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Abstract
In this paper, we show the equivalence of convergence between the modified Mann
and Ishikawa iterations with errors for an asymptotically pseudocontractive mapping
under the condition of removing the bounded assumption. We also point out the
problems of (Rhoades and Soltuz in J. Math. Anal. Appl. 283:681-688, 2003; Xue in Bull.
Korean Math. Soc. 47(2):295-305, 2010; Xue in J. Math. Inequal. 4(3):345-354, 2010),
extend and improve the results of (Zeng in Acta Math. Sin. 47(2):219-228, 2004).
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1 Introduction
Let E be a real Banach space and E∗ be its dual space. The normalized duality mapping
J : E → E∗ is defined by

J(x) =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing. The single-valued normalized duality
mapping is denoted by j.
Let D be a nonempty closed convex subset of E and T :D→D be a mapping.

Definition . []
() T is called asymptotically nonexpansive if there exists a sequence {kn} ⊂ [, +∞)

with limn→∞ kn =  such that for all x, y ∈D,

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀n≥ ;

() T is called asymptotically pseudocontractive if there exists a sequence
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{kn} ⊂ [, +∞) with limn→∞ kn =  such that for all x, y ∈ D, there exists
j(x – y) ∈ J(x – y),

〈
Tnx – Tny, j(x – y)

〉 ≤ kn‖x – y‖, ∀n≥ .

Remark . [] It is very well known that the following conditions are equivalent:
(i) T is an asymptotically pseudocontractive map;
(ii) there exists kn ⊂ [, +∞) with limn→∞ kn =  such that

‖x – y‖ ≤ ∥∥x – y + r
[(
knI – Tn)x – (

knI – Tn)y]∥∥, ∀x, y ∈ D,∀r > . (.)

Definition . A mapping T is called uniformly L-Lipschitzs if there exists L >  such
that for any x, y ∈ D,

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀n≥ .

Obviously, the asymptotically pseudocontractive and asymptotically nonexpansive
mappings with the constant sequence {} are the usual definition of strongly pseudo-
contractive and nonexpansive mappings, respectively. An asymptotically nonexpansive
mapping is asymptotically pseudocontractive. The converse is not true in general; see [].
And it is clear that an asymptotically nonexpansive mapping is also uniformly L-Lipschitz
for some L ≥ , where L = supn≥{kn}.
Let us recall some iterations in the following.

Definition . For arbitrary given x ∈ D, the modified Ishikawa iteration with errors
{xn}∞n= is defined by

⎧⎨
⎩
yn = ( – βn – δn)xn + βnTnxn + δnvn,

xn+ = ( – αn – γn)xn + αnTnyn + γnun, ∀n≥ ,
(.)

where {un}, {vn} are any bounded sequences of D. {αn}, {βn}, {γn}, {δn} are four real se-
quences in [, ] satisfying αn + γn ≤  and βn + δn ≤  for any n ≥ .
If βn = δn =  for all n≥ , then (.) reduces to the modified Mann iteration with errors

{zn}∞n= as follows:

zn+ = ( – αn – γn)zn + αnTnzn + γnwn, ∀n≥ . (.)

If γn = δn =  for any n ≥ , then for x, z ∈ D, (.) and (.) reduce to the modified
Ishikawa and Mann iterations as follows, respectively (see [] and []):

⎧⎨
⎩
yn = ( – βn)xn + βnTnxn,

xn+ = ( – αn)xn + αnTnyn, ∀n≥ ,
(.)

zn+ = ( – αn)zn + αnTnzn, ∀n≥ . (.)
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Recently, many authors [, –] have proved the iterative approximation problem of
fixed point for uniformly L-Lipschitz asymptotically pseudocontractive mappings in Ba-
nach spaces. The results are as follows.

Theorem . ([], Theorem .) Let E be a real Banach space, D be a nonempty closed
convex subset of E and T : D → D be a uniformly L-Lipschitzian asymptotically �-
pseudocontractive mapping with the sequence {kn} ⊂ [, +∞), limn→∞ kn = . Let q ∈
F(T) = {x ∈D,Tx = x}. Let {an}, {cn} ⊂ [, ] and satisfy

∑∞
n= an = ∞, limn→∞ an =  and

cn = o(an) with an + cn ≤  for all n ≥ . Then the Mann iterative process with errors {un}
defined by

⎧⎨
⎩

∀u ∈D,

un+ = ( – an – cn)un + anTn
 un + cnvn, ∀n≥ ,

converges strongly to q.

Theorem . ([], Theorem .) Let E be a real Banach space, D be a nonempty closed
convex subset of E and Ti : D → D (i = , ) be two uniformly L-Lipschitzian asymptot-
ically �-pseudocontractive mappings with the sequences {kn}, {kn} ⊂ [, +∞) such that
limn→∞ kn = limn→∞ kn =  and F(T)∩F(T) = ∅. Let {an}, {bn} be two sequences in [, ]
satisfying the conditions: (i) limn→∞ an = limn→∞ bn = ; (ii)

∑∞
n= an = ∞. Then the follow-

ing two assertions are equivalent:
(i) the Mann iteration with errors {un} converges strongly to the fixed point of T;
(ii) the Ishikawa iteration with errors {xn} converges strongly to the fixed point of T ∩T.

Remark . There exists a gap in the proof process of Theorem . of []. It is in lines
- of P, ‘infn≥N

�(‖un+–q‖)
+‖un+–q‖ =  ⇒ limj→∞ ‖unj+ – q‖ = ’, where {unj – q} is an infi-

nite subsequence of the sequence {un – q}. Meanwhile, there exists a similar problem in
Theorem . of [] (for more details, see th of P). For this, we provide an example.
Let �(t) = t, t ∈ [, +∞), ‖un+ – q‖ = n, then infn≥N

�(‖un+–q‖)
+‖un+–q‖ = infn≥N

n
+n = , but there

does not exist any subsequence {nj} of the sequence {n} such that limj→∞ nj = . Hence
we cannot obtain that ∀ε > , ∀m ∈ N , ‖unj+m – q‖ < ε. So Theorems ., . of [] do not
hold.

Theorem . ([], Theorem ) Let X be a real Banach space, B be a nonempty closed con-
vex subset of X and {xn}, {zn} be defined by (.) and (.) with {αn}, {βn} satisfying the
following conditions: limn→∞ αn = , limn→∞ βn = ,

∑∞
n= αn = ∞. Let T be an asymptot-

ically pseudocontractive and uniformly L-Lipschitzian with L ≥  self-map of B. Let x∗ be
the fixed point of T . If x = z ∈ B, then the following two assertions are equivalent:

(i) the modified Mann iteration (.) converges to x∗ ∈ F(T);
(ii) the modified Ishikawa iteration (.) converges to x∗ ∈ F(T).

But there exists an error in the proof course for the above theorem, i.e., P the following
formula

∥∥(
+α

n
)
(xn+ – zn+)+αn

((
αnknI –Tn)xn+ – (

αnknI –Tn)zn+) ≥ (
+α

n
)‖xn+ – zn+‖
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does not hold. The reason is limn→∞ αnkn =  �= . By remark (.), the result of [] does not
hold.

In , Zeng [] gave another result as follows.

Theorem . ([], Theorem .) Let E be a real Banach space, D be a nonempty closed
convex subset of E and T : D → D be a uniformly L-Lipschitzian asymptotically pseudo-
contractive mapping with the sequence {kn} ⊂ [, +∞), limn→∞ kn = . Suppose that {xn} is
defined by (.), where {αn}, {γn}, {βn}, {δn} are four real number sequences in [, ] satis-
fying the following conditions:

(i) αn + γn ≤ , βn + δn ≤ ;
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞;

(iii)
∑∞

n= α
n < ∞,

∑∞
n= γn <∞;

(iv)
∑∞

n= αn(βn + δn) < ∞,
∑∞

n= αn(kn – ) < ∞.
Suppose that the range of T is bounded and q ∈ F(T) �= ∅. If there exists a strictly increasing
continuous function � : [, +∞)→ [, +∞) with �() =  such that

〈
Tnxn+ – q, j(xn+ – q)

〉 ≤ kn‖xn+ – q‖ –�
(‖xn+ – q‖), ∀n≥ , (.)

then the modified Ishikawa iteration with errors {xn} converges strongly to q ∈ F(T).

But this result is not perfect because of the assumption of bounded range.
The aim of this paper is to revise the results of the papers [, , ] and remove the as-

sumption T with bounded range []. We obtain that the modified Ishikawa iteration with
errors converges strongly to the fixed point of T and the modified Mann and Ishikawa
iterations with errors are equivalent. For these, we need the following lemmas.

Lemma . [] Let E be a real Banach space and let J : E → E∗ be a normalized duality
mapping. Then

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
, ∀j(x + y) ∈ J(x + y) (.)

for all x, y ∈ E.

Lemma . [] Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying the
inequality

an+ ≤ ( + cn)an + bn, n≥ . (.)

If
∑∞

n= cn < ∞,
∑∞

n= bn < ∞, then limn→∞ an exists.

Lemma . Let {θn}, {bn}, {cn}, {dn}, {en} and {tn} be six nonnegative real sequences sat-
isfying the following conditions:

(i) limn→∞ tn = ;
(ii)

∑∞
n= tn = ∞;

(iii) cn = o(tn), en = o(tn);
(iv)

∑∞
n= bn <∞,

∑∞
n= dn <∞.
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Let � : [, +∞) → [, +∞) be a strictly increasing and continuous function with �() = 
such that

θ
n+ ≤ ( + bn + cn)θ

n – tnσ (θn+) + dn + en, n≥ , (.)

where σ (t) = �(t)
+�(t)+t . If limn→∞ θn exists, then θn →  as n→ ∞.

Proof Since limn→∞ θn exists, we define M = supn θn +  and limn→∞ θn = δ. We declare
that δ = . If it is not this case, then δ > , there exists a natural numberN such that θn > δ



for n > N. Since � is strictly increasing, then σ (θn+) >
�( δ

 )
+�(M)+M . From condition (iii),

we obtain that there exists N > N such that cn < 


�( δ
 )

[+�(M)+M]M tn, en < 


�( δ
 )

+�(M)+M tn for
n >N. By (.), we have

θ
n+ ≤ θ

n –



�( δ
 )

 +�(M) +M tn + dn +Mbn, n≥ N, (.)

which implies that




�( δ
 )

 +�(M) +M tn ≤ θ
n – θ

n+ + dn +Mbn. (.)

It leads to




�( δ
 )

 +�(M) +M

n∑
k=N

tk ≤ θ
N – θ

n+ +
n∑

k=N

dk +M
n∑

k=N

bk

≤ θ
N +

n∑
k=N

dk +M
n∑

k=N

bk . (.)

From (iv) and (.), we have
∑∞

n= tn < ∞ which is a contradiction to condition (ii) and so
δ = , i.e., limn→∞ θn = . �

2 Main results
Theorem . Let D be a nonempty closed convex subset of the real Banach space E. Sup-
pose that T : D −→ D is a uniformly L-Lipschitz asymptotically pseudocontractive map-
ping with the real number sequence {kn} ⊂ [, +∞), limn→∞ kn = . Let {xn} and {zn} be
defined by (.) and (.), respectively, where {αn}, {βn}, {γn} and {δn} are four real number
sequences in [, ] satisfying the following conditions:

(i) αn + γn ≤ , βn + δn ≤ ;
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞;

(iii)
∑∞

n= α
n < ∞,

∑∞
n= γn <∞;

(iv)
∑∞

n= αn(βn + δn) < ∞,
∑∞

n= αn(kn – ) < ∞.
Suppose q ∈ F(T) �= ∅. If there exists a strictly increasing continuous function� : [, +∞) →
[, +∞) with �() =  such that

〈
Tnxn+ – Tnzn+, j(xn+ – zn+)

〉 ≤ kn‖xn+ – zn+‖ – σ
(‖xn+ – zn+‖

)
, ∀n≥ , (.)

where σ (t) = �(t)
+�(t)+t , then the following two assertions are equivalent:

http://www.journalofinequalitiesandapplications.com/content/2014/1/293
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() the modified Mann iteration with errors {zn} converges strongly to q ∈ F(T);
() the modified Ishikawa iteration with errors {xn} converges strongly to q ∈ F(T).

Proof If the modified Ishikawa iteration with errors sequence {xn} defined by (.) con-
verges strongly to q, then setting βn = δn = , ∀n ∈ N, we obtain the convergence of the
modified Mann iteration with errors sequence {zn} defined by (.). Conversely, we only
prove that ()⇒ ().
Since limn→∞ ‖zn – q‖ = , limn→∞ kn = , then {zn – q}, {kn} are bounded. Set M =

max{supn ‖zn – q‖, supn{kn + }, supn ‖un – q‖, supn ‖vn – q‖, supn ‖wn – q‖}.
First we prove that the sequence {xn – zn} is bounded.
From (.) and (.), we have

xn = xn+ + (αn + γn)xn – αnTnyn – γnun

= ( + αn)xn+ + αn
(
knI – Tn)xn+ – ( + kn)αnxn+

+ (αn + γn)xn + αn
(
Tnxn+ – Tnyn

)
– γnun

= ( + αn)xn+ + αn
(
knI – Tn)xn+

– ( + kn)αn
[
( – αn – γn)xn + αnTnyn + γnun

]
+ (αn + γn)xn + αn

(
Tnxn+ – Tnyn

)
– γnun

= ( + αn)xn+ + αn
(
knI – Tn)xn+ – knαnxn + ( + kn)αnγnxn + γnxn

– ( + kn)α
n
(
Tnyn – xn

)
+ αn

(
Tnxn+ – Tnyn

)
– ( + kn)αnγnun – γnun, (.)

and

zn = ( + αn)zn+ + αn
(
knI – Tn)zn+ – knαnzn + ( + kn)αnγnzn + γnzn

– ( + kn)α
n
(
Tnzn – zn

)
+ αn

(
Tnzn+ – Tnzn

)
– ( + kn)αnγnwn – γnwn. (.)

Using (.) and (.), we have

xn – zn = ( + αn)(xn+ – zn+) + αn
(
knI – Tn)(xn+ – zn+) – knαn(xn – zn)

+ ( + kn)αnγn(xn – zn) + γn(xn – zn) + ( + kn)α
n
(
xn – zn – Tnzn + Tnyn

)
+ αn

(
Tnxn+ – Tnyn – Tnzn+ + Tnzn

)
– ( + kn)αnγn(un –wn) – γn(un –wn).

Since T satisfies (.), so T is an asymptotically pseudocontractive map. Applying (.), we
get

‖xn – zn‖

≥ ( + αn)
∥∥∥∥(xn+ – zn+) +

αn

 + αn

(
knI – Tn)(xn+ – zn+)

∥∥∥∥
–

[
knαn + ( + kn)αnγn + γn

]‖xn – zn‖ – ( + kn)α
n
∥∥xn – zn – Tnzn + Tnyn

∥∥
– αn

∥∥Tnxn+ – Tnyn – Tnzn+ + Tnzn
∥∥ –

[
( + kn)αnγn + γn

]‖un –wn‖
≥ ( + αn)‖xn+ – zn+‖
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–
[
knαn + ( + kn)αnγn + γn

]‖xn – zn‖ – ( + kn)α
n
∥∥xn – zn – Tnzn + Tnyn

∥∥
– αn

∥∥Tnxn+ – Tnyn – Tnzn+ + Tnzn
∥∥ –

[
( + kn)αnγn + γn

]‖un –wn‖, (.)

which implies that

‖xn+ – zn+‖
≤ {

 +
[
(kn – )αn + ( + kn)αnγn + γn

]}‖xn – zn‖
+ ( + kn)α

n
∥∥xn – zn – Tnzn + Tnyn

∥∥ + αn
∥∥Tnxn+ – Tnyn – Tnzn+ + Tnzn

∥∥
+

[
( + kn)αnγn + γn

]‖un –wn‖
≤ {

 +
[
(kn – )αn + ( + kn)αnγn + γn

]}‖xn – zn‖
+ ( + kn)α

n
[‖xn – zn‖ +

∥∥Tnzn – Tnyn
∥∥]

+ αn
[∥∥Tnxn+ – Tnyn

∥∥ +
∥∥Tnzn+ – Tnzn

∥∥]
+

[
( + kn)αnγn + γn

]‖un –wn‖
≤ [

 + (kn – )αn +Mαnγn + γn +Mα
n
]‖xn – zn‖ +MLα

n‖zn – yn‖
+ αnL

(‖xn+ – yn‖ + ‖zn+ – zn‖
)
+ (Mαnγn + γn)M. (.)

From (.) and (.), we obtain the following inequalities:

‖yn – zn‖
=

∥∥( – βn – δn)(xn – zn) + βn
(
Tnxn – Tnzn

)
+ βn

(
Tnzn – q

)
– βn(zn – q) + δn(vn – zn)

∥∥
≤ ( + βnL)‖xn – zn‖ + (βnL + βn + δn)‖zn – q‖ + δn‖vn – q‖
≤ ( + βnL)‖xn – zn‖ + (βnL + βn + δn)M, (.)

‖xn+ – yn‖
=

∥∥(βn + δn – αn – γn)xn + αnTnyn – βnTnxn + γnun – δnvn
∥∥

=
∥∥(βn + δn – αn – γn)(xn – zn) + αn

(
Tnyn – Tnzn

)
+ αn

(
Tnzn – q

)
– αn(zn – q) – βn

(
Tnxn – Tnzn

)
– βn

(
Tnzn – q

)
+ βn(zn – q)

– γn(zn – q) + δn(zn – q) + γn(un – q) – δn(vn – q)
∥∥

≤ (βn + δn + αn + γn + βnL)‖xn – zn‖ + αnL‖yn – zn‖
+

[
(αn + βn)(L + ) + (γn + δn)

]‖zn – q‖ + γn‖un – q‖ + δn‖vn – q‖
≤ (βn + δn + αn + γn + βnL)‖xn – zn‖ + αnL‖yn – zn‖
+

[
(αn + βn)(L + ) + (γn + δn)

]
M. (.)

Taking (.) into (.), we obtain that

‖xn+ – yn‖ ≤ (βn + δn + αn + γn + βnL)‖xn – zn‖
+ αnL‖yn – zn‖ +

[
(αn + βn)(L + ) + (γn + δn)

]
M

http://www.journalofinequalitiesandapplications.com/content/2014/1/293
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≤ (βn + δn + αn + γn + βnL)‖xn – zn‖
+ αnL

[
( + βnL)‖xn – zn‖ + (βnL + βn + δn)M

]
+

[
(αn + βn)(L + ) + (γn + δn)

]
M

≤ [
βn + δn + αn(L + ) + γn + βnL + αnβnL

]‖xn – zn‖
+

[
(αn + βn)(L + ) + (γn + δn) + αnL(βnL + βn + δn)

]
M. (.)

From (.), we get

‖zn+ – zn‖ =
∥∥αn

(
Tnzn – q

)
+ γn(wn – q) – (αn + γn)(zn – q)

∥∥
≤ αn

∥∥Tnzn – q
∥∥ + γn‖wn – q‖ + (αn + γn)‖zn – q‖

≤ (αn + αnL + γn)‖zn – q‖ + γn‖wn – q‖
≤ (αn + αnL + γn)M. (.)

Substituting (.), (.) and (.) into (.), we have

‖xn+ – zn+‖ ≤ ( + Bn)‖xn – zn‖ +Cn, (.)

where Bn = (kn – )αn + Mαnγn + γn + Mα
n + MLα

n( + βnL) + αnL[βn + δn + αn(L + ) +
γn + βnL + αnβnL], Cn = MLα

n(βnL + βn + δn) + ML(α
n + α

nL + αnγn) + (Mαnγn +
γn)M + αnML[(αn +βn)(L+)+ (γn +δn) +αnL(βnL+βn +δn)] and satisfy

∑∞
n= Bn < ∞,∑∞

n=Cn < ∞. By Lemma ., limn→∞ ‖xn – zn‖ exists. Hence the sequence {xn – zn} is
bounded. SetM = supn{‖xn – zn‖}.
It follows from (.), (.), (.) and Lemma . that we have

‖xn+ – zn+‖

=
∥∥( – αn – γn)(xn – zn) + αn

(
Tnyn – Tnzn

)
+ γn(un –wn)

∥∥

≤ ( – αn)‖xn – zn‖ + αn
〈
Tnxn+ – Tnzn+, j(xn+ – zn+)

〉
+ αn

〈
Tnyn – Tnzn – Tnxn+ + Tnzn+, j(xn+ – zn+)

〉
+ Mγn‖xn+ – zn+‖

≤ ( – αn)‖xn – zn‖ + αn
[
kn‖xn+ – zn+‖ – σ

(‖xn+ – zn+‖
)]

+ αnL
(‖xn+ – yn‖ + ‖zn+ – zn‖

) · ‖xn+ – zn+‖ + MMγn

≤ ( – αn)‖xn – zn‖ + αnkn‖xn+ – zn+‖ – αnσ
(‖xn+ – zn+‖

)
+ En + LMαn‖zn+ – zn‖, (.)

where En = LM
αn[βn + δn + αn(L + ) + γn + βnL + αnβnL] + LMM[(αn + βn)(L + ) +

γn +δn +αnL(βnL+βn +δn)] + MMγn. Since limn→∞( – knαn) = , then there exists
N such that  >  – knαn > 

 for n >N. So (.) becomes

‖xn+ – zn+‖

≤ ( – αn)

 – αnkn
‖xn – zn‖ – αnσ

(‖xn+ – zn+‖
)
+ En + LMαn‖zn+ – zn‖

http://www.journalofinequalitiesandapplications.com/content/2014/1/293
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≤ [
 + (kn – )αn

]‖xn – zn‖ – αnσ
(‖xn+ – zn+‖

)
+ En + Mα


n + LMαn‖zn+ – zn‖. (.)

Since limn→∞ kn = , limn→∞ ‖zn – q‖ = , then (kn – )αn = o(αn), LMαn‖zn+ – zn‖ =
o(αn). By (iii) and (iv), we have

∑∞
n=(En + α

n) < ∞. Using Lemma ., we obtain that
limn→∞ ‖xn – zn‖ = . �

Theorem . Let D be a nonempty closed convex subset of the real Banach space E. Sup-
pose that T :D −→D is a uniformly L-Lipschitz asymptotically pseudocontractivemapping
with the real number sequence {kn} ⊂ [, +∞), limn→∞ kn = . Suppose that {xn} is defined
by (.), where {αn}, {γn}, {βn}, {δn} are four real number sequences in [, ] satisfying the
following conditions:

(i) αn + γn ≤ , βn + δn ≤ ;
(ii) limn→∞ αn = ,

∑∞
n= αn = ∞;

(iii)
∑∞

n= α
n < ∞,

∑∞
n= γn <∞;

(iv)
∑∞

n= αn(βn + δn) < ∞,
∑∞

n= αn(kn – ) < ∞.
Suppose q ∈ F(T) �= ∅. If there exists a strictly increasing continuous function� : [, +∞) →
[, +∞) with �() =  such that

〈
Tnxn+ – q, j(xn+ – q)

〉 ≤ kn‖xn+ – q‖ – σ
(‖xn+ – q‖), ∀n≥ , (.)

where σ (t) = �(t)
+�(t)+t , then the modified Ishikawa iteration with errors {xn} converges

strongly to q ∈ F(T).

Proof In the proof course of Theorem ., setting zn = q, for ∀n ≥ , we obtain Theo-
rem .. �

It is worth mentioning that the result extends Theorem . in [] by dropping the
bounded assumption. See the following example.

Example . Let E = R be a real space with the usual norm. Define T : E → E by Tx = 
x,

�(t) = t, t ∈ [, +∞), kn = , ∀n ≥ . Then � is a strictly increasing continuous function
with �() =  and T has a fixed point q = . For any x, y ∈ E, we obtain that

〈
Tnx – Tny, j(x – y)

〉

=
(



)n

‖x – y‖

≤ 

‖x – y‖

≤ ‖x – y‖ – ‖x – y‖
 + ‖x – y‖ + ‖x – y‖

= ‖x – y‖ – �(‖x – y‖)
 +�(‖x – y‖) + ‖x – y‖

= kn‖x – y‖ – σ
(‖x – y‖), ∀n≥ .

Then the mapping T satisfies Theorem .. But the range of T is not bounded.

http://www.journalofinequalitiesandapplications.com/content/2014/1/293
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Corollary . Let D be a nonempty closed convex subset of the real Banach space E. Sup-
pose that T :D −→D is a uniformly L-Lipschitz asymptotically pseudocontractivemapping
with the real number sequence {kn} ⊂ [, +∞), limn→∞ kn = . Let {xn} be defined by (.),
where {αn}, {βn} are two real number sequences in [, ] satisfying the following conditions:

(i) limn→∞ αn = ,
∑∞

n= αn = ∞;
(ii)

∑∞
n= α

n < ∞,
∑∞

n= αn(kn – ) <∞;
(iii)

∑∞
n= αnβn <∞.

Suppose q ∈ F(T) �= ∅. If there exists a strictly increasing continuous function� : [, +∞) →
[, +∞) with �() =  such that

〈
Tnxn+ – q, j(xn+ – q)

〉 ≤ kn‖xn+ – q‖ – σ
(‖xn+ – q‖), ∀n≥ , (.)

where σ (t) = �(t)
+�(t)+t , then themodifiedMann iteration {un} converges strongly to q ∈ F(T).

Proof In Theorem ., setting γn = δn = , we obtain Corollary .. �

The control conditions of the parameters in Corollary . are different from those of
Theorem . of []. See the following example.

Example . Set αn = √
n , βn = √

n , kn =  + √
n , ∀n ≥ . Then αn,βn →  as n → ∞ and∑∞

n= αn = ∞, but
∑∞

n= α
n = ∞,

∑∞
n= αnβn = ∞ and

∑∞
n= αn(kn – ) = ∞. On the other

hand, let

αn =

⎧⎨
⎩
, n = i – ,

i , n = i,

βn =

⎧⎨
⎩
i – , n = i – ,

i , n = i,

kn =  +

n
, ∀i≥ ,n ≥ .

Then αn →  as n → ∞,
∑∞

n= αn = ∞ and
∑∞

n= α
n < ∞,

∑∞
n= αnβn < ∞,

∑∞
n= αn(kn –

) < ∞, but βn →  as n→ ∞ does not hold.

Remark . Our theorems extend and improve the corresponding results of [, –] in
the following sense:
() We point out the problems of [, , ] and revise them.
() We remove the hypothesis T with bounded range and obtain the same result by the

different method from [].
() We extend formula (.) of [] to (.) in this paper.
() We also obtain the equivalence between the convergence of the modified Mann

iteration with errors and the modified Ishikawa iteration with errors for an
asymptotically pseudocontractive mapping.
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