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Abstract
By using the new parametric resolvent operator technique associated with
(A,η,m)-monotone operators, the purpose of this paper is to analyze and establish an
existence theorem for a new class of generalized nonlinear parametric
(A,η,m)-proximal operator system of equations with non-monotone multi-valued
operators in Hilbert spaces. The results presented in this paper generalize the
sensitivity analysis results of recent work on strongly monotone quasi-variational
inclusions, nonlinear implicit quasi-variational inclusions, and nonlinear mixed
quasi-variational inclusion systems in Hilbert spaces.
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1 Introduction
Recently, since the study of the sensitivity (analysis) of solutions for variational inclusion
(operator equation) problems involving strongly monotone and relaxed cocoercive map-
pings under suitable second order and regularity assumptions is an increasing interest,
there are many motivated researchers basing their work on the generalized resolvent op-
erator (equation) techniques, which is used to develop powerful and efficient numerical
techniques for solving (mixed) variational inequalities, related optimization, control the-
ory, operations research, transportation network modeling, and mathematical program-
ming problems. It is well known that the project technique and the resolvent operator
technique can be used to establish an equivalence between (mixed) variational inequali-
ties, variational inclusions, and resolvent equations. See, for example, [–] and the ref-
erences therein.
In this paper, we consider the following system of (A,η,m)-proximal operator equations:

For each fixed (ω,λ) ∈ � × �, find (z, t), (x, y) ∈H ×H such that u ∈ S(x,ω) and

⎧⎨
⎩
E(x, y,ω) + ρ–RM(·,x,ω)

ρ,A
(z) = ,

F(u, y,λ) + �–RN(·,y,λ)
�,A

(t) = ,
(.)
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where� and� are two nonempty open subsets of real Hilbert spacesH andH, in which
the parameter ω and λ take values, respectively, S :H × � → H is a set-valued opera-
tor, E :H ×H × � → H, F :H ×H × � → H, f :H × � → H, g :H × � → H,
η : H × H × � → H, and η : H × H × � → H are nonlinear single-valued op-
erators, A : H → H, A : H → H, M : H × H × � → H and N : H × H ×
� → H are any nonlinear operators such that for all (z,�) ∈ H × �, M(·, z,ω) :
H → H is an (A,η,m)-monotone operator with f (H,ω) ∩ dom(M(·, z,ω)) �= ∅ and
for all (t,λ) ∈ H × �, N(·, t,λ) : H → H is an (A,η,m)-monotone operator with
g(H,λ)∩ dom(N(·, t,λ)) �= ∅, respectively, RM(·,x,ω)

ρ,A
= I –A(JM(·,x,ω)

ρ,A
), I is the identity oper-

ator, RN(·,y,λ)
�,A

= I–A(J
N(·,y,λ)
�,A

),A(JM(·,x,ω)
ρ,A

(z)) = A(JM(·,x,ω)
ρ,A

)(z),A(J
N(·,y,λ)
�,A

(t)) = A(J
N(·,y,λ)
�,A

)(t),
JM(·,x,ω)
ρ,A

= (A +ρM(·,x,ω))– and JN(·,y,λ)
�,A

= (A +�N(·, y,λ))– for all x, z ∈H, y, t ∈H, and
(ω,λ) ∈ � × �.
For appropriate and suitable choices of S, E, F , M, N , f , g , Ai, ηi, and Hi for i = , ,

one sees that problem (.) is a generalized version of some problems, which includes a
number (systems) of (parametric) quasi-variational inclusions, (parametric) generalized
quasi-variational inclusions, (parametric) quasi-variational inequalities, (parametric) im-
plicit quasi-variational inequalities studied by many authors as special cases; see, [, , ,
, , –, –, , , –] and the references therein.

Example . If S :H × � → H is a single-valued operator, then for each fixed (ω,λ) ∈
� × �, problem (.) reduces to the following problem of finding (x, y), (z, t) ∈ H × H

such that:
⎧⎨
⎩
E(x, y,ω) + ρ–RM(·,x,ω)

ρ,A
(z) = ,

F(S(x,ω), y,λ) + �–RN(·,y,λ)
�,A

(t) = .
(.)

Example . If H = H = H, A = A = A, S = I , E = F , M = N , x = y and ω = λ, then
problem (.) reduces to finding x, z ∈H such that

E(x,x,ω) + ρ–RM(·,x,ω)
ρ,A (z) = . (.)

Problem (.) is equivalent to the following nonlinear equation:

x = JM(·,x,ω)
ρ,A (z), z = A(x) – ρE(x,x,ω),

which can be rewritten as the following generalized strongly monotone mixed quasi-
variational inclusion:

 ∈ E(x,x,ω) +M(x,x,ω),

and studied by Verma [, ] whenM is A-monotone and (A,η)-monotone with respect
to first variable.

Example . ([]) Let H be a real Hilbert space and M : dom(M) ⊂ H → H be an op-
erator on H such that M is monotone and R(I +M) =H. Then based on the Yosida ap-
proximationMρ = 

ρ
(I – (I + ρM)–), for each given u ∈ dom(M), there exists exactly one
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continuous function u : [, )→H such that the following first-order evolution equation:
⎧⎨
⎩
u′(t) +Mu(t) = ,  < t < ∞,

u() = u,

where the derivative u′(t) exists in the sense of weak convergence, that is,

u(t + h) – u(t)
h

⇀ u′(t) as h→ 

holds for all t ∈ (,∞).

On the other hand, Lan [] introduced a new concept of (A,η)-monotone operators,
which generalizes the (H ,η)-monotonicity and A-monotonicity in Hilbert spaces and
other existing monotone operators as special cases, and studied some properties of (A,η)-
monotone operators and applied resolvent operators associated with (A,η)-monotone op-
erators to approximate the solutions of a new class of nonlinear (A,η)-monotone operator
inclusion problemswith relaxed cocoercive operators in Hilbert spaces. Lan et al. [] and
Verma [] introduced and studied a new class of parametric generalized relaxed coco-
ercive implicit quasi-variational inclusions with A-monotone operators, respectively. By
using the parametric implicit resolvent operator technique for A-monotone, we analyzed
solution sensitivity for this kind of generalized relaxed cocoercive inclusions in Hilbert
spaces. In [, ], based on the (A,η)-resolvent operator technique, Verma and Lan intro-
duced and investigated a sensitivity analysis for a class of generalized strongly monotone
variational inclusions in Hilbert spaces, respectively. Furthermore, using the concept and
technique of resolvent operators, Agarwal et al. [] and Jeong [] introduced and studied
a new system of parametric generalized nonlinear mixed quasi-variational inclusions in a
Hilbert space and in Lp (p≥ ) spaces, respectively.
In this paper, we shall generalize the resolvent equations by introducing (A,η,m)-

proximal operator equations in Hilbert spaces and establish a relationship between a class
of parametric (A,η,m)-monotone variational inclusion systems and a class of generalized
nonlinear parametric (A,η,m)-proximal operator system of equations. Further, we study
sensitivity analysis of the solution set for the system (.) of (A,η,m)-proximal operator
equations with non-monotone set-valued operators in Hilbert spaces.
Our results improve and generalize the results on the sensitivity analysis for generalized

nonlinear mixed quasi-variational inclusions [, , , , –] and others. For more
details, we recommend [, , , , , , , , , , ].

2 Preliminaries
In the sequel, let � be a nonempty open subset of a real Hilbert space H in which the
parameter λ take values.

Definition . An operator T :H×H× � →H is said to be
(i) m-relaxed monotone in the first argument if there exists a positive constant m such

that

〈
T(x,u,λ) – T(y,u,λ),x – y

〉 ≥ –m‖x – y‖

for all (x, y,u,λ) ∈H×H×H× �;

http://www.journalofinequalitiesandapplications.com/content/2014/1/362
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(ii) s-cocoercive in the first argument if there exists a constant s >  such that

〈
T(x,u,λ) – T(y,u,λ),x – y

〉 ≥ s
∥∥T(x,u,λ) – T(y,u,λ)

∥∥

for all (x, y,u,λ) ∈H×H×H× �;
(iii) γ -relaxed cocoercive with respect to A in the first argument if there exists a

positive constant γ such that

〈
T(x,u,λ) – T(y,u,λ),A(x) –A(y)

〉 ≥ –γ
∥∥T(x,u,λ) – T(y,u,λ)

∥∥

for all (x, y,u,λ) ∈H×H×H× �;
(iv) (ε,α)-relaxed cocoercive with respect to A in the first argument if there exist

positive constants ε and α such that

〈
T(x,u,λ) – T(y,u,λ),A(x) –A(y)

〉 ≥ –α
∥∥T(x,u,λ) – T(y,u,λ)

∥∥ + ε‖x – y‖

for all (x, y,u,λ) ∈H×H×H× �.
In a similar way, we can define (relaxed) cocoercivity of the operator T(·, ·, ·) in the sec-

ond argument.

Definition . An operator T :H×H× � →H is said to be μ-Lipschitz continuous in
the first argument if there exists a constant μ >  such that

∥∥T(x,u,λ) – T(y,u,λ)
∥∥ ≤ μ‖x – y‖, ∀(x, y,u,λ) ∈H×H×H× �.

In a similar way, we can define Lipschitz continuity of the operator T(·, ·, ·) in the second
and third argument.

Definition . Let F : H × � → H be a multi-valued operator. Then F is said to be
τ -Ĥ-Lipschitz continuous in the first argument if there exists a constant τ >  such
that

Ĥ
(
F(x,λ),F(y,λ)

) ≤ τ‖x – y‖, ∀x, y ∈ H,λ ∈ �,

where Ĥ : H × H → (–∞, +∞)∪ {+∞} is the Hausdorff metric, i.e.,

Ĥ(A,B) =max
{
sup
x∈A

inf
y∈B‖x – y‖, sup

x∈B
inf
y∈A

‖x – y‖
}
, ∀A,B ∈ H.

In a similar way, we can define Ĥ-Lipschitz continuity of the operator F(·, ·) in the second
argument.

Lemma . ([]) Let (X ,d) be a complete metric space and T,T : X → CB(X ) be two
set-valued contractive operators with same contractive constant t ∈ (, ), i.e.,

Ĥ
(
Ti(x),Ti(y)

) ≤ td(x, y), ∀x, y ∈X , i = , .

http://www.journalofinequalitiesandapplications.com/content/2014/1/362
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Then

Ĥ
(
F(T),F(T)

) ≤ 
 – t

sup
x∈X

Ĥ
(
T(x),T(x)

)
,

where F(T) and F(T) are fixed point sets of T and T, respectively.

Definition . Let A : H → H, η : H × H → H be two single-valued operators. Then
a multi-valued operator M : H → H is called (A,η,m)-monotone (so-called (A,η)-
monotonicity [, ], (A,η)-maximal relaxed monotonicity []) if

(i) M is m-relaxed η-monotone,
(ii) (A + ρM)(H) =H for every ρ > .

Remark . For appropriate and suitable choices of m,A,η, and H, it is easy to see that
Definition . includes a number of definitions of monotone operators and monotone
mappings (see [, , , ]).

Proposition . ([]) Let A :H → H be a r-strongly η-monotone operator,M :H → H

be an (A,η)-monotone operator. Then the operator (A + ρM)– is single-valued.

Definition . Let A :H →H be a strictly η-monotone operator andM :H → H be an
(A,η,m)-monotone operator. The resolvent operator Jρ,Aη,M :H →H is defined by

Jρ,Aη,M(u) = (A + ρM)–(u), ∀u ∈H.

Proposition . ([]) LetH be a q-uniformly smooth Banach space and η :H×H →H
be τ -Lipschitz continuous, A :H → H be a r-strongly η-monotone operator and M :H →
H be an (A,η,m)-monotone operator. Then the resolvent operator Jρ,Aη,M :H → H is τ

r–ρm-
Lipschitz continuous, i.e.,

∥∥Jρ,Aη,M(x) – Jρ,Aη,M(y)
∥∥ ≤ τ

r – ρm
‖x – y‖, ∀x, y ∈H,

where ρ ∈ (, r
m ) is a constant.

In connection with the (A,η,m)-proximal operator equations system (.),we consider the
following generalized parametric (A,η,m)-monotone variational inclusion system:
For each fixed (ω,λ) ∈ � × �, find (x, y) ∈H ×H such that u ∈ S(x,ω) and

⎧⎨
⎩
 ∈ E(x, y,ω) +M(x,x,ω),

 ∈ F(u, y,λ) +N(y, y,λ).
(.)

Remark . For appropriate and suitable choices of E, F ,M,N , S,Ai, ηi, andHi for i = , ,
it is easy to see that problem (.) includes a number (systems) of (parametric) quasi-
variational inclusions, (parametric) generalized quasi-variational inclusions, (parametric)
quasi-variational inequalities, (parametric) implicit quasi-variational inequalities studied
by many authors as special cases; see, for example, [–] and the references therein.
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Now, for each fixed (ω,λ) ∈ � × �, the solution set Q(ω,λ) of problem (.) is denoted
by

Q(ω,λ) =
{
(z, t,x, y) ∈H ×H : ∃u ∈ S(x,ω)

such that E(x, y,ω) + ρ–RM(·,x,ω)
ρ,A

(z) = 

and F(u, y,λ) + �–RN(·,y,λ)
�,A

(t) = 
}
.

In this paper, our aim is to study the behavior of the solution set Q(ω,λ) and the condi-
tions on these operators S, E, F , M, N , η, η, A, A under which the function Q(ω,λ) is
continuous or Lipschitz continuous with respect to the parameter (ω,λ) ∈ � × �.

3 Sensitivity analysis results
In the sequel, we first transfer problem (.) into a problem of finding the parametric fixed
point of the associated (A,η,m)-resolvent operator.

Lemma . For each fixed (ω,λ) ∈ �×�, an element (x, y) ∈Q(ω,λ) is a solution of prob-
lem (.) if and only if there are (x, y) ∈H ×H and u ∈ S(x,ω) such that

⎧⎨
⎩
x = JM(·,x,ω)

ρ,A
(A(x) – ρE(x, y,ω)),

y = JN(·,y,λ)
�,A

(A(y) – �F(u, y,λ)),
(.)

where JM(·,x,ω)
ρ,A

= (A + ρM(·,x,ω))– and JN(·,y,λ)
�,A

= (A + �N(·, y,λ))– are the correspond-
ing resolvent operator in first argument of an (A,η)-monotone operator M(·, ·, ·), (A,η)-
monotone operator N(·, ·, ·), respectively, Ai is an ri-strongly monotone operator for i = , 
and ρ,� > .

Proof For each fixed (ω,λ) ∈ � × �, by the definition of the resolvent operators JM(·,x,ω)
ρ,A

=
(A + ρM(·,x,ω))– of M(·,x,ω) and JN(·,y,λ)

�,A
= (A + �N(·, y,λ))– of N(·, y,λ), respectively,

we know that there exist x ∈H, y ∈H, and u ∈ S(x(ω),ω) such that (.) holds if and only
if

A(x) – ρE(x, y,ω) ∈ A(x) + ρM(x,x,ω),

A(y) – �F(u, y,λ) ∈ A(y) + �N(y, y,λ),

i.e.,

 ∈ E(x, y,ω) +M(x,x,ω),

 ∈ F(u, y,λ) +N(y, y,λ).

It follows from the definition of Q(ω,λ) that (x, y) ∈ Q(ω,λ) is a solution of problem (.)
if and only if there exist (x, y) ∈H ×H, and u ∈ S(x,ω) such that equation (.) holds. �

Now, we show that problem (.) is equivalent to problem (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/362
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Lemma . The problem (.) has a solution (z, t,x, y,u) with u ∈ S(x,ω) if and only if
problem (.) has a solution (x, y,u) with u ∈ S(x,ω), where

x = JM(·,x,ω)
ρ,A

(z), y = JN(·,y,λ)
�,A

(t) (.)

and

z = A(x) – ρE(x, y,ω),

t = A(y) – �F(u, y,λ).

Proof Let (x, y,u) with u ∈ S(x,ω) be a solution of problem (.). Then, by Lemma ., it is
a solution of the following system of equations:

⎧⎨
⎩
x = JM(·,x,ω)

ρ,A
(A(x) – ρE(x, y,ω)),

y = JN(·,y,λ)
�,A

(A(y) – �F(u, y,λ)).

By using the fact RM(·,x,ω)
ρ,A

= I –A(JM(·,x,ω)
ρ,A

), RN(·,y,λ)
�,A

= I –A(J
N(·,y,λ)
�,A

) and (.), we have

RM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

)

= A(x) – ρE(x, y,ω) –A
(
JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

))

= A(x) – ρE(x, y,ω) –A(x)

= –ρE(x, y,ω)

and

RN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

)

= A(y) – �F(u, y,λ) –A
(
JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

))

= A(y) – �F(u, y,λ) –A(y)

= –�F(u, y,λ),

which imply that

E(x, y,ω) + ρ–RM(·,x,ω)
ρ,A

(z) = ,

F(u, y,λ) + �–RN(·,y,λ)
�,A

(t) = 

with z = A(x) – ρE(x, y,ω) and t = A(y) – �F(u, y,λ), i.e. (z, t,x, y,u) with u ∈ S(x,ω) is a
solution of problem (.).
Conversely, letting (z, t,x, y,u) with u ∈ S(x,ω) is a solution of problem (.), then

⎧⎨
⎩

ρE(x, y,ω) = –RM(·,x,ω)
ρ,A

(z) = A(JM(·,x,ω)
ρ,A

(z)) – z,

�F(u, y,λ) = –RN(·,y,λ)
�,A

(t) = A(J
N(·,y,λ)
�,A

(t)) – t.
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/362
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It follows from (.) and (.) that

ρE(x, y,ω) = A
(
JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

))
–A(x) + ρE(x, y,ω),

�F(u, y,λ) = A
(
JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

))
–A(y) + �F(u, y,λ),

which imply that

A(x) = A
(
JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

))
,

A(y) = A
(
JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

))

and so

x = JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

)
,

y = JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

)
,

i.e., (x, y,u) with u ∈ S(x,ω) is a solution of problem (.). �

Alternative proof Let

z = A(x) – ρE(x, y,ω), t = A(y) – �F(u, y,λ).

Then, by (.), we know

x = JM(·,x,ω)
ρ,A

(z), y = JN(·,y,λ)
�,A

(t)

and

z = A
(
JM(·,x,ω)
ρ,A

(z)
)
– ρE(x, y,ω), t = A

(
JN(·,y,λ)
�,A

(t)
)
– �F(u, y,λ).

Since A(JM(·,x,ω)
ρ,A

(z)) = A(JM(·,x,ω)
ρ,A

)(z) and A(J
N(·,y,λ)
�,A

(t)) = A(J
N(·,y,λ)
�,A

)(t), we have

E(x, y,ω) + ρ–RM(·,x,ω)
ρ,A

(z) = , F(u, y,λ) + �–RN(·,y,λ)
�,A

(t) = ,

the required problem (.). �

We now invoke Lemmas . and . to suggest the following sensitivity analysis results
for the system of (A,η,m)-proximal operator equations (.).

Theorem . Let Ai : Hi → Hi be ri-strongly monotone and si-Lipschitz continuous for
all i = , , S : H × � → CB(H) be κ-Ĥ-Lipschitz continuous in the first variable, M :
H × H × � → H be (A,η)-monotone with constant m in the first variable, and N :
H ×H × � → H be (A,η)-monotone with constant m in the first variable. Let η :
H ×H →H be τ-Lipschitz continuous, η :H ×H →H be τ-Lipschitz continuous,
E :H × H × � → H be (γ,α)-relaxed cocoercive with respect to A and μ-Lipschitz
continuous in the first variable, F :H ×H × � →H be (γ,α)-relaxed cocoercive with

http://www.journalofinequalitiesandapplications.com/content/2014/1/362
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respect to A and μ-Lipschitz continuous in the second variable, and let E be β-Lipschitz
continuous in the second variable, and F be β-Lipschitz continuous in the first variable. If

∥∥JM(·,x,ω)
ρ,A

(z) – JM(·,y,ω)
ρ,A

(z)
∥∥

≤ ν‖x – y‖, ∀(x, y, z,ω) ∈H ×H ×H × �, (.)
∥∥JN(·,x,λ)

�,A
(z) – JN(·,y,λ)

�,A
(z)

∥∥

≤ ν‖x – y‖, ∀(x, y, z,λ) ∈H ×H ×H × �, (.)

with νi <  for i = ,  and there exist constants ρ ∈ (, r
m

), � ∈ (, r
m

) such that

⎧⎨
⎩

τ 
 (s – ργ + ρμ

 + ραμ

 ) < (r – ρm)( – ν – �βκτ

r–�m
),

τ 
 (s – �γ + �μ

 + �αμ

) < (r – �m)( – ν – ρβτ

r–ρm
),

(.)

then, for each (ω,λ) ∈ � × �, the following results hold:
() the solution set Q(ω,λ) of problem (.) is nonempty;
() Q(ω,λ) is a closed subset inH ×H.

Proof In the sequel, from (.), we first define operators �ρ :H ×H ×�×� →H and
�� :H ×H × � × � →H as follows:

�ρ(x, y,ω,λ) = JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

)
,

��(x, y,ω,λ) = JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

) (.)

for all (x, y,ω,λ) ∈H ×H × � × �.
Now, define a norm ‖ · ‖ onH ×H by

∥∥(x, y)∥∥ = ‖x‖ + ‖y‖, ∀(x, y) ∈H ×H.

It is easy to see that (H ×H,‖ · ‖) is a Banach space (see []). By (.), for any given
ρ >  and � > , define an operator G :H ×H × � × � → H × H by

Gρ,�(x, y,ω,λ) =
{(

�ρ(x, y,ω,λ),�λ(x, y,ω,λ)
)
: u ∈ S(x,ω),

∀(x, y,ω,λ) ∈H ×H × � × �
}
.

For any (x, y,ω,λ) ∈H×H×�×�, since S(x,ω) ∈ CB(H),A,A, η, η, E, F , JM(·,x,ω)
ρ,A

,
JM(·,x,λ)
ρ,A are continuous, we haveGρ,�(x, y,ω,λ) ∈ CB(H ×H). Now, for each fixed (ω,λ) ∈
� × �, we prove that Gρ,�(x, y,ω,λ) is a multi-valued contractive operator.
In fact, for any (x, y,ω,λ), (x̂, ŷ,ω,λ) ∈ H × H × � × � and (a,a) ∈ Gρ,�(x, y,ω,λ),

there exists u ∈ S(x,ω) such that

a = JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

)
,

a = JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

)
.
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Note that S(x̂,ω) ∈ CB(H), it follows fromNadler’s result [] that there exists û ∈ S(x̂,ω)
such that

‖u – û‖ ≤ Ĥ
(
S(x,ω),S(x̂,ω)

)
. (.)

Setting

b = JM(·,x̂,ω)
ρ,A

(
A(x̂) – ρE(x̂, ŷ,ω)

)
,

b = JN(·,ŷ,λ)
�,A

(
A(ŷ) – �F(û, ŷ,λ)

)
,

then we have (b,b) ∈Gρ,�(x̂, ŷ,ω,λ). It follows from (.) and Proposition . that

‖a – b‖
=

∥∥JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

)
– JM(·,x̂,ω)

ρ,A

(
A(x̂) – ρE(x̂, ŷ,ω)

)∥∥

≤ ∥∥JM(·,x,ω)
ρ,A

(
A(x) – ρE(x, y,ω)

)
– JM(·,x̂,ω)

ρ,A

(
A(x) – ρE(x, y,ω)

)∥∥

+
∥∥JM(·,x̂,ω)

ρ,A

(
A(x) – ρE(x, y,ω)

)
– JM(·,x̂,ω)

ρ,A

(
A(x̂) – ρE(x̂, ŷ,ω)

)∥∥

≤ ν‖x – x̂‖ + τ

r – ρm

∥∥A(x) – ρE(x, y,ω) –
(
A(x̂) – ρE(x̂, ŷ,ω)

)∥∥

≤ ν‖x – x̂‖ + ρτ

r – ρm

∥∥E(x̂, y,ω) – E(x̂, ŷ,ω)
∥∥

+
τ

r – ρm

∥∥A(x) –A(x̂) – ρ
[
E(x, y,ω) – E(x̂, y,ω)

]∥∥. (.)

By the assumptions of E, A, we have

∥∥E(x̂, y,ω) – E(x̂, ŷ,ω)
∥∥ ≤ β‖y – ŷ‖ (.)

and

∥∥A(x) –A(x̂) – ρ
[
E(x, y,ω) – E(x̂, y,ω)

]∥∥

≤ ∥∥A(x) –A(x̂)
∥∥ + ρ∥∥E(x, y,ω) – E(x̂, y,ω)

∥∥

– ρ
〈
E(x, y,ω) – E(x̂, y,ω),A(x) –A(x̂)

〉

≤ ∥∥A(x) –A(x̂)
∥∥ + ρ∥∥E(x, y,ω) – E(x̂, y,ω)

∥∥

– ρ
(
–α

∥∥E(x, y,ω) – E(x̂, y,ω)
∥∥ + γ‖x – x̂‖)

≤ (
s – ργ + ρμ

 + ραμ


)‖x – x̂‖. (.)

Combining (.)-(.), we have

‖a – b‖ ≤ θ‖x – x̂‖ + ϑ‖y – ŷ‖, (.)

where

θ = ν +
τ

r – ρm

√
s – ργ + ρμ

 + ραμ

 , ϑ =

ρβτ

r – ρm
.
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Similarly, by the assumptions of S, A, F , and (.), we obtain

‖a – b‖
=

∥∥JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

)
– JN(·,ŷ,λ)

�,A

(
A(ŷ) – �F(û, ŷ,λ)

)∥∥

≤ ∥∥JN(·,y,λ)
�,A

(
A(y) – �F(u, y,λ)

)
– JN(·,ŷ,λ)

�,A

(
A(y) – �F(u, y,λ)

)∥∥

+
∥∥JN(·,ŷ,λ)

�,A

(
A(y) – �F(u, y,λ)

)
– JN(·,ŷ,λ)

�,A

(
A(ŷ) – �F(û, ŷ,λ)

)∥∥

≤ ν‖y – ŷ‖ + τ

r – �m

∥∥A(y) – �F(u, y,λ) –
(
A(ŷ) – �F(û, ŷ,λ)

)∥∥

≤ ν‖y – ŷ‖ + �τ

r – �m

∥∥F(u, y,λ) – F(û, y,λ)
∥∥

+
τ

r – �m

∥∥A(y) –A(ŷ) – �
(
F(û, y,λ) – F(û, ŷ,λ)

)∥∥

≤ θ‖x – x̂‖ + ϑ‖y – ŷ‖, (.)

where

θ =
�βκτ

r – �m
, ϑ = ν +

τ

r – �m

√
s – �γ + �μ

 + �αμ

.

It follows from (.) and (.) that

‖a – b‖ + ‖a – b‖ ≤ (θ + θ)‖x – x̂‖ + (ϑ + ϑ)‖y – ŷ‖
≤ σ

(‖x – x̂‖ + ‖y – ŷ‖), (.)

where

σ =max{θ + θ,ϑ + ϑ}.

It follows from condition (.) that σ < . Hence, from (.), we get

d
(
(a,a),Gρ,�(x̂, ŷ,ω,λ)

)
= inf

(b,b)∈Gρ,�(x̂,ŷ,ω,λ)

(‖a – b‖ + ‖a – b‖
)

≤ –σ
∥∥(x, y) – (x̂ – ŷ)

∥∥.

Since (a,a) ∈ Gρ,�(x, y,ω,λ) is arbitrary, we obtain

sup
(a,a)∈Gρ,�(x,y,ω,λ)

d
(
(a,a),Gρ,�(x̂, ŷ,ω,λ)

) ≤ –σ
∥∥(x, y) – (x̂ – ŷ)

∥∥.

By the same argument, we can prove

sup
(b,b)∈Gρ,�(x̂,ŷ,ω,λ)

d
(
(b,b),Gρ,�(x, y,ω,λ)

) ≤ –σ
∥∥(x, y) – (x̂ – ŷ)

∥∥.

It follows from the definition of the Hausdorff metric Ĥ on CB(H ×H) that

Ĥ
(
Gρ,�(x, y,ω,λ),Gρ,�(x̂, ŷ,ω,λ)

) ≤ σ
∥∥(x, y) – (x̂, ŷ)

∥∥
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for all (x, x̂,ω) ∈ H × H × �, (y, ŷ,λ) ∈ H × H × �, i.e., Gρ,�(x, y,ω,λ) is a multi-
valued contractive operator, which is uniform with respect to (ω,λ) ∈ � × �. By a fixed
point theorem of Nadler [], for each (ω,λ) ∈ � × �, Gρ,�(x, y,ω,λ) has a fixed point
(x(λ), y(λ)) ∈H×H, i.e., (x, y) ∈Gρ,�(x, y,ω,λ). By the definition ofG, we know that there
exists u ∈ S(x,ω) such that (.) holds. Thus, it follows from Lemma . that (x, y,u) with
u ∈ S(x,ω) is a solution of problem (.). Hence, it follows from Lemma . that (z, t,x, y,u)
with u ∈ S(x,ω) is a solution of problem (.). Therefore,Q(ω,λ) �= ∅ for all (ω,λ) ∈ �×�.
Next, we prove the conclusion (). For each (ω,λ) ∈ � × �, let {(zn, tn,xn, yn)} ⊂Q(ω,λ)

and zn → z, tn → t, xn → x, yn → y as n → ∞. Then we know that there exists un ∈
S(xn,ω) and

(xn, yn) ∈Gρ,�(xn, yn,ω,λ),

zn = A(xn) – ρE(xn, yn,ω), tn = A(yn) – �F(un, yn,λ), ∀n = , , . . . ,

and

z = A(x) – ρE(x, y,ω), t = A(y) – �F(u, y,λ).

By the proof of conclusion (), we have

Ĥ
(
Gρ,�(xn, yn,ω,λ),Gρ,�(x, y,ω,λ)

) ≤ σ
∥∥(xn, yn) – (x, y)

∥∥, ∀(ω,λ) ∈ � × �.

It follows that

d
(
(x, y),Gρ,�(x, y,ω,λ)

) ≤ ∥∥(x, y) – (xn, yn)
∥∥

+ d
(
(xn, yn),Gρ,�(xn, yn,ω,λ)

)

+ Ĥ
(
Gρ,�(xn, yn,ω,λ),Gρ,�(x, y,ω,λ)

)

≤ ( + σ )
∥∥(xn, yn) – (x, y)

∥∥.

Hence, we have (x, y) ∈ Gρ,�(x, y,ω,λ) and (x, y) ∈ Q(ω,λ). Therefore, Q(ω,λ) is a
closed subset ofH ×H. �

Theorem . Under the hypotheses of Theorem ., further assume that
(i) for any x ∈H, ω → S(x,ω) is lS-Ĥ-Lipschitz continuous (or continuous);
(ii) for any x, z ∈H, y, t ∈H, ω → E(x, y,ω), ω → JM(·,x,ω)

ρ,A
(z), λ → F(x, y,λ) and

λ → JN(·,y,λ)
�,A

(t) both are Lipschitz continuous (or continuous) with Lipschitz constants
lE , lJ , lF , and lJ , respectively.

Then the solution set Q(ω,λ) of problem (.) is Lipschitz continuous (or continuous) from
� × � toH ×H.

Proof From the hypotheses and Theorem ., for any (ω,λ), (ω̄, λ̄) ∈ � × �, we know
that Q(ω,λ) and Q(ω̄, λ̄) are nonempty closed subsets of H × H. By the proof of The-
orem ., Gρ,�(x, y,ω,λ) and Gρ,�(x, y, ω̄, λ̄) are both multi-valued contractive operators
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with the same contraction constant σ ∈ (, ) and have fixed points (x(ω,λ), y(ω,λ)) and
(x(ω̄, λ̄), y(ω̄, λ̄)), respectively. It follows from Lemmas . and . that

Ĥ
(
Q(ω,λ),Q(ω̄, λ̄)

)

≤ 
 – σ

sup
(x,y)∈H×H

Ĥ
(
Gρ,�

(
x(ω,λ), y(ω,λ),ω,λ

)
,Gρ,�

(
x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄

))
. (.)

Setting (a,a) ∈Gρ,�(x(ω,λ), y(ω,λ),ω,λ), there exists u(ω,λ) ∈ S(x(ω,λ),ω) such that

a = JM(·,x(ω,λ),ω)
ρ,A

(
A

(
x(ω,λ)

)
– ρE

(
x(ω,λ), y(ω,λ),ω

))
,

a = JN(·,y(ω,λ),λ)
�,A

(
A

(
y(ω,λ)

)
– �F

(
u(ω,λ), y(ω,λ),λ

))
.

Since S(x(ω,λ),ω),S(x(ω̄, λ̄), ω̄) ∈ CB(H), it follows from Nadler’s result [] that there
exists u(ω̄, λ̄) ∈ S(x(ω̄, λ̄), ω̄) such that

∥∥u(ω,λ) – u(ω̄, λ̄)
∥∥ ≤ Ĥ

(
S
(
x(ω,λ),ω

)
,S

(
x(ω̄, λ̄), ω̄

))
. (.)

Let

b = JM(·,x(ω̄,λ̄),ω̄)
ρ,A

(
A

(
x(ω̄, λ̄)

)
– ρE

(
x(ω̄, λ̄), y(ω̄, λ̄), ω̄

))
,

b = JN(·,y(ω̄,λ̄),λ̄)
�,A

(
A

(
y(ω̄, λ̄)

)
– �F

(
u(ω̄, λ̄), y(ω̄, λ̄), λ̄

))
.

Then we have (b,b) ∈ Gρ,�(x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄). It follows from the assumptions on
JM(·,·,·)
ρ,A

, E, A, and S that

‖a – b‖ =
∥∥JM(·,x(ω,λ),ω)

ρ,A

(
A

(
x(ω,λ)

)
– ρE

(
x(ω,λ), y(ω,λ),ω

))

– JM(·,x(ω̄,λ̄),ω̄)
ρ,A

(
A

(
x(ω̄, λ̄)

)
– ρE

(
x(ω̄, λ̄), y(ω̄, λ̄), ω̄

))∥∥
≤ ∥∥JM(·,x(ω,λ),ω)

ρ,A

(
A

(
x(ω,λ)

)
– ρE

(
x(ω,λ), y(ω,λ),ω

))

– JM(·,x(ω̄,λ̄),ω)
ρ,A

(
A

(
x(ω̄, λ̄)

)
– ρE

(
x(ω̄, λ̄), y(ω̄, λ̄),ω

))∥∥

+
∥∥JM(·,x(ω̄,λ̄),ω)

ρ,A

(
A

(
x(ω̄, λ̄)

)
– ρE

(
x(ω̄, λ̄), y(ω̄, λ̄),ω

))

– JM(·,x(ω̄,λ̄),ω̄)
ρ,A

(
A

(
x(ω̄, λ̄)

)
– ρE

(
x(ω̄, λ̄), y(ω̄, λ̄),ω

))∥∥

+
∥∥JM(·,x(ω̄,λ̄),ω̄)

ρ,A

(
A

(
x(ω̄, λ̄)

)
– ρE

(
x(ω̄, λ̄), y(ω̄, λ̄),ω

))

– JM(·,x(ω̄,λ̄),ω̄)
ρ,A

(
A

(
x(ω̄, λ̄)

)
– ρE

(
x(ω̄, λ̄), y(ω̄, λ̄), ω̄

))∥∥
≤ θ

∥∥x(ω,λ) – x(ω̄, λ̄)
∥∥ + ϑ

∥∥y(ω,λ) – y(ω̄, λ̄)
∥∥ + lJ‖ω – ω̄)‖

+
ρτ

r – ρm

∥∥E(
x(ω̄, λ̄), y(ω̄, λ̄),ω

)
– E

(
x(ω̄, λ̄), y(ω̄, λ̄), ω̄

)∥∥

≤ θ
∥∥x(ω,λ) – x(ω̄, λ̄)

∥∥ + ϑ
∥∥y(ω,λ) – y(ω̄, λ̄)

∥∥ + k‖ω – ω̄‖, (.)

where θ and ϑ are the constants of (.) and

k = lJ +
ρτlE

r – ρm
.
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Similarly, by the assumptions on g , JN(·,·,·)
ρ,A

, F , A and S,

‖a – b‖ =
∥∥JN(·,y(ω,λ),λ)

�,A

(
A

(
y(ω,λ)

)
– �F

(
u(ω,λ), y(ω,λ),λ

))

– JN(·,y(ω̄,λ̄),λ̄)
�,A

(
A

(
y(ω̄, λ̄)

)
– �F

(
u(ω̄, λ̄), y(ω̄, λ̄), λ̄

))∥∥

≤ ∥∥JN(·,y(ω,λ),λ)
�,A

(
A

(
y(ω,λ)

)
– �F

(
u(ω,λ), y(ω,λ),λ

))

– JN(·,y(ω̄,λ̄),λ)
�,A

(
A

(
y(ω̄, λ̄)

)
– �F

(
u(ω̄, λ̄), y(ω̄, λ̄),λ

))∥∥

+
∥∥JN(·,y(ω̄,λ̄),λ)

�,A

(
A

(
y(ω̄, λ̄)

)
– �F

(
u(ω̄, λ̄), y(ω̄, λ̄),λ

))

– JN(·,y(ω̄,λ̄),λ̄)
�,A

(
A

(
y(ω̄, λ̄)

)
– �F

(
u(ω̄, λ̄), y(ω̄, λ̄),λ

))∥∥

+
∥∥JN(·,y(ω̄,λ̄),λ̄)

�,A

(
A

(
y(ω̄, λ̄)

)
– �F

(
u(ω̄, λ̄), y(ω̄, λ̄),λ

))

– JN(·,y(ω̄,λ̄),λ̄)
�,A

(
A

(
y(ω̄, λ̄)

)
– �F

(
u(ω̄, λ̄), y(ω̄, λ̄), λ̄

))∥∥

≤ θ
∥∥x(ω,λ) – x(ω̄, λ̄)

∥∥ + ϑ
∥∥y(ω,λ) – y(ω̄, λ̄)

∥∥ + lJ‖λ – λ̄‖
+

�τ

r – ρm

∥∥F(
u(ω̄, λ̄), y(ω̄, λ̄),λ

)
– F

(
u(ω̄, λ̄), y(ω̄, λ̄), λ̄

)∥∥

≤ θ
∥∥x(ω,λ) – x(ω̄, λ̄)

∥∥ + ϑ
∥∥y(ω,λ) – y(ω̄, λ̄)

∥∥ + k‖λ – λ̄‖, (.)

where θ and ϑ are the constants of (.) and

k = lJ +
�τlF

r – ρm
.

It follows from (.), (.) and (.) that

‖a – b‖ + ‖a – b‖ ≤ (θ + θ)
∥∥x(ω,λ) – x(ω̄, λ̄)

∥∥

+ (ϑ + ϑ)
∥∥y(ω,λ) – y(ω̄, λ̄)

∥∥

+ k‖ω – ω̄‖ + k‖λ – λ̄‖
≤ σ

(‖a – b‖ + ‖a – b‖
)
+ k‖ω – ω̄‖ + k‖λ – λ̄‖,

where σ is the constant of (.), which implies that

‖a – b‖ + ‖a – b‖ ≤ �
(‖ω – ω̄‖ + ‖λ – λ̄‖), (.)

where

� =


 – σ
max{k,k}.

Hence, from (.), we obtain

sup
(a,a)∈Gρ,�(x,y,ω,λ

d
(
(a,a),Gρ,�(x, y, ω̄, λ̄)

) ≤ �
∥∥(ω,λ) – (ω̄, λ̄)

∥∥.
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By using a similar argument as above, we get

sup
(b,b)∈Gρ,�(x,y,ω̄,λ̄)

d
(
Gρ,�(x, y,ω,λ), (b,b)

) ≤ �
∥∥(ω,λ) – (ω̄, λ̄)

∥∥.

It follows that

Ĥ
(
Gρ,�(x, y,ω,λ),Gρ,�(x, y, ω̄, λ̄)

) ≤ �
∥∥(ω,λ) – (ω̄, λ̄)

∥∥

for all (x, y,ω, ω̄,λ, λ̄) ∈H ×H × � × � × � × �. Thus, (.) implies

Ĥ
(
Q(ω,λ),Q(ω̄, λ̄)

) ≤ �

 – σ

∥∥(ω,λ) – (ω̄, λ̄)
∥∥.

This proves that Q(ω,λ) is Lipschitz continuous in (ω,λ) ∈ � × �. If each operator under
conditions (i) and (ii) is assumed to be continuous in (ω,λ) ∈ � × �, then by a similar
argument as above, we can show that S(λ) is continuous in (ω,λ) ∈ � × �. �

Remark . In Theorems . and ., if E, F are stronglymonotone in the first and second
variable, i.e., when αi =  (i = , ) in Theorems . and ., respectively, thenwe can obtain
the corresponding results. Our results improve and generalize the well-known results in
[, , –].

4 Application
In this section, we give an application.

Lemma . ([]) Let φ :H →R∪ {+∞} be a proper convex lower semi-continuous func-
tion. Then J∂φ

α = (I + α∂φ)– is nonexpansive for any constant α > .

Theorem . Let Hi be a real Hilbert space and φi :Hi → R ∪ {+∞} be a proper convex
lower semi-continuous function for i = , . Suppose that E : H × H × � → H is γ-
strongly monotone and μ-Lipschitz continuous in the first variable, and is β-Lipschitz
continuous in the second variable, F : H × H × � → H is γ-strongly monotone and
μ-Lipschitz continuous in the second variable, and is β-Lipschitz continuous in the first
variable. If there exist positive constants ρ and � such that

⎧⎨
⎩

�β +
√
s – ργ + ρμ

 < ,

ρβ +
√
s – �γ + �μ

 < ,

then, for each (ω,λ) ∈ � × �:
() (x∗, y∗) ∈ R

 is the unique solution of the following nonlinear problem:
⎧⎨
⎩

〈E(x∗, y∗,ω),x – x∗〉 ≥ ρφ(x∗,ω) – ρφ(x,ω),

〈F(x∗, y∗,λ), y – y∗〉 ≥ �φ(y∗,λ) – �φ(y,λ).
(.)

() Moreover, the solution (x∗, y∗) of problem (.) is continuous (or Lipschitz continuous)
from � × � to R, if in addition, for any x, z ∈H, y, t ∈H, ω → E(x, y,ω),
ω → J∂φ(·,ω)

ρ (z), λ → F(x, y,λ) and λ → J∂φ(·,λ)
� (t) both are Lipschitz continuous (or

continuous) with Lipschitz constants lE , lJ , lF , and lJ , respectively.
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Proof Letting

�ρ(x, y,ω,λ) = J∂φ(·,ω)
ρ

(
x – ρE(x, y,ω)

)
,

��(x, y,ω,λ) = J∂φ(·,λ)
�

(
y – �F(u, y,λ)

) (.)

for all (x, y,ω,λ) ∈H ×H × � × � and defining ‖ · ‖ onH ×H by

∥∥(x, y)∥∥ = ‖x‖ + ‖y‖, ∀(x, y) ∈H ×H,

then it is easy to see that (H×H,‖·‖) is a Banach space (see []). Further, one can show
that Gρ,�(x, y,ω,λ) = (�ρ(x, y,ω,λ),�λ(x, y,ω,λ)) is a contractive operator and the rest of
proof can be carried out by Theorems . and ., and so it is omitted. �
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