Yan et al. Journal of Inequalities and Applications 2014, 2014:37 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2014/1/37 a SpringerOpen Journal

RESEARCH Open Access

Fixed-point theorems for nonlinear operators
with singular perturbations and applications

Baogiang Yan', Donal O'Regan?? and Ravi P Agarwal***

“Correspondence:
Agarwal@tamuk.edu Abstract
3Department of Mathematics, . . N . . .
Faculty of Science, King Abdulaziz In this paper, using fixed-point index theory and approximation techniques, we
University, Jeddah, Saudi Arabia consider the existence and multiplicity of fixed points of some nonlinear operators
*Department of Mathematics, Texas with singular perturbation. As an application we consider the existence and
A&M University-Kingsville, Kingsville, L . . . . .
Texas 78363, USA multiplicity of positive solutions of singular systems of multi-point boundary value
Full list of author information is problems, which improve the results in the literature.
available at the end of the article
Keywords: boundary value problems; singularity; fixed-point index

1 Introduction

In this paper we consider the problem
x =Ax + ABx,

where A is continuous and compact and B is a singular continuous and compact operator
(defined in Section 2).

In the study of nonlinear phenomena many models give rise to singular boundary value
problems (singular in the dependent variable) (see [1-3]). In [4], Taliaferro showed that
the singular boundary value problem

Y +q(t)y*=0, 0<t<l,
¥(0) =0 =y(1),

has a C[0,1] N C*(0,1) solution; here a > 0, g € C(0,1) with g > 0 on (0,1) and fol t1 -
t)q(t) dt < oo. For more recent work we refer the reader to [5-14] and the references
therein.

In this paper we consider abstract singular operators (defined in Section 2) and we con-
sider the existence and multiplicity of fixed points of some nonlinear operators with sin-
gular perturbations. As an application we discuss the existence and multiplicity of positive

solutions of singular systems of multi-point boundary value problems.

2 Fixed-point theorems
Let E be a Banach space, P a cone of E, Q2 C E bounded and open. The following theorems
are needed in our paper.
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Theorem 2.1 ([8]) Supposed € Q, A:PNQ — P is continuous and compact and
AxZux, VxePNo,u=>1.
Then
i(A,PNQ,P) =1
Theorem 2.2 ([8]) Assume that A:P N Q — P is continuous and compact. If there exists
a compact and continuous operator K : PN 32 — P such that
(1) infrepraq [|Kx|| > 0;
(2) x—Ax#AKx,Vx € PNIR, A >0,
then
i(A,PNQ,P)=0.
Now we give a new definition.

Definition 2.1 If B: P — {#} — P is continuous with

lim |Bx|| = +o0
x—0,xe(P-{6})

and B({x € P|r < ||x|| < R}) is relatively compact, forany 0 < r < R < +00,then B: P— {0} —
P is called a singular continuous and compact operator.

Remark Consider

X'(t)+alt)x"()=0, te(0,1),

x(O) = 0, x(l) = Ol
where 1>y >0 and a(t) € C((0,1), (0, +00)) N L1(0,1) or equivalently
1
x(t) :/ G(t,s)a(s)x 7 (s)ds, te]0,1],
0

where

G(t,s) =

s1-¢), 0<s<t<l,
tl-s), 0<t<s<l.

Set
P:={x e C[0,1] :x(t) > t(1 - t)l|x]l},

where ||x|| = max;e[oq) [%(£)|. For x € P — {6}, let

1
(Bx)(¢) ::/ G(t,s)a(s)x7" (s)ds, te][0,1].
0
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It is easy to see that B: P — {#} — P is a singular continuous and compact operator (see
[7,14]).

Theorem 2.3 Suppose that 6 € Q, A: PN Q — P is continuous and compact and B : P —

{6} — P is singular continuous and compact. Assume that
Ax# ux, VYxePNo,u>1. (2.1)
Then there exists a A, > 0 such that, for any A € (0, A,), there exist x; € PN Q — {6} with
X3 = Ax; + ABx;y.

Proof Choose xy € P — {6}, and define
1
B,x = B(x + —xo), VxeP,neN.
n

Set

= inf x —Ax|.
4 (%) €[1,+00) x PN e I

Now we claim that

y > 0. (2.2)
If y = 0, there exists {(i,,x,)} C [1, +00) x PN d2 such that

lim ||, — A%yl = O. (2.3)
n—+0Q

First, we show {u,} is bounded.

To see this suppose {1,,} is unbounded. Without loss of generality, we assume that

lim,,_, ;00 ty = +00. Then
0 < lltnxn — Axull = |l l%ull = IA%A |l =y inf _lx]| = [Ax, || — +00,
xePNIQ

and this is a contradiction.
Next, we show that there exists a (110,%0) € [1, +00) x PN 9 such that

ll teoxo — Axo|l = 0.

The boundedness of {11,,} means that {y,} has a convergent subsequence. Without loss
of generality, we assume that u, — po > 1. Since {x,} is bounded and A is continuous
and compact, {Ax,} has a convergent subsequence {Ax,,} with lim,,_, .o Ax,; = 0. From
(2.3), we have

im || ppn; — Axy, || =0,
nj—>+00
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which implies that
,U,,,,,x,,i d Y0, n; — +0Q.

Then

1
KX, —> ’u—yo, as n; — +00.
0

Let xg = %yo. Clearly, xo € PN 92 and
%o — Axoll = Tim_lpt, %, — Al = 0,
nj—+00

which contradicts (2.1).
Let

IBn: sup ”an”
xePNI2

Now we claim that

sup B, < +00. (2.4)

neN

To see this suppose that

sup B, = +00.
neN

Without loss of generality, assume that
lim B, = +oo,

n—+00

which implies that there exists a sequence {x,} € PN 32 such that
. . 1
lim ||B,x,|| = lim |B|x,+ —xo ) || = +00. (2.5)
n—+00 n—>+00 n
For allx € PN 92, we have

< lxll + llxoll = sup |lxll + [lxoll := R < +00.
xePNQ

1
X+ —Xq
n

Since, for any r > 0, B: PN {x: r < ||x|| < R} is relatively compact, (2.5) guarantees that
there exists a subsequence {x,,} C {x,} such that

. 1
lim |x,, + —xo| = 0.
nj— +00 n;
Thus
lim_ x| =0,
nj—+00

which implies that 6 € P N 9<2. This contradicts 6 € Q2. Hence, (2.4) holds.


http://www.journalofinequalitiesandapplications.com/content/2014/1/37

Yan et al. Journal of Inequalities and Applications 2014, 2014:37
http://www.journalofinequalitiesandapplications.com/content/2014/1/37
Set
B :=sup B, < +00
neN
and
Ay i= L4 > 0.
B
ForO<A<A,x€ePNO, u>1,wehave
lAx + AByx — px| = |Ax — puxl| — A||Bux|| =y — BA > 0.
Theorem 2.1 guarantees that
i(A+AB,,PNQ,P)=1. (2.6)
Note (2.6) guarantees that, for any A € (0, 1), there exists a {x,} € PN Q such that
X, = Ax, + AB,x,, neN. (2.7)
Now we show that
inf |lx,|| >0, (2.8)
neN

which implies that

inf > 0.
neN

1
Xy + —Xo
n

To see this suppose that
inf ||x,|| = 0.
inf x|

Then there exists a {x,,} such that

lim x| =0, (2.9)
nj— +00
and so
lim |x,, + —xo| = 0.
nj—+00 n;

Thus

lim ||B,x,| = lim
nj— +00 nj— +00

1
B\ %y, + —x0 | || = +o0. (2.10)
nj

Page 5of 13
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The compactness of A guarantees that {Ax,,} has a convergent subsequence. Without loss
of generality, we assume that lim,,,_, ,oc A%, = yo. From (2.10), we have

lim |, |l = Him [|Ax,, + AB,x,, ]l > lim A|B,x,]l — lim [JAx,,|| = +oo,
nj—+00 ni—+00 ni—>+00 nj—+00

which contradicts (2.9).

Now (2.8) guarantees that

0 < inf
neN

< < sup [lx[l + [[xoll < +00, meN.

xePNQ2

1
Xy + —Xo
n

1
Xy + —Xo
n

Then {Ax, + AB,x,} has a convergent subsequence. Without loss of generality, we assume
that

Axy + AByx, — Y1, asu— +00.
Then
Xy — Y1, asm— +00.
Now (2.8) guarantees that y; # 6. Letting n — +00 in (2.7), and we have
y1 = Ay; + ABy, (2.11)

and y; € PN Q2 — {0}. The proof is complete. d

Corollary 2.1 Suppose that 6 € Q, A: PN Q — P is continuous and compact and B :
P — {0} — P is singular continuous and compact. Assume that

lAx|| < ||lxll, VYxePNoK (2.12)
or
Ax#*x, VxePNoQ. (2.13)
Then there exists a A, > 0 such that, for any ) € (0, 1,.), there exist x; € PN Q with
X, = Ax; + ABx;.
It is easy to see that (2.12) or (2.13) guarantees that (2.1) holds (see [8]).

Theorem 2.4 Suppose that Q, Q2 are bounded open sets and 0 € Q1 C Qy, A,K: PN
Qy — P are continuous and compact and B : P — {0} — P is singular continuous and com-
pact. Assume that

(C) Ax A ux,Vxe PNoQy, u>1;
(Cy) infrepnyn, IKx| > 0;
(C3) x—Ax # uKx,Vx € PN 93, u > 0.
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Then there exists a L, > 0 such that, for any A € (0, A,.), there exist x;; € (PN Q2 —{0}) and
X2 € PN (Qz - §1) with

Xp1 = AX)\J + ABxA,l, Xr2 = Axm + )\Bx)hz.

Proof Choose xg € P— {6}, and define

1
B,,x:B(x+ —xo), VxeP,neN.
n

Set
= inf x —Ax
n (%) €[1,+00) x PNI2 ”M ”
and
= inf x —Ax — uKx||.
2 (%) €[0,+00) x PN ” u ”
We claim that
n >0, ¥ > 0. (2.14)

An argument similar to that in (2.2) shows that

v > 0. (2.15)
Now we show that

v2>0. (2.16)

To see this suppose that y» = 0. Then there exists {(i,, %)} € [0, +00) X (PN 3€2;) such
that

lim |x, —Ax, — w,Kx| = 0. (2.17)

n—+00

Now since
”xn _Axn - Mnl(x” = Mn lnf ”I(x” - ”xn _Axn”;
x€0N2

we have {u,} is bounded, which means that {1¢,,} has a convergent subsequence. Without
loss of generality, we assume that

lim p, = po.

Since {x,} is bounded and A and K are compact, {Ax,} and {Kx,} have convergent subse-

quences {Ax,,} and {Kx,,} with lim,,_, ,oc Ax,; = yo and lim,,_, ;o Kx,,, = zo. Now

lim |x, - Ax, — u,Kx,|| =0,

n—+00
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which implies that

lim |lx,, —yo0 — rozoll = 0.
nj—+00
Let x = yo + fL020- Clearly, xg € PN 92,. Now
lto — Ao — proKoll = im_ [y, — Ay, = K[| = 0,
nj—>+00
which contradicts condition (C3).
Consequently, (2.16) is true, which together with (2.15) yields (2.14).

Let y = min{y1, y»}. Obviously, y > 0.
Let

Bui= sup |[Bux|, Bu2= sup |[Bux|.
xePNASY x€PNI

An argument similar to that in (2.4) shows that

sup B,1 < +09, sup B, < +00.
neN neN

Let

B = max{sup Bu1,sup ﬂn,l} <400

neN neN

and

Ay = L4 > 0.

B
For0 <A <Ay, x€ PNOQ, > 1, we have

A% + AB,x — px|| = |Ax — px|| — Al Bux|| = y — A >0,
which guarantees that

i(A+AB,,PNQ,P)=1, neN,
and for x € PN 92,, u > 0, we have

|« = (Ax + AB,x) — uKx| = l|lx — Ax — uKxl| = A|Buxl| = ¥ — A > 0,
which guarantees that

i(A+X1B,,PNQ,,P)=0.
Thus

i(A+AB,, PN (- ),P) = -1

(2.18)

(2.19)

Page 8 of 13
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Now (2.18) and (2.19) guarantee that there exist {x,1} € PN Q2 and {x,2} € PN (2 — 1)
such that

Xp1 = Axpy + ABux,1, Xpo = AXyo + AByxyo, A€ (0,A,),nmeN.

An argument similar to that in (2.11) shows that there exist y; € PN Q; — {0} and y; €
PN (Qz - §1) with

N :Ayl + )\.Byl, Y2 = Ayz + )\.Byz, AE (0, )\.*).

The proof is complete. d

Corollary 2.2 Suppose that 2, 2, are bounded open sets and 0 € Q; C Q, A: PN Q, —
P is continuous and compact and B : P — {0} — P is singular continuous and compact.

Assume that

(C4)
|Ax| < [lx]l, VYxePNay
or

AxFx, VxePNoQy;

|Ax|| > |lxll, VxePNo,
or uy € P — {0} such that

x—Ax # g, Vxe€PNIQy,u>0
or

Ax £ x, VxePNoQ,.

Then there exists a Ay > 0 such that, for any i € (0, L,), there exist x;; € PN Q; — {0} and
X2 € PN (Qz - 51) with

xu = Axu + )»Bxu
and
Xp2 = Axm + )\Bx,\,z.

It is easy to see that (C4) and (Cs) guarantee that (C;)-(Cs) hold (see [8]).
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3 Applications for singular systems of multi-point boundary value problems
In [9], Henderson and Luca considered the system of nonlinear second-order ordinary

differential equations

u’(t) +f(t,v(t)=0, te(0,T), 3.1)

V'(t) +g(t,u(t)) =0, te(0,7) '
with multi-point boundary conditions

w0)=0,  u(T)=37"bul&), m=3, 52)

W0)=0,  wT)=X ewln), n=3. '

The following conditions come from [9]:

Hl) 0<é& <+ <&u0<T,0<m<-<npya<T, b;>0,i=12,....m—-2,¢; >0,
i=1,2,...,n-2,d=T-Y"’b&>0,e=T-Y"cm >0, Yr’b& >0,
Y emi>0,

(H2) we have the functions f,g € C([0, T] x [0, +00), [0, +00)) and f(¢,0) = 0, g(t,0) = 0
forall £ € [0, T,

(H3) there exists a positive constant p € (0,1] such that

(1) fL, = lim,_, o infinfrepo 7 742 € (0, +00];

2) ¢' =lim, ., infinf gl _ oo,
( goo U—>+00 te[0,T] T
p

u
(H4) there exists a r € (0, +00) such that
(1) fio = 1limy ;00 SUP SUP, (0,7 % € (0, +o0];
gtu)

(2) g, =1lim,_, o sup SUPeio,r =1 =0,
ur

(H5) (1) fi = limy o, infinfiepo 7 T2 € (0, +00];

u

(2) gb =1lim,_ o, infinficpo 7 g(tT‘”) = +00,

(H6) for each t € [0, T], f(t,u) and g(t, u) are nondecreasing with respect to u, and there
exists a constant N > 0 such that

T
f<t,mo/(; g(s,N)ds) < mﬁ’ VYt e [0,T],

0

2
where mg = T

+ max{a, T, a} and a4, a; are defined in [9].

Theorem 3.1 ([9]) Assume that (H1)-(H2) and (H4)-(H5) hold. Then Problem (3.1), (3.2)
has at least one positive solution (u(t), v(¢)), t € [0, T].

Theorem 3.2 ([9]) Assume that (H1)-(H3) and (H5)-(H6) hold. Then Problem (3.1), (3.2)
has at least two positive solutions (u1(t), v1(¢)), (ua(t), v2(2)), t € [0, T.

Here we consider

u'(t)+f(t,v(E) +Au” =0, te(0,T),

(3.3)
V'(£) +g(t,u(t) =0, te(0,T)

with multi-point boundary conditions (3.2), where 1> y > 0.


http://www.journalofinequalitiesandapplications.com/content/2014/1/37

Yan et al. Journal of Inequalities and Applications 2014, 2014:37 Page 11 0f 13
http://www.journalofinequalitiesandapplications.com/content/2014/1/37

Let C[0,T] := {x:[0, T] — R:x(¢) is continuous on [0, T} with norm
[lx]l = max |x(t)|.
te[0,T]
Obviously, C[0, T] is a Banach space. Let

P:= {x € C[0,T]:x(t) > 0is concave and inf x(¢) > y x| },
tel6o,T]

where 6y and y are defined in Section 2 in [9].

For u € P, define an operator

T T
(Au)(¢) :/0 Gl(t,s)f(s,/o Gz(s,r)g(t,u(r)) dr) ds, tel0,T]

and for u € P — {0}, define an operator
T
G- [ G 6ds, telo,T,
0

where Gi(¢,s) and G, (¢, s) are defined in [9].
It is easy to see that B: P — {#} — P is a singular continuous and compact operator (see
(9, 11]).

Theorem 3.3 Assume that (H1)-(H2) and (H4) hold. Then there exists a \* > 0 such that
Problem (3.3), (3.2) has at least one positive solution (u(t), v(¢)), t € [0, T] for all 1 € (0, 1*).

Proof Let B be defined as that in Theorem 3.2 of [9]. From the proof in [9], it is easy to
see that

IAx]| < %, ¥xe PN aBg.

Now Corollary 2.1 guarantees that there exists a A* > 0 such that, for any A € (0,1%),
there exist u € (P N By — {6}) such that

u=Au+ ABu.

Let
T
v(t) = / Ga(t,8)g(s, u(s))ds, tel0,T).
0

Then (u(t), v(¢)) is a positive solution for (3.3), (3.2). The proof is complete. O

Theorem 3.4 Assume that (H1)-(H3) and (H6) hold. Then Problem (3.3), (3.2) has at least
two positive solutions (u1(t), v1(£)), (u2(t), v2(2)), t € [0, T1].

Proof Let By and By be defined as in Theorem 3.3 of [9]. From the proof in [9], it is easy
to see that

|Ax|| < [lx|l, Vx€ PN 3By,

x#Ax + Aug, Vxe€PNoBy,A>0,L>N.
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Now Corollary 2.2 guarantees that there exists a A* > 0, for any A € (0,1*), such that
there exist u; € (PN By — {#}) and u, € PN (B — By) with

uy = Auq + ABuy
and
Uy = Auy + MBus.

Let

T
n)= [ Galtlglom0)ds eefo,7]
0

and

T
vo(t) = / Gs(t, s)g(s, uz(s)) ds, tel0,T].
0

Then (u1(£), v1(¢)) and (uy(t), v2(£)) are two positive solutions for (3.3), (3.2). The proof is
complete. d

Remark Note thatf and g have no singularityat# = 0 and v = 0in [9, 10], so Theorems 3.3
and 3.4 improve the results in [9, 10].
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