
Jleli and Samet Journal of Inequalities and Applications #CITATION
#ARTICLE_URL_DISPLAY_TEXT_FOR_STAMPED_PDF

RESEARCH Open Access

A new generalization of the Banach
contraction principle
Mohamed Jleli and Bessem Samet*

*Correspondence:
bsamet@ksu.edu.sa
Department of Mathematics,
College of Science, King Saud
University, P.O. Box 2455, Riyadh,
11451, Saudi Arabia

Abstract
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1 Introduction
The fixed-point theorem, generally known as the Banach contraction principle, appeared
in explicit form in Banach’s thesis in  [], where it was used to establish the exis-
tence of a solution to an integral equation. Since then, because of its simplicity and useful-
ness, it has become a very popular tool in solving existence problems in many branches of
mathematical analysis. This principle states that, if (X,d) is a complete metric space and
T : X → X is a contraction map (i.e., d(Tx,Ty) ≤ λd(x, y) for all x, y ∈ X, where λ ∈ (, ) is
a constant), then T has a unique fixed point.
The Banach contraction principle has been generalized in many ways over the years.

In some generalizations, the contractive nature of the map is weakened; see [–] and
others. In other generalizations, the topology is weakened; see [–] and others. In [],
Nadler extended the Banach fixed-point theorem from single-valued maps to set-valued
contractive maps. Other fixed point results for set-valued maps can be found in [–]
and references therein.
In , Branciari [] introduced the concept of generalized metric spaces, where the

triangle inequality is replaced by the inequality d(x, y) ≤ d(x,u) + d(u, v) + d(v, y) for all
pairwise distinct points x, y,u, v ∈ X. Various fixed point results were established on such
spaces; see [, , –, ] and references therein.
In this paper, we introduce a new type of contractive maps and we establish a new fixed-

point theorem for such maps on the setting of generalized metric spaces.

2 Main results
We denote by � the set of functions θ : (,∞) → (,∞) satisfying the following condi-
tions:

(�) θ is non-decreasing;
(�) for each sequence {tn} ⊂ (,∞), limn→∞ θ (tn) =  if and only if limn→∞ tn = +;
(�) there exist r ∈ (, ) and � ∈ (,∞] such that limt→+

θ (t)–
tr = �.

Before we prove the main results, we recall the following definitions introduced in [].
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Definition . Let X be a non-empty set and d : X ×X → [,∞) be a mapping such that
for all x, y ∈ X and for all distinct points u, v ∈ X, each of them different from x and y, one
has

(i) d(x, y) =  ⇐⇒ x = y;
(ii) d(x, y) = d(y,x);
(iii) d(x, y) ≤ d(x,u) + d(u, v) + d(v, y).

Then (X,d) is called a generalized metric space (or for short g.m.s.).

Definition . Let (X,d) be a g.m.s., {xn} be a sequence in X and x ∈ X. We say that {xn}
is convergent to x if and only if d(xn,x) →  as n→ ∞. We denote this by xn → x.

Definition . Let (X,d) be a g.m.s. and {xn} be a sequence in X. We say that {xn} is
Cauchy if and only if d(xn,xm) →  as n,m → ∞.

Definition . Let (X,d) be a g.m.s. We say that (X,d) is complete if and only if every
Cauchy sequence in X converges to some element in X.

The following result was established in [] (Lemma .).

Lemma. Let (X,d) be a g.m.s., {xn} be aCauchy sequence in (X,d), and x, y ∈ X. Suppose
that there exists a positive integer N such that

(i) xn 	= xm, for all n,m >N ;
(ii) xn and x are distinct points in X , for all n >N ;
(iii) xn and y are distinct points in X , for all n >N ;
(iv) limn→∞ d(xn,x) = limn→∞ d(xn, y).

Then we have x = y.

We observe easily that if one of the conditions (ii) or (iii) is not satisfied, then the result
of Lemma . is still valid.
Now, we are ready to state and prove our main result.

Theorem . Let (X,d) be a complete g.m.s. and T : X → X be a given map. Suppose that
there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx,Ty) 	=  
⇒ θ
(
d(Tx,Ty)

) ≤ [
θ
(
d(x, y)

)]k . ()

Then T has a unique fixed point.

Proof Let x ∈ X be an arbitrary point in X. If for some p ∈ N, we have Tpx = Tp+x, then
Tpx will be a fixed point of T . So, without restriction of the generality, we can suppose
that d(Tnx,Tn+x) >  for all n ∈ N. Now, from (), for all n ∈N, we have

θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
d
(
Tn–x,Tnx

))]k ≤ [
θ
(
d
(
Tn–x,Tn–x

))]k

≤ · · · ≤ [
θ
(
d(x,Tx)

)]kn .
Thus, we have

≤ θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
d(x,Tx)

)]kn , for all n ∈N. ()
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Letting n → ∞ in (), we obtain

θ
(
d
(
Tnx,Tn+x

)) →  as n→ ∞,

which implies from (�) that

lim
n→∞d

(
Tnx,Tn+x

)
= . ()

From condition (�), there exist r ∈ (, ) and � ∈ (,∞] such that

lim
n→∞

θ (d(Tnx,Tn+x)) – 
[d(Tnx,Tn+x)]r

= �.

Suppose that � < ∞. In this case, let B = �/ > . From the definition of the limit, there
exists n ∈ N such that

∣∣∣∣θ (d(T
nx,Tn+x)) – 

[d(Tnx,Tn+x)]r
– �

∣∣∣∣ ≤ B, for all n≥ n.

This implies that

θ (d(Tnx,Tn+x)) – 
[d(Tnx,Tn+x)]r

≥ � – B = B, for all n≥ n.

Then

n
[
d
(
Tnx,Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx,Tn+x

))
– 

]
, for all n≥ n,

where A = /B.
Suppose now that � =∞. Let B >  be an arbitrary positive number. From the definition

of the limit, there exists n ∈ N such that

θ (d(Tnx,Tn+x)) – 
[d(Tnx,Tn+x)]r

≥ B, for all n≥ n.

This implies that

n
[
d
(
Tnx,Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx,Tn+x

))
– 

]
, for all n≥ n,

where A = /B.
Thus, in all cases, there exist A >  and n ∈N such that

n
[
d
(
Tnx,Tn+x

)]r ≤ An
[
θ
(
d
(
Tnx,Tn+x

))
– 

]
, for all n≥ n.

Using (), we obtain

n
[
d
(
Tnx,Tn+x

)]r ≤ An
([

θ
(
d(x,Tx)

)]kn – 
)
, for all n≥ n.
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Letting n → ∞ in the above inequality, we obtain

lim
n→∞n

[
d
(
Tnx,Tn+x

)]r = .

Thus, there exists n ∈N such that

d
(
Tnx,Tn+x

) ≤ 
n/r

, for all n≥ n. ()

Now, we shall prove that T has a periodic point. Suppose that it is not the case, then
Tnx 	= Tmx for every n,m ∈ N such that n 	=m. Using (), we obtain

θ
(
d
(
Tnx,Tn+x

)) ≤ [
θ
(
d
(
Tn–x,Tn+x

))]k ≤ [
θ
(
d
(
Tn–x,Tnx

))]k

≤ · · · ≤ [
θ
(
d
(
x,Tx

))]kn .
Letting n → ∞ in the above inequality and using (�), we obtain

lim
n→∞d

(
Tnx,Tn+x

)
= . ()

Similarly, from condition (�), there exists n ∈N such that

d
(
Tnx,Tn+x

) ≤ 
n/r

, for all n≥ n. ()

Let N =max{n,n}. We consider two cases.
Case . Ifm >  is odd, then writingm = L + , L ≥ , using (), for all n≥N , we obtain

d
(
Tnx,Tn+mx

) ≤ d
(
Tnx,Tn+x

)
+ d

(
Tn+x,Tn+x

)
+ · · · + d

(
Tn+Lx,Tn+L+x

)

≤ 
n/r

+


(n + )/r
+ · · · + 

(n + L)/r

≤
∞∑
i=n


i/r

.

Case . If m >  is even, then writing m = L, L ≥ , using () and (), for all n ≥ N , we
obtain

d
(
Tnx,Tn+mx

) ≤ d
(
Tnx,Tn+x

)
+ d

(
Tn+x,Tn+x

)
+ · · · + d

(
Tn+L–x,Tn+Lx

)

≤ 
n/r

+


(n + )/r
+ · · · + 

(n + L – )/r

≤
∞∑
i=n


i/r

.

Thus, combining all the cases we have

d
(
Tnx,Tn+mx

) ≤
∞∑
i=n


i/r

, for all n≥N ,m ∈N.
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From the convergence of the series
∑

i

i/r (since /r > ), we deduce that {Tnx} is a Cauchy

sequence. Since (X,d) is complete, there is z ∈ X such that Tnx → z. On the other hand,
observe that T is continuous, indeed, if Tx 	= Ty, then we have from ()

ln
[
θ
(
d(Tx,Ty)

)] ≤ k ln
[
θ
(
d(x, y)

)] ≤ ln
[
θ
(
d(x, y)

)]
,

which implies from (�) that

d(Tx,Ty) ≤ d(x, y), for all x, y ∈ X.

From this observation, for all n ∈N, we have

d
(
Tn+x,Tz

) ≤ d
(
Tnx, z

)
.

Letting n → ∞ in the above inequality, we get Tn+x → Tz. From Lemma ., we obtain
z = Tz, which is a contradiction with the assumption: T does not have a periodic point.
Thus T has a periodic point, say z, of period q. Suppose that the set of fixed points of T is
empty. Then we have

q >  and d(z,Tz) > .

Using (), we obtain

θ
(
d(z,Tz)

)
= θ

(
d
(
Tnz,Tn+z

)) ≤ [
θ
(
d(z,Tz)

)]kn < θ
(
d(z,Tz)

)
,

which is a contradiction. Thus, the set of fixed points of T is non-empty, that is, T has
at least one fixed point. Now, suppose that z,u ∈ X are two fixed points of T such that
d(z,u) = d(Tz,Tu) > . Using (), we obtain

θ
(
d(z,u)

)
= θ

(
d(Tz,Tu)

) ≤ [
θ
(
d(z,u)

)]k < θ
(
d(z,u)

)
,

which is a contradiction. Then we have one and only one fixed point. �

Since ametric space is a g.m.s., fromTheorem ., we deduce immediately the following
result.

Corollary . Let (X,d) be a complete metric space and T : X → X be a given map. Sup-
pose that there exist θ ∈ � and k ∈ (, ) such that

x, y ∈ X, d(Tx,Ty) 	=  
⇒ θ
(
d(Tx,Ty)

) ≤ [
θ
(
d(x, y)

)]k .
Then T has a unique fixed point.

Observe that the Banach contraction principle follows immediately from Corollary ..
Indeed, if T is a Banach contraction, i.e., there exists λ ∈ (, ) such that

d(Tx,Ty) ≤ λd(x, y), for all x, y ∈ X,
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then we have

ed(Tx,Ty) ≤ [
ed(x,y)

]k , for all x, y ∈ X.

Clearly the function θ : (,∞) → (,∞) defined by θ (t) := e
√
t belongs to �. So, the exis-

tence and uniqueness of the fixed point follows from Corollary .. In the following ex-
ample (inspired by []), we show that Corollary . is a real generalization of the Banach
contraction principle.

Example Let X be the set defined by

X := {τn : n ∈N},

where

τn :=
n(n + )


, for all n ∈N.

We endow X with the metric d given by d(x, y) := |x– y| for all x, y ∈ X. It is not difficult to
show that (X,d) is a complete metric space. Let T : X → X be the map defined by

Tτ = τ, Tτn = τn–, for all n ≥ .

Clearly, the Banach contraction is not satisfied. In fact, we can check easily that

lim
n→∞

d(Tτn,Tτ)
d(τn, τ)

= .

Now, consider the function θ : (,∞)→ (,∞) defined by

θ (t) := e
√
tet .

It is not difficult to show that θ ∈ �. We shall prove that T satisfies the condition (), that
is,

d(Tτn,Tτm) 	=  
⇒ e
√

d(Tτn ,Tτm)ed(Tτn ,Tτm) ≤ ek
√

d(τn ,τm)ed(τn ,τm) ,

for some k ∈ (, ). The above condition is equivalent to

d(Tτn,Tτm) 	=  
⇒ d(Tτn,Tτm)ed(Tτn ,Tτm) ≤ kd(τn, τm)ed(τn ,τm).

So, we have to check that

d(Tτn,Tτm) 	=  
⇒ d(Tτn,Tτm)ed(Tτn ,Tτm)–d(τn ,τm)

d(τn, τm)
≤ k, ()

for some k ∈ (, ). We consider two cases.
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Case . n =  and m > . In this case, we have

d(Tτ,Tτm)ed(Tτ,Tτm)–d(τ,τm)

d(τ, τm)

=
m –m – 
m +m – 

e–m

≤ e–.

Case .m > n > . In this case, we have

d(Tτm,Tτn)ed(Tτm ,Tτn)–d(τm ,τn)

d(τm, τn)

=
m + n – 
m + n + 

en–m

≤ e–.

Thus, the inequality () is satisfied with k = e–/. Theorem . (or Corollary .) implies
that T has a unique fixed point. In this example τ is the unique fixed point of T .

Note that � contains a large class of functions. For example, for

θ (t) :=  –

π
arctan

(

tα

)
,  < α < , t > ,

we obtain from Theorem . the following result.

Corollary . Let (X,d) be a complete g.m.s. and T : X → X be a given map. Suppose that
there exist α,k ∈ (, ) such that

–

π
arctan

(


[d(Tx,Ty)]α

)
≤

[
–


π
arctan

(


[d(x, y)]α

)]k

, for all x, y ∈ X,Tx 	= Ty.

Then T has a unique fixed point.
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