, we have

E
[
sup

≤t≤T
e–αtJXt (c̃)

]
≤ E

[
sup

≤t≤T
e–αtζ (Xt)

]
≤ ζ (x) +C, T > 

for some constant C > . Hence, approximating τ by a sequence of countably valued stop-
ping times, we see that

E
[
e–ατ JXτ (c̃)

]
= E

[∫ ∞

τ

e–αtU(ctXt)dt
]
.

Thus

Jx(c) = E
[∫ τ


e–αtU(ctXt)dt +

∫ ∞

τ

e–αtU(ctXt)dt
]

≤ E
[∫ τ


e–αtU(ctXt)dt + e–ατu(Xτ )

]
.

Taking the supremum, we deduce u≤ ū.
We shall show the reverse inequality in the case that τ = r is constant. For any ε > , we

consider a sequence {Sj : j = , . . . ,n + } of disjoint subsets of (,∞) such that

diam(Sj) < δ,
n⋃
j=

Sj = (,R) and Sn+ = [R,∞)

for δ,R >  chosen later. We take xj ∈ Sj and c(j) ∈A such that

u(xj) – ε ≤ Jxj
(
c(j)

)
, j = , . . . ,n + . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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By the same argument as (.), we note that

∣∣Jx(c(j)) – Jy
(
c(j)

)∣∣ + ∣∣u(x) – u(y)
∣∣ ≤ Cε|x – y| + ε


( + x + y), x, y > 

for some constant Cε > . We choose  < δ <  such that Cεδ < ε/. Then we have

∣∣Jx(c(j)) – Jy
(
c(j)

)∣∣ + ∣∣u(x) – u(y)
∣∣ ≤ ε( + x), x, y ∈ Sj, j = , , . . . ,n. (.)

Hence, by (.) and (.),

JXr
(
c(j)

)
= JXr

(
c(j)

)
– Jxj

(
c(j)

)
+ Jxj

(
c(j)

)
≥ –ε( +Xr) + u(xj) – ε

≥ –ε( +Xr) + u(Xr) – ε

≥ –ε( +Xr) + u(Xr) if Xr ∈ Sj, j = , . . . ,n. (.)

By definition, we find c ∈A such that

ū(x) – ε ≤ E
[∫ r


e–αtU(ctXt)dt + e–αru(Xr)

]
.

In view of [, Chapter , Theorem .], we can take c, c(j) on the same probability space.
Define

crt = ct{t<r} + c(j)t–r{r≤t} if Xr ∈ Sj, j = , . . . ,n + ,

where {·} denotes the indicator function. Then {crt } belongs toA. Let {Xr
t } be the solution

of

dXr
t =

[(
Xr
t
)γ – crtX

r
t
]
dt + σXr

t dBt , Xr
 = x > .

Clearly, Xr
t = Xt a.s. if t < r. Further, for each j = , . . . ,n + , we have on {Xr ∈ Sj}

Xr
t+r = Xr +

∫ t+r

r

[(
Xr
s
)γ – crsX

r
s
]
ds +

∫ t+r

r
σXr

s dBs

= Xr +
∫ t



[(
Xr
s+r

)γ – c(j)s X
r
s+r

]
ds +

∫ t


σXr

s+r dB̃s a.s.

Hence, Xr
t+r coincides with the solution X(j)

t of (.) for (�̃, F̃ , P̃, {F̃t}; {B̃t}, {c(j)t }) a.s. on
{Xr ∈ Sj} with X(j)

 = Xr . Thus, we get

JXr
(
c̃r

)
= EP̃

[∫ ∞


e–αtU

(
crt+rX

r
t+r

)
dt

∣∣∣F̃r

]

= EP̃
[∫ ∞


e–αtU

(
c(j)t X

(j)
t

)
dt

∣∣∣F̃r

]

= JXr
(
c(j)

)
a.s. on {Xr ∈ Sj}, j = , . . . ,n + , (.)

where EP̃ denotes the expectation with respect to P̃.
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Now, we fix x >  and choose R > , by (.), (.) and (.), such that

sup
c∈A

E
[
u(Xr){Xr≥R}

] ≤ sup
c∈A

E
[
ζ (Xr){Xr≥R}

]

≤ sup
c∈A


R
E
[
X
r + ζXr

]

≤ C

R
(
 + x + x

)
< ε, (.)

where the constant C >  depends only on r, ζ. By (.), (.) and (.), we have

E
[∫ ∞

r
e–αtU

(
crtX

r
t
)
dt

]
= E

[
E
[∫ ∞

r
e–αtU

(
crtX

r
t
)
dt

∣∣∣Fr

]]

= E
[
e–αrJXr

(
c̃r

)]
= E

[ n+∑
j=

e–αrJXr
(
c(j)

)
{Xr∈Sj}

]

≥ E

[ n∑
j=

e–αr{u(Xr) – ε( +Xr)
}
{Xr∈Sj}

]

≥ E
[
e–αr{u(Xr) – u(Xr){Xr≥R}

}]
– εE[ +Xr]

≥ E
[
e–αru(Xr)

]
– ε – εC( + x)

for some constant C >  independent of ε. Thus

u(x) ≥ E
[∫ r


e–αtU

(
crtX

r
t
)
dt +

∫ ∞

r
e–αtU

(
crtX

r
t
)
dt

]

≥ E
[∫ r


e–αtU(ctXt)dt + e–αru(Xr)

]
– ε – εC( + x)

≥ ū(x) – ε – εC( + x).

Letting ε → , we get ū≤ u.
In the general case, by the above argument, we note that

u(Xr) = u(X̃) ≥ E
[∫ s


e–αtU(c̃tX̃t)dt + e–αsu(X̃s)

∣∣∣Fr

]

= E
[∫ s


e–αtU(ct+rXt+r)dt + e–αsu(Xs+r)

∣∣∣Fr

]
a.s. s, r ≥ .

Hence {e–αsu(Xs) +
∫ s
 e

–αtU(ctXt)dt} is a supermartingale. By the optional sampling the-
orem,

u(X) ≥ E
[∫ τ


e–αtU(ctXt)dt + e–ατu(Xτ )

∣∣∣F

]
a.s.

Taking the expectation and then the supremum over A, we conclude that ū ≤ u. Noting
the continuity of u, we obtain (.). �

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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4 Classical solutions
In this section, using the viscosity solutions technique, we show the C-regularity of the
viscosity solution u of (.). For any fixed  < a < b, we consider the boundary value prob-
lem

αw =


σ xw′′ + xγw′ + Ũ

(
x,w′) in (a,b), (.)

with boundary condition

w(a) = u(a), w(b) = u(b), (.)

given by u.

Proposition . Let wi ∈ C[a,b], i = , , be two viscosity solutions of (.), (.). Then,
under (.), we have

w = w.

Proof It is sufficient to show that w ≤ w. Suppose that there exists x ∈ [a,b] such that
w(x) –w(x) > . Clearly, by (.), x �= a,b, and we find x̄ ∈ (a,b) such that

� := sup
x∈[a,b]

{
w(x) –w(x)

}
= w(x̄) –w(x̄) > .

Define

�k(x, y) = w(x) –w(y) –
k

|x – y|

for k > . Then there exists (xk , yk) ∈ [a,b] such that

�k(xk , yk) = sup
(x,y)∈[a,b]

�k(x, y)≥ �k(x̄, x̄) = �, (.)

from which

k

|xk – yk| < w(xk) –w(yk).

Thus

|xk – yk| →  as k → ∞. (.)

Furthermore, by the definition of (xk , yk),

�k(xk , yk) ≥ �k(xk ,xk).

Hence, by uniform continuity

k

|xk – yk| ≤ w(xk) –w(yk) ≤ sup

|x–y|≤ρ

∣∣w(x) –w(y)
∣∣

→  as k → ∞ and then ρ → . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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By (.), (.) and (.), extracting a subsequence, we have

(xk , yk) → (x̃, x̃) ∈ (a,b) as k → ∞. (.)

Now,wemay consider that (xk , yk) ∈ (a,b) for sufficiently large k. Applying Ishii’s lemma
[] to �k(x, y), we obtain X,Y ∈ R such that

(
k(xk – yk),X

) ∈ J̄,+w(xk),(
k(xk – yk),Y

) ∈ J̄,–w(yk), (.)(
X 
 –Y

)
≤ k

(
 –
– 

)
.

By Definition .,

αw(xk) ≤ 

σ xkX + xγ

k μ + Ũ(xk ,μ),

αw(yk) ≥ 

σ ykY + yγ

k μ + Ũ(yk ,μ),

where μ = k(xk – yk). Putting these inequalities together, we get

α
{
w(xk) –w(yk)

} ≤ 

σ (xkX – ykY

)
+

(
xγ

k – yγ

k
)
μ +

{
Ũ(xk ,μ) – Ũ(yk ,μ)

}
≡ I + I + I, say.

By (.) and (.), it is clear that

I =
σ 


(
xkX – ykY

) ≤ σ 


k(xk – yk) →  as k → ∞.

Also, by (.)

I = k
(
xγ

k – yγ

k
)
(xk – yk) ≤ kγ aγ–|xk – yk| →  as k → ∞.

By (.), (.), (.) and (.), we have

I ≤ max
≤c≤

∣∣U(cxk) –U(cyk)
∣∣ + |xk – yk||μ|

≤ Cρ |xk – yk| + ρ + k|xk – yk|

→  as k → ∞ and then ρ → .

Consequently, by (.), we deduce that

α� ≤ α
{
w(x̃) –w(x̃)

} ≤ ,

which is a contradiction. �

Theorem . We assume (.). Then there exists a solution u ∈ C(,∞) of (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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Proof For any  < a < b, we recall the boundary value problem (.), (.). Since

U()≤U ′(x)( – x) +U(x), x > ,

we have

K := sup
<x≤a

xU ′(x) <∞.

Hence, by (.)

∣∣U(cx) –U(cx)
∣∣ ≤ cU ′(ca)|x – x|

≤ K

a
|x – x|, x,x ∈ [a,b], ≤ c ≤ .

Also, by (.)

∣∣Ũ(x, y) – Ũ(x, y)
∣∣ ≤ max

≤c≤

∣∣U(cx) –U(cx)
∣∣ + |xy – xy|

≤ K

a
|x – x| + |x – x||y| + b|y – y|, y, y > .

Thus the nonlinear term of (.) is Lipschitz. By uniform ellipticity, a standard theory of
nonlinear elliptic equations yields that there exists a unique solution w ∈ C(a,b)∩C[a,b]
of (.), (.). For details, we refer to [, Theorem .] and [, Chapter , Theorem .].
Clearly, by Theorem ., u is a viscosity solution of (.), (.). Therefore, by Proposi-
tion ., we have w = u and u is smooth. Since a, b are arbitrary, we obtain the assertion.

�

5 Optimal consumption
In this section, we give a synthesis of the optimal policy c∗ = {c∗t } for the optimization
problem (.) subject to (.). We consider the stochastic differential equation

dX∗
t =

[(
X∗
t
)γ – η

(
X∗
t
)
X∗
t
]
dt + σX∗

t dBt , X∗
 = x > , (.)

where η(x) = I(x,u′(x)) and I(x, y) denotes the maximizer of (.) for x, y > , i.e.,

I(x, y) =

{
(U ′)–(y)/x if U ′(x) ≤ y,
 otherwise.

(.)

Our objective is to prove the following.

Theorem . We assume (.). Then the optimal consumption policy {c∗t } is given by

c∗t = η
(
X∗
t
)
. (.)

To obtain the optimal consumption policy {c∗t }, we should study the properties of the
value function u and the existence of strong solution {X∗

t } of (.). We need the following
lemmas.

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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Lemma . Under (.), the value function u is concave. In addition, we have

u′(x) >  for x > , (.)

u′(+) = ∞. (.)

Proof Let xi > , i = , . For any ε > , there exists c(i) ∈A such that

u(xi) – ε < E
[∫ ∞


e–αtU

(
c(i)t X

(i)
t

)
dt

]
,

where {X(i)
t } is the solution of (.) corresponding to c(i) with X(i)

 = xi. Let  ≤ ξ ≤ , and
we set

c̄t =
ξc()t X()

t + ( – ξ )c()t X()
t

ξX()
t + ( – ξ )X()

t
,

which belongs to A. Define {X̄t} and {X̃t} by

dX̄t =
[
(X̄t)γ – c̄tX̄t

]
dt + σ X̄t dBt , X̄ = ξx + ( – ξ )x,

X̃t = ξX()
t + ( – ξ )X()

t .

By concavity,

X̃t ≤ ξx + ( – ξ )x +
∫ t



[
(X̃s)γ – c̄sX̃s

]
ds +

∫ t


σ X̃s dBs a.s.

By the comparison theorem, we have

X̃t ≤ X̄t for all t ≥  a.s.

Thus, by (.)

u
(
ξx + ( – ξ )x

) ≥ E
[∫ ∞


e–αtU(c̄tX̄t)dt

]
≥ E

[∫ ∞


e–αtU(c̄tX̃t)dt

]

= E
[∫ ∞


e–αtU

(
ξc()t X()

t + ( – ξ )c()t X()
t

)
dt

]

≥ ξE
[∫ ∞


e–αtU

(
c()t X()

t
)
dt

]
+ ( – ξ )E

[∫ ∞


e–αtU

(
c()t X()

t
)
dt

]

≥ ξu(x) + ( – ξ )u(x) – ε.

Therefore, letting ε → , we obtain the concavity of u.
To prove (.), by Theorem ., we recall that u is smooth. Furthermore, we get u′(x)≥ 

for x > . If not, then u′(a) <  for some a > . By concavity,

 ≤ u(x)≤ u′(a)(x – a) + u(a) → –∞ as x→ ∞,

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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which is a contradiction. Suppose that u′(z) =  for some z > . Then, by concavity, we
have u′(x) =  for all x ≥ z. Hence, by (.) and (.),

αu(z) = αu(x) = Ũ(x, ) =U(x), x ≥ z.

This is contrary to (.). Thus, we obtain (.).
Next, by definition, we have

 < E
[∫ ∞


e–αtU(X̌t)dt

]
≤ u(x), x > ,

where {X̌t} is the solution of (.) corresponding to ct = . As in (.), the limit process
χ̌t := limx→+ X̌t is different from . Hence

 < E
[∫ ∞


e–αtU(χ̌t)dt

]
≤ u(+).

Suppose that u′(+) < ∞. By (.) and concavity, we get u(+) = , which is a contradiction.
This implies (.). �

Lemma . Under (.), there exists a unique positive strong solution {X∗
t } of (.).

Proof Let {Nt} be the solution of (.) corresponding to ct = . We can take the Brownian
motion {Bt} on the canonical probability space [, p.]. Since  ≤ η ≤ , the probability
measure P̂ is defined by

dP̂/dP = exp

{
–

∫ t


η(Ns)/σ dBs –




∫ t



(
η(Ns)/σ

) ds}

for every t ≥ . Girsanov’s theorem yields that

B̂t := Bt +
∫ t


η(Ns)/σ ds is a Brownian motion under P̂.

Hence

dNt =
[
(Nt)γ – η(Nt)Nt

]
dt + σNt dB̂t under P̂.

Thus, (.) admits a weak solution.
Now, by (.), we have

η(x)x =min
{(
U ′)– ◦ u′(x),x

}
.

Hence, by (.) and concavity,

d
dx

(
U ′)– ◦ u′(x) =

u′′(x)
U ′′ ◦ (U ′)– ◦ u′(x)

≥ .

Thus, η(x)x is nondecreasing on (,∞). We rewrite (.) as the form of (.) to obtain
X∗
t >  a.s. Then we see that the pathwise uniqueness holds for (.). Therefore, by the

http://www.journalofinequalitiesandapplications.com/content/2014/1/391
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Yamada-Watanabe theorem [], we deduce that (.) admits a unique strong solution
{X∗

t }. �

Proof of Theorem . Since {c∗t } satisfies (.), it belongs toA. By Lemma ., we note that

 < u′(x)x≤ u(x) – u(+) < u(x), x > .

Hence, by (.) and (.),

E
[∫ t



{
e–αsu′(X∗

s
)
X∗
s
} ds] ≤ E

[∫ t



{
e–αsu

(
X∗
s
)} ds]

≤ E
[∫ t


e–αsζ

(
X∗
s
) ds] <∞.

This yields that {∫ t
 e

–αsu′(X∗
s )X∗

s dBs} is a martingale. By (.), (.) and Ito’s formula,

E
[
e–αtu

(
X∗
t
)]

= u(x) + E
[∫ t


e–αs

{
–αu

(
X∗
s
)
+

(
X∗
s
)γu′(X∗

s
)

– c∗s X
∗
s u

′(X∗
s
)
+


σ (X∗

s
)u′′(X∗

s
)}

ds
]

= u(x) – E
[∫ t


e–αsU

(
c∗s X

∗
s
)
ds

]
.

By (.) and (.), it is clear that

E
[
e–αtu

(
X∗
t
)] ≤ E

[
e–αtζ

(
X∗
t
)]

≤ e–αt{( – γ )t + x(–γ )}/(–γ ) + e–αtζ →  as t → ∞.

Letting t → ∞, we deduce

E
[∫ ∞


e–αtU

(
c∗t X

∗
t
)
dt

]
= u(x).

By the same calculation as above, we obtain

E
[∫ ∞


e–αtU(ctXt)dt

]
≤ u(x)

for any c ∈A. The proof is complete. �

Remark . From the proof of Theorem ., it follows that the solution u of theHJB equa-
tion (.) coincides with the value function. This implies that the uniqueness holds for
(.).
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