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1 Introduction
During recent years, many authors have worked on the existence of periodic solutions of
delay differential equations with feedback control [–]. However, few papers have been
published about the existence of these solutions of the aforementioned differential equa-
tions with feedback control for enterprise clusters based on ecology theory [–]. Zhou
divided enterprise clusters into two models: the concentration of subcontractors around
the dominant firm and the concentration of simple competitors, called the center half-
back model and the net model []. Moreover, two models from biology were given and
studied from an economic point of view. Accordingly, sufficient conditions were obtained
to guarantee the co-existence and stability of enterprise clusters. Then, the developing
strategy of enterprises was analyzed based on the logistic model, while the suggestions of
constructing cooperative relation and choosing generalization or specialization tactics for
the commodity were suggested []. In addition, based on a theoretical model of ecological
population science, Wang and Pan made a detailed analysis of the equilibrium mecha-
nism of enterprise clusters, including a net model and a center halfback model, and they
drew the conclusion that the relationship of fierce competition and beneficial cooperation
among enterprise clusters was the crucial factor to keep stability []. In a recent study the
competition and cooperation system of two enterprises based on an ecosystem have been
considered []:{ dx(t)

dt = r(t)x(t)( – x(t)+α(x(t)–c)
K ),

dx(t)
dt = r(t)x(t)( – x(t)–β(x(t)–c)

K ),

where x(t), x(t) are the output of enterprisesA andB, r, r represent the intrinsic growth
rate, K is the carrying capacity of the market under natural unlimited conditions, α, β
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denote the competitive coefficients of the two enterprises, c, c are the initial production
of the two enterprises. Therefore, the equation with non-constant coefficients is assumed,
which can be got as a modified previous system with variable coefficients (letting a = r

K ,
a = r

K , b =
rα
K , b = rβ

K in previous system):{
dx(t)
dt = x(t)(r(t) – a(t)x(t) – b(t)(x(t) – c(t))),

dx(t)
dt = x(t)(r(t) – a(t)x(t) – b(t)(x(t) – c(t))).

In real situations there is an undeniable time delay, and a long time delay may damage the
stability of a system. Also the situation of enterprises is often distributed by unforeseen
forces, which can lead to changes in the enterprises’ parameters, such as intrinsic growth
rates, therefore it is vitally important to study models with control variables which are the
so-called disturbance functions [, –]. Resuming the latest studies, the following com-
petitive and cooperation model of n satellite enterprises and a dominant enterprise under
the center halfback model with time-varying delays and feedback controls is considered
to find whether there is any periodic solution for this system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi(t)
dt = xi(t)[ri(t) – ai(t)xi(t) –

∑n
j=,j �=i bij(t)

dxj
dt (t – τj(t))

– c(t)[y(t – γ (t)) – d(t)] – ei(t)ui(t – λi(t))],
dui(t)
dt = –αi(t)ui(t) –

∑n
j= βj(t)xj(t – ηj(t)),

dy(t)
dt = y(t)[r(t) – a(t)y(t) – b(t) dy(t)dt –

∑n
i= ci(t)[xi(t – δi(t)) – di(t)]

– e(t)v(t – λ(t))],
dv(t)
dt = –μ(t)v(t) + v(t)y(t – θ (t)),

where xi(t), y(t) represent the output of the satellite enterprises, Axi, and the core enter-
prise, Ay, respectively, ri, r are the intrinsic growth rates, ai, a account for their respective
self-regulations, bij accounts for the rates of inter-enterprises Axi competition, c repre-
sents the rate of intra-enterprise competition from Ay, ci represents the rate of conversion
of a commodity into the reproduction of enterprise Axi, di and d represent the initial pro-
duction of the enterprises, respectively, ui, v are the control variables, i = , , . . . ,n.
Let R and R+ denote the set of all real numbers and nonnegative real numbers. Let h be

a continuous bounded function defined on R, and we set

h =max
{
h(t) : t ∈ [,w]

}
and

h =min
{
h(t) : t ∈ [,w]

}
,

where h is a continuous w-periodic function.
In this paper we shall use the following hypotheses.
(H) ri, r, ai, a, bij, b, ci, c, di, d, ei, e, αi, τi, γ , λi, λ, δi, ηi, μ, θ are continuous w-periodic

functions,

pi = e
∫ w
 αi(s)ds > , p = e

∫ w
 μ(s)ds > ,

qi = e–
∫ w
 ri(s)ds < , q = e–

∫ w
 r(s)ds < ,
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Gi(t, s) =
e
∫ s
t αi(s)ds

e
∫ w
 αi(s)ds – 

, G(t, s) =
e
∫ s
t μ(s)ds

e
∫ w
 μ(s)ds – 

,

H(t, s) =
e–
∫ s
t ri(s)ds

 – e–
∫ w
 ri(s)ds

, H(t, s) =
e–
∫ s
t r(s)ds

 – e–
∫ w
 r(s)ds

,

B(t) =max
{
bi(t) : i = , . . . ,n,b(t)

}
,

Fi(t) =
∫ t+w

t
Gi(t, s)

n∑
i=

βi(s)ds, F(t) = v(t) =
∫ t+w

t
G(t, s)v(s)ds,

Mi =
∫ w



(
qiai(s) +

n∑
i=,i�=j

bij(s) + qic(s)‖x‖ + qiei(s)Fi
(
s – λi(s)

))
ds,

M =
∫ w



[
qa(s) + b(s) + q

n∑
i=

ci(s)‖x‖ + qe(s)F
(
s – λ(s)

)]
ds,

Mi =
∫ w



(
ai(s) +

n∑
i=,i�=j

bij(s) + c(s)‖x‖ + ei(s)Fi
(
s – λi(s)

))
ds,

M =
∫ w



[
a(s) + b(s) +

n∑
i=

ci(s)‖x‖ + e(s)F
(
s – λ(s)

)]
ds.

(H)

qiai(t)‖x‖ + qi
n∑

i=,i�=j
bij(t)‖x‖ + qi c(t)‖x‖ + qiei(t)Fi

(
t – λi(t)

)‖x‖ ≥ 

and

qa(t)‖x‖ + qb(t)‖x‖ + q
n∑
i=

ci(t)‖x‖ + qe(t)F
(
t – λi(t)

)‖x‖ ≥ .

(H)

( + ri)
qi

 – qi
Mi ≥max

{
ai(t) +

n∑
i=,i�=j

bij(t) + c(t)‖x‖ + ei(t)Fi
(
t – λi(t)

)
: t ∈ [,w]

}
,

( + r)
q

 – q
M ≥max

{
a(t) + b(t) +

n∑
i=

ci(t)‖x‖ + e(t)F
(
t – λ(t)

)
: t ∈ [,w]

}
.

(H)

( – ri)


qi( – qi)
Mi

≤min

{
qiai(t) + qi

n∑
i=,i�=j

bij(t) + qic(t)‖x‖ + qiei(t)Fi
(
t – λi(t)

)
: t ∈ [,w]

}
,

( – r)


q( – q)
M

≤min

{
qa(t) + qb(t) + q

n∑
i=

ci(t)‖x‖ + qe(t)F
(
t – λ(t)

)
: t ∈ [,w]

}
.
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In order to obtain our main results, we first make the following preparations.

Definition . Let X be Banach space and E be a closed, nonempty subset of X; E is said
to be a cone if

(i) αu + βv ∈ E, for all u, v ∈ E and all α,β > ,
(ii) u, –u ∈ E imply u = .

Let X be a Banach space and E be a cone in X. The semi-order induced by the cone E is
denoted by ‘≤’. That is, x≤ y if and only if y– x ∈ E. For a bounded subset A⊂ X, let αX(A)
denote the (Kuratowski) measure of non-compactness defined by

αX(A) = inf

{
δ >  : there is a finite number of subsets Ai ⊂ A

such that A =
⋃
i

Ai and diam(Ai) = δ

}
,

where diam(Ai) denotes the diameter of the set Ai.

Definition . Let E, F be two Banach spaces andD ⊂ E, a continuous and boundedmap
T :D → F is called k-set-contractive if for any bounded set S ⊂D we have

αF
(
T(S)

)≤ kαE(S).

T is called strict-set-contractive if it is k-set-contractive for some ≤ k < .

The following lemma is cited from [, ], which is useful for the proof of our main
result of this paper.

Lemma . Let P be a cone of the real Banach space X and


R =
{
x ∈ X : ‖x‖ < R

}
, 
r =

{
x ∈ X : ‖x‖ < r

}
,

with R > r > . Suppose that T : P ∩ 
R\
r → P is strict-set-contractive such that one of
the following two conditions is satisfied:

(i) Not Tx≥ x ∀x ∈ P ∩ ∂
r .
(ii) Not Tx≤ x ∀x ∈ P ∩ ∂
R.

Then T has at least one fixed point in P ∩ 
R\
r .

2 Main results
In this section, at first based on a fixed point theorem for the strict-set-contraction, we
shall study the existence of at least one positive periodic solution of the system, then we
state and prove our main results.
Now, each w-periodic solution of the equation

dui(t)
dt

= –αi(t)ui(t) –
n∑
j=

βj(t)xj
(
t – ηj(t)

)
and

dv(t)
dt

= –μ(t)v(t) + v(t)y
(
t – θ (t)

)
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is equivalent to that of the equations

ui(t)(t) =
∫ t+w

t
Gi(t, s)

n∑
j=

βj(s)xj
(
s – ηj(s)

)
ds =�xi (t)

and

v(t) =
∫ t+w

t
G(t, s)v(s)y

(
s – θ (s)

)
ds =�y(t).

Therefore, the existence problem of a w-periodic solution of system is equivalent to that
of a w-periodic solution of the equations:

xi(t) =
∫ t+w

t
Hi(t, s)xi(s)

(
ai(s)xi(s) +

n∑
j=,i�=j

bij(s)
dxj
ds
(
s – τj(s)

)

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds,

i = , , . . . ,n,

y(t) =
∫ t+w

t
H(t, s)y(s)

[
a(s)y(s) + b(s)

dy(s)
ds

+
n∑
i=

ci(s)
[
xi
(
s – δi(s)

)
– di(s)

]
+ e(s)�y

(
s – λ(s)

)]
ds.

In order to apply Lemma . to the equations, set

C
w =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
x
...
xn
y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
: xi, y ∈ C(R,R),xi(t +w) = xi(t), y(t +w) = y(t), t ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

with the norm defined by

‖x‖ =max
{
max

{∣∣xi(t)∣∣ : t ∈ [,w]
}
, i = , , . . . ,n,max

{∣∣y(t)∣∣ : t ∈ [,w]
}}

and

C
w =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
x
...
xn
y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
: xi, y ∈ C(R,R),xi(t +w) = xi(t), y(t +w) = y(t), t ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,
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with the norm defined by ‖x‖ =max{‖x‖,‖x′‖}. ThenC
w,C

w are of course Banach spaces.
Define the cone P in C

w by

P =
{
x : x ∈ C

w,xi(t) ≥ qi‖x‖, y(t) ≥ q‖x‖, t ∈ [,w]
}
.

Also for R > r > , set


R =
{
x ∈ C

w : ‖x‖ < R
}
, 
r =

{
x ∈ C

w : ‖x‖ < r
}
.

Let the map T be defined by

Tx =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Tx
Tx
...

Txn
Ty

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where

Txi(t) =
∫ t+w

t
Hi(t, s)xi(s)

(
ai(s)xi(s) +

n∑
j=,i�=j

bij(s)
dxj
ds
(
s – τj(s)

)

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds,

i = , , . . . ,n,

Ty(t) =
∫ t+w

t
H(t, s)y(s)

[
a(s)y(s) + b(s)

dy(s)
ds

+
n∑
i=

ci(s)
[
xi
(
s – δi(s)

)
– di(s)

]
+ e(s)�y

(
s – λ(s)

)]
ds.

Lemma . Assume that (H)-(H) hold.
(i) If ri ≤ , r ≤ , then T : P → P is well defined.
(ii) If (H) holds and ri > , ri > , then T : P → P is well defined.

Proof (i) For any x ∈ P, it follows that Tx ∈ C
w. Under the assumption (H), for t ∈ [,w],

we have

ai(t)xi(t) +
n∑

j=,i�=j
bij(t)

dxj
dt
(
t – τj(t)

)
+ c(t)

[
y
(
t – γ (t)

)
– d(t)

] + ei(t)�xi
(
t – λi(t)

)

≥ qiai(t)‖x‖ + qi
n∑

j=,i�=j
bij(t)‖x‖ + qi c(t)‖x‖ + qiei(t)Fi

(
t – λi(t)

)‖x‖ ≥ 
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and

a(t)y(t) + b(t)
dy(t)
dt

+
n∑
i=

ci(t)
[
xi
(
t – δi(t)

)
– di(t)

] + e(t)�y
(
t – λ(t)

)
≥ qa(t)‖x‖ + qb(t)‖x‖ + q

n∑
i=

ci(t)‖x‖ + qe(t)F
(
t – λi(t)

)‖x‖ ≥ ;

moreover,

max
{∣∣Txi(t)∣∣ : t ∈ [,w]

}
≤max

{


 – qi

∫ t+w

t
xi(s)

(
ai(s)xi(s) +

n∑
i=,i�=j

bij(s)
dxj
ds

(s – τj(s)
)

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds : t ∈ [,w]

}

=


 – qi

∫ w


xi(s)

(
ai(s)xi(s) +

n∑
i=,i�=j

bij(s)
dxj
ds
(
s – τj(s)

)

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds

and

max
{∣∣Ty(t)∣∣ : t ∈ [,w]

}
≤max

{


 – q

∫ t+w

t
y(s)

(
a(s)y(s) + b(s)

dy(s)
ds

+
n∑
i=

ci(s)
[
xi
(
s – δi(s)

)
– di(s)

] + e(s)�y
(
s – λ(s)

))
ds : t ∈ [,w]

}

=


 – q

∫ w


y(s)

(
a(s)y(s) + b(s)

dy(s)
ds

+
n∑
i=

ci(s)
[
xi
(
s – δi(s)

)
– di(s)

]
+ e(s)�y

(
s – λ(s)

))
ds.

Therefore, for t ∈ [,w], we obtain

Txi(t) ≥ qi
 – qi

∫ t+w

t
xi(s)

(
ai(s)xi(s) +

n∑
j=,i�=j

bij(s)
dxj
ds
(
s – τj(s)

)

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds

=
qi

 – qi

∫ w


xi(s)

(
ai(s)xi(s) +

n∑
j=,i�=j

bij(s)
dxj
dt
(
s – τj(s)

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/306


Soltan Mohamadi et al. Journal of Inequalities and Applications 2014, 2014:306 Page 8 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/306

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds

≥ qi‖Tx‖

and

Ty(t) ≥ q
 – q

∫ t+w

t
y(s)

(
a(s)y(s) + b(s)

dy(s)
ds

+
n∑
i=

ci(s)
[
xi
(
s – δi(s)

)
– di(s)

] + e(s)�y
(
s – λ(s)

))
ds

=
q

 – q

∫ w


y(s)

(
a(s)y(s) + b(s)

dy(s)
ds

+
n∑
i=

ci(s)
[
xi
(
s – δi(s)

)
– di(s)

] + e(s)�y
(
s – λ(s)

))
ds

≥ q‖Tx‖.

Now we prove Txi(t)≥ qi‖(Tx)′‖, Ty(t)≥ q‖(Tx)′‖, for t ∈ [,w]; we find

(Txi)′(t) = Hi(t, t +w)xi(t +w)

(
ai(t +w)xi(t +w)

+
n∑

j=,i�=j
bij(t +w)

dxj
dt
(
t +w – τj(t +w)

)
+ c(t +w)

[
y
(
t +w – γ (t +w)

)
– d(t +w)

]
+ ei(t +w)�xi

(
t +w – λi(t +w)

))

–Hi(t, t)xi(t)

(
ai(t)xi(t) +

n∑
j=,i�=j

bij(t)
dxj
dt
(
t – τj(t)

)

+ c(t)
[
y
(
t – γ (t)

)
– d(t)

] + ei(t)�xi
(
t – λi(t)

))

and

(Ty)′(t) = H(t, t +w)y(t +w)

[
a(t +w)y(t +w) + b(t +w)

dy
dt

(t +w)

+
n∑
i=

ci(t +w)
[
xi
(
t +w – δi(t +w)

)
– di(t +w)

]
+ e(t +w)�y

(
t +w – λ(t +w)

)]

–H(t, t)y(t)

[
a(t)y(t) + b(t)

dy
dt

(t) +
n∑
i=

ci(t)
[
xi(t – δi) – di

]

http://www.journalofinequalitiesandapplications.com/content/2014/1/306
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+ e(t)�y
(
t – λ(t)

)]
+ r(t)Ty(t)

= r(t)Ty(t) – y(t)

[
a(t)y(t) + b(t)

dy
dt

(t) +
n∑
i=

ci(t)
[
xi(t – δi) – di

]
+ e(t)�y

(
t – λ(t)

)]
.

We have

(Txi)′(t) ≤ ri(t)Txi(t) ≤ riTxi(t) ≤ Txi(t)

and

(Ty)′(t) ≤ r(t)Ty(t)≤ rTy(t) ≤ Ty(t).

On the other hand, we find

–(Txi)′(t) = xi(t)

(
ai(t)xi(t) +

n∑
i=,i�=j

bij(t)
dxj
dt
(
t – τj(t)

)

+ c(t)
[
y
(
t – γ (t)

)
– d(t)

] + ei(t)�xi
(
t – λi(t)

))
– ri(t)Txi(t)

≤ ‖x‖
(
ai(t) +

n∑
i=,i�=j

bij(t) + c(t)‖x‖ + ei(t)Fi
(
t – λi(t)

))
– ri(t)Txi(t)

≤ ( + ri)
qi

 – qi
‖x‖

∫ w



(
ai(s) +

n∑
i=,i�=j

bij(s) + c(s)‖x‖ + ei(s)Fi
(
s – λi(s)

))
ds,

–riTxi(t)

= ( + ri)
∫ t+w

t

qi
 – qi

qi‖x‖
(
ai(s) +

n∑
i=,i�=j

bij(s) + c(s)‖x‖ + ei(s)Fi
(
s – λi(s)

))
ds,

–riTxi(t)≤ ( + ri)Txi(t) – riTxi(t) = Txi(t),

and we have

–(Ty)′(t) = y(t)

[
a(t)y(t) + b(t)

dy
dt

(t) +
n∑
i=

ci(t)
[
xi(t – δi) – di

] + e(t)�y
(
t – λ(t)

)]
– r(t)Ty(t)

≤ ‖x‖
[
a(t) + b(t) +

n∑
i=

ci(t)‖x‖ + e(t)F
(
t – λ(t)

)]
– r(t)Ty(t)

≤ ( + r)
q

 – q
‖x‖

∫ w



[
a(s) + b(s) +

n∑
i=

ci(s)‖x‖ + e(s)F
(
s – λ(s)

)]
ds

– r(t)Ty(t)
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= ( + r)
∫ t+w

t

q
 – q

q‖x‖
[
a(s) + b(s) +

n∑
i=

ci(s)‖x‖ + e(s)F
(
s – λ(s)

)]
ds

– rTy(t)

≤ ( + r)Ty(t) – rTy(t) = Ty(t).

So we know ‖(Tx)′‖ ≤ ‖Tx‖, so ‖Tx‖ = ‖Tx‖. We have

(Txi)(t) ≥ qi‖Tx‖, (Ty)(t)≥ q‖Tx‖, t ∈ [,w].

Hence Tx ∈ P.
(ii) In view of the proof of (i) we need to prove that

(Txi)′(t) ≤ Txi(t) and (Ty)′(t) ≤ Ty(t).

We obtain

(Txi)′(t) ≤ –qi‖x‖
(
ai(t)xi(t) +

n∑
j=,i�=j

bij(t)
dxj
dt
(
t – τj(t)

)
+ c(t)

[
y
(
t – γ (t)

)
– d(t)

]
+ ei(t)�xi

(
t – λi(t)

))
+ ri(t)Txi(t)

≤ ri(t)Txi(t) + qi ‖x‖
(
ai(t) +

n∑
j=,i�=j

bij(t) + qc(t)‖x‖ + ei(t)Fi
(
t – λi(t)

))

and

(Ty)′(t) ≤ –q‖x‖
[
a(t)y(t) + b(t)

dy
dt

(t) +
n∑
i=

ci(t)
[
xi(t – δi) – di

] + e(t)�y
(
t – λ(t)

)]
+ r(t)Ty(t)

≤ r(t)Ty(t) + q‖x‖
[
a(t) + b(t) +

n∑
i=

ci(t)‖x‖ + e(t)F
(
t – λ(t)

)]
. �

Lemma . Assume that (H)-(H) hold and RB < .
(i) If ri ≤ , r ≤ , then T : P ∩ 
R\
r → P is strict-set-contractive.
(ii) If (H) holds and ri > , r > , then T : P ∩ 
R\
r → P is strict-set-contractive.

Proof We only need to prove (i), since the proof of (ii) is similar. It is easy to see that T is
continuous and bounded. Now we prove that αC

w
(T(S)) ≤ RBαC

w
(S) for any bounded set

S ⊂ P ∩ 
R. Let η = αC
w
(S), then, for any positive number ε < RBη, there is a finite family

of subset Si ⊂ S satisfying S =
⋃

i Si with diam(Si) ≤ η + ε. Therefore

‖x – y‖ ≤ ε for any x, y ∈ Si.

As S and Si are precompact in C
w, it follows that there is a finite family of subsets Sij ⊂ Si

satisfying Si =
⋃

j Sij and

‖x – z‖ ≤ ε for any x, z ∈ Sij.
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In addition, for any

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
x
...
xn
y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ S

and t ∈ [,w] we have

∣∣(Txi)(t)∣∣ = ∫ t+w

t
Hi(t, s)xi(s)

(
ai(s)xi(s) +

n∑
j=,i�=j

bij(s)
dxj
ds
(
s – τj(s)

)

+ c(s)
[
y
(
s – v(s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds

≤ R

 – qi

∫ w



(
ai(s) +

n∑
j=,i�=j

bij(s) + c(s)R + ei(s)Fi
(
s – λi(s)

))
ds :=Mi

and

∣∣(Txi)′(t)∣∣ =
∣∣∣∣∣ri(t)Txi(t) – xi(t)

(
ai(t)xi(t) +

n∑
j=,i�=j

bij(t)
dxj
dt
(
t – τj(t)

)

+ c(t)
[
y
(
t – v(t)

)
– d(t)

] + ei(t)�xi
(
t – λi(t)

))∣∣∣∣∣
≤ riMi + R

(
ai +

n∑
j=,i�=j

bij + ciR +
pi

pi – 
ei

)
.

Also we have

∣∣(Ty)(t)∣∣ = ∫ t+w

t
H(t, s)y(s)

[
a(s)y(s) + b(s)

dy
ds

(s) +
n∑
i=

ci(s)
[
xi
(
s – δi(s)

)
– di(s)

]
+ e(s)�y

(
s – λ(s)

)]
ds

≤ R

 – q

∫ w



[
a(s) + b(s) +

n∑
i=

ci(s)R + e(s)Fy
(
s – λ(s)

)]
ds :=M

and

∣∣(Ty)′(t)∣∣ = ∣∣∣∣∣r(t)Ty(t)
+ y(t)

[
a(t)y(t) + b(t)

dy
dt

(t) +
n∑
i=

ci(t)
[
xi(t – δi) – di

] + e(t)�y
(
t – λ(t)

)]∣∣∣∣∣
≤ rM + R

(
a + b +

n∑
i=

ci +
p

p – 
e

)
.
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Applying the Arzela-Ascoli theorem, we know that T(S) is precompact in C
w. Then there

is a finite family of subset Sijk ⊂ Sij satisfying Sij =
⋃

k Sijk and

‖Tx – Tz‖ ≤ ε for any x, z ∈ Sijk

for any

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x
x
...
xn
y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, z =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z
z
...
zn
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ Sijk ,

we obtain

max
{∣∣(Txi)′(t) – (Tzi)′(t)

∣∣ : t ∈ [,w]
}

=max

{∣∣∣∣∣ri(t)Txi(t) – ri(t)Tzi(t) + xi(t)

(
ai(t)xi(t) +

n∑
j=,i�=j

bij(t)
dxj
dt
(
t – τj(t)

)

+ c(t)
[
y
(
t – v(t)

)
– d(t)

] + ei(t)�xi
(
t – λi(t)

))
– zi(t)

(
ai(t)zi(t)

+
n∑

j=,i�=j
bij(t)

dzj
dt
(
t – τj(t)

)
+ c(t)

[
n
(
t – v(t)

)
– d(t)

]
+ ei(t)�zi

(
t – λi(t)

))∣∣∣∣∣ : t ∈ [,w]

}

≤ riε + R

(
aiε +

n∑
j=,i�=j

bij(ε + η) + cε +
pi

pi – 
eiε

)

+ ε

(
aiR +

n∑
j=,i�=j

bijR + cR +
pi

pi – 
eiR

)
= RBη +Miε,

whereMi = ri + Rai + R
∑n

j=,i�=j bij + Rc + R pi
pi–

ei and

max
{∣∣(Ty)′(t) – (Tn)′(t)

∣∣ : t ∈ [,w]
}

=max

{∣∣∣∣∣r(t)Ty(t) – r(t)Tn(t) + y(t)
[
a(t)y(t) + b(t)

dy
dt

(t)
]

+
n∑
i=

ci(t)
[
xi(t – δi) – di

] + e(t)�y
(
t – λ(t)

)
– n(t)

[
a(t)n(t) + b(t)

dn
dt

(t) +
n∑
i=

ci(t)
[
zi(t – δi) – di

]
+ e(t)�n

(
t – λ(t)

)]∣∣∣∣∣ : t ∈ [,w]

}
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≤ rε + R

(
aε + b(ε + η) +

n∑
i=

ciε +
p

p – 
eε

)
+ ε

(
aR + bR +

n∑
i=

ciR +
p

p – 
eR

)

= RBη +M′
ε,

whereM′
 = r + Ra + Rb + R∑n

i= ci + R p
p–e andM =max{M′

,Mi}.
We have

‖Tx – Tz‖ ≤ RBη +Mε for any x, z ∈ Sijk .

As ε is arbitrarily small, it follows that

αC
w

(
T(S)

)≤ RBαC
w
(S).

Therefore, T is strict-set-contractive. �

Theorem . Assume that (H)-(H) hold.
(i) If ri ≤ , r ≤ , then the system has at least one positive w-periodic solution.
(ii) If (H) holds and ri > , r > , then system has at least one positive w-periodic

solution.

Proof We only need to prove (i), since the proof of (ii) is similar. Let R =max{ –qi
qi Mi

, –q
qM

}
and  < r <min{ qi(–qi)Mi

, q(–q)M
}. Then we find  < r < R. It follows from Lemmas . and .

that T : P ∩ 
R\
r → P is strict-set-contractive.
If there exists x̃ ∈ P ∩ ∂
r or x̃ ∈ P ∩ ∂
R such that Tx̃ = x̃ then the system has at least

one positive w-periodic solution.
Now, we shall show that condition (ii) of Lemma . holds.
Tx ≥ x so Tx – x ∈ P, which implies that

Txi(t) – Txi(t)≥ qi‖Tx – x‖ ≥  for all t ∈ [,w].

We obtain

Txi(t) =
∫ t+w

t
Hi(t, s)xi(s)

(
ai(s)xi(s) +

n∑
j=,i�=j

bij(s)
dxj
ds
(
s – τj(s)

)

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds

=


 – qi
‖x‖

∫ w



(
ai(s) +

n∑
j=,i�=j

bij(s) + c(s)R + ei(s)Fi
(
s – λi(s)

))
ds < qi‖x‖.

We find

‖x‖ ≤ ‖Tx‖ ≤ qi‖x‖ ≤ ‖x‖.

This is a contradiction.
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We only need prove that

Not Tx ≤ x, ∀x ∈ P ∩ ∂
R.

Suppose, for the sake of contradiction, that there exists x ∈ P ∩ ∂
R such that Tx > x.
Thus Tx – x ∈ P\{}. Furthermore, for any t ∈ [,w], we have

xi(t) – Txi(t)≥ qi‖x – Tx‖ ≥  for all t ∈ [,w],

and we obtain

Txi(t) =
∫ t+w

t
Hi(t, s)xi(s)

(
ai(s)xi(s) +

n∑
j=,i�=j

bij(s)
dxj
ds
(
s – τj(s)

)

+ c(s)
[
y
(
s – γ (s)

)
– d(s)

] + ei(s)�xi
(
s – λi(s)

))
ds

≥ qi
 – qi

qi‖x‖
∫ w



(
ai(s) +

n∑
j=,i�=j

bij(s) + c(s)R + ei(s)Fi
(
s – λi(s)

))
ds.

It follows that

‖x‖ > ‖Tx‖ > R,

which is a contradiction. Therefore, conditions (i) and (ii) hold. By Lemma ., we see that
T has at least one nonzero fixed point in P ∩ 
R\
r . Thus the system has at least one
positive w-periodic solution. The proof of Theorem . is complete. �
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