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1 Introduction

The family of all real (or complex) valued sequences is denoted by w. w is a vector space
under point-wise addition and scalar multiplication. Any vector subspace of w is called a
sequence space. In the literature, the classical sequence spaces are symbolized with £,
¢o, ¢ and £, which are called all bounded, null, convergent and absolutely p-summable
sequence spaces, respectively, where 1 < p < oo.

A sequence space X with a linear topology is called a K-space provided each of the maps
pi: X — Cdefined by p;(x) = x; is continuous for all i € N. It is assumed that w is always en-
dowed with its locally convex topology generated by the sequence {p,}5°, of semi-norms
on w, where p,(x) = |x,|, n=0,1,2,.... A K-space X is called an FK-space provided X
is a complete linear metric space. An FK-space whose topology is normable is called a
BK-space [1].

The classical sequence spaces £+, ¢p and c are BK-spaces with their usual sup-norm

defined by [|%|lco = SUpP;ey [#x| and £, is a BK-space with its £,-norm defined by

1
»
)

oo
— 2
llle, = (Z | )
k=0

where p € [1,00) [2].
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Given an infinite matrix A = (a,x) with a,x € C, for all n,k € N and a sequence x € w, the
A-transform of x is defined by

(Ax), = Zﬂnkxk (L1)

k=0

and is assumed to be convergent for all #n € N [3]. For using simple notations here and
in what follows, the summation without limits runs from 0 to co. If x € X implies that
Ax € Y, then we say that A defines a matrix mapping from X into Y and denote it by

A : X — Y. By using the notation (X : Y), we mean the class of all infinite matrices A such

that A: X — Y.
For an arbitrary sequence space X, X4 is called the domain of an infinite matrix A and
is defined by
X4 = {x:(xk)ew:AxeX}, (1.2)

which is also a sequence space. By bs and cs we denote the spaces of all bounded and con-
vergent series, and define them by means of the matrix domain of the summation matrix

S = (sux) such that bs = (£)s and cs = cg, respectively, where S = (s,) is defined by

1, 0<k<mn,

0, k>n,

Suk =

which is a triangle matrix too. A matrix A is called a triangle if 4,4 = 0 for k > nand a,,, # 0
for all #, k € N. Moreover, a triangle matrix A uniquely has an inverse A~! = B which is also
a triangle matrix.

Unless stated otherwise, any term with negative subscript is assumed to be zero. The
theory of matrix transformation was prompted by summability theory which was obtained
by Cesaro, Riesz and others. The Cesaro mean of order one and the Riesz mean according
to the sequence p = (p,) are defined by using the matrices C = (¢,x) and RP = (rfl’k) such
that

1 Pk
— 0<k<m ko 0<k<nm
) — — 7 ) — — )
Cuk = n+l and rzk: Py
01 k>n, 0, k>n,

respectively, where pg >0, p, > 0 (n>1) and P, = ZZ:oPk-

Moreover, the theory of matrix transformation has been continued until nowadays.
Many authors have constructed new sequence spaces by using matrix domain of infinite
matrices. For example, (€x)y, and cy, in [4], a, and al, in [5], aj and &, in [6], Z(u,v; £,,)
in [7], X, and X in [8], €], and €, in [9], rt., v and L in [10], r; in [11], € and e’ in
[12], ¢ and ¢y in [13]. Also, many authors introduced new sequence spaces by using espe-
cially difference matrices. For instance, ¢y(A), c(A) and £,(A) in [14], ¢o(A2?), ¢(A?%) and
loo(A?) in [15], af(A) and a’(A) in [16], co(A™), c(A™) and £oo(A™) in [17], Aco(p), Ac(p)
and Al (p) in [18], co(u : A?), c(u : A?) and Lo (u : A2) in [19], co(u, A, p), c(u, A, p) and
Loo(ut, A, p) in [20], co(u, A%, p), c(u, A2, p) and £, (u, A%, p) in [21], A™cy(p), A™c(p) and
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A"oo(p) in [22], r1(p, B") in [23], Lo, &, & and £, in [24], co(B), ¢(B), £~ (B) and £,(B) in
[25], co(A), c(A) and £, (A™) in [26], AV X in [27].

In this work, we introduce two sequence spaces c5(G™) and ¢*(G™) generated by the
composition of mth order generalized difference matrix and lambda matrix and define an
isomorphism between new sequence spaces and classical sequence spaces. Afterward, we
investigate inclusion relations and obtain the Schauder basis of those spaces. Furthermore,
we determine their «-, 8- and y -duals. Lastly, we characterize some matrix classes related

to those spaces.

2 Two new sequence spaces
In this section, we give some historical information and define the sequence spaces c}(G™)
and c*(G™) generated by the composition of mth order generalized difference matrix and
lambda matrix. Moreover, we speak of some inclusion relations.

The idea of using the notion of A-convergent was first motivated by Mursaleen and No-
man in [28]. They defined the sequence spaces cf, £ and ¢* by means of the Lambda
matrix A = (A,x) such that

1§
ch = {x =(xx) € W:nlglolo o Z(kk = hk-1)xk = 0}»
" k=0

1 n
d={x=()ew: lim — E (Ak = Ae_1)xx exists
(R

and

n

D Ok = )i

k=0

1
— <00,
An

neN

o = {xz(xk)ew:sup

where A = (Ay) consists of positive reals such that
O<Xlg<Aii<--- and lim A =00
k— 00
and the lambda matrix A = () is defined by

%, 0<k<n,
)"nk: "
0, k>n

for all k, n € N. Here, we would like to touch on a point, if we take A, = n+1and A, = P,, for
all 7 € N, we obtain the Cesaro mean of order one and the Riesz mean matrix, respectively.
So, the A = (A,x) matrix generalizes the C = (c,x) and R? = (r7,) matrices.

Also, they improved their work by constructing the spaces c(A) and ¢*(A) in [29]. The

sequence spaces cj(A) and ¢*(A) are defined by

1
ch(A) = 3 x = (w) €w: lim — > (ke = M)k — X41) = 0
" k=0
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and
N L1 .
H(A)=1x=(x) ew: lim — Z()“k — Mie—1) (e — x4_1) exists ¢,
n—00 )"n o

where A is a difference matrix.
Afterward, Sénmez and Basar defined the sequence spaces cj(B) and ¢*(B) in [30] and

improved Mursaleen and Noman’s work as follows:
1 n
ch(B) = 1a= () €w: im — > (hx = Aeor) (brap + byxe 1) = 0
n—00 )\n o
and
1 n
*B)={x=(x)ew: lim — Z()“k — Ai<1)(b1xy + boxy_1) exists ¢,
n—00 )\n o

where B = B(by, by) is called a double band (generalized difference) matrix defined by

bl’ k: n,
bnk= b2, k=l’l—1,

0, otherwise.

Let r and s be non-zero real numbers, then the mth order generalized difference matrix
G"(r,s) = (gn(r,)) is defined by

(;”:kl)rm—n+k—1sn—k, max{0,n—m +1} <k <n,

gﬂ(”, S) = .
’ otherwise

for all m,k € N and m € Ny = {2,3,4,...}. We want to recall that G*(r,s) = B(b1, b»),
G3(r,s) = B(bi, by, b3), G*(r,s) = B(b1,by,b3,bs), G°(r,s) = B(b1, by, b3, b4,b5), ... where
B(by,b,), B(by, by, b3), B(by, by, b3,bs), B(by, by, b3, by, bs), ... are double band (that is, the
generalized difference matrix), triple band, quadruple band, quinary band, ... matrix, re-
spectively. Moreover, G"(1,-1) = A™, G*(1,-1) = A, G3(1,-1) = A2. So, our results ob-
tained from the matrix domain of the mth order generalized difference matrix G™ are
more general and more extensive than the results on the matrix domain of B(b, b,),
B(by, by, b3), B(by, by, b3, by), B(b1, by, b3, by, bs), ..., A™, A% and A.

By considering the definition of mth order generalized difference matrix G, we define
the sequence spaces cj(G™) and ¢*(G™) as follows:

1 & - (m-1
A m\ _ _ L1 . _ m—19-1_1 _
cO(G ) = {x = (xp) € W')E{.‘o ™ Z()‘k Ak_l)Z( 9 )r "Xy = 0}

k=0 9=0

and

n m

1 -1
cA(Gm) = {x =(x) ew: nlilgo )»_n Z()‘k — A1) Z <W1ﬁ )rm—ﬂ—lsﬁxk_ﬁ exists}.

-1
k=0 ¥=0

Page 4 of 20
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If we recall the notation of (1.2), the sequence spaces cj(G™) and c*(G™) can be redefined
by the matrix domain of G as follows:

5(G") = (c§)gn and  *(G™) = cim. (2.1)

Also, by constructing a triangle matrix 7" = (¢"*) so that

ﬁ "o (mz;l)'”m_ﬂ_lsﬂ (Ak+o — Aro—1)s k<n—m+2,

ﬁ ;‘4:—11 (}1’;1:11)rm71931971()»n_m+0+1 - An—mﬂ?)’ k =n—-m+ 27

- g:zl (:;1:21) rm_§+lsﬂ_2()‘n—m+§+l - )\n—mﬂ?)’ k=n-m+3,
L=

"My =hnp)+ (Zn D250 ht) K=n-1,

r’“(AAﬂn—xn_l), k=n

0, k>n

for all n, k € Nand m € N,, we rearrange the sequence spaces cj(G") and ¢*(G™) by means
of the 7" = (¢/**) matrix as follows:

cé (G”’) =(co)ym» and (G’”) = Cpm.. (2.2)

So, for a given arbitrary sequence x = (xx), the T7"*-transform of x is denoted by

Vi = T”‘)‘ = Z(A - A 1)2 (m 1) m=i= lsﬂx] 9 (2.3)

for all k € N, or, by using another representation, we can rewrite the sequence y = (yx) as
follows:

k—m+1 m-1

1 m=1\ ,. o1 s (A = Akr)
Vi = " 2 ;( 9 )rm U  (Mjaw — Ajrg_1)xy e Txk (2.4)

for all k € N.

Theorem 2.1 The sequence spaces cj(G™) and ¢*(G™) are BK-spaces according to their
norms defined by

¥l om = lelowigm = [ (T"), o = supl (T, |
ne

Proof It is known that ¢ and ¢y are BK-spaces with their sup-norm [2]. Also (2.2) holds
and 7" = (t”“) is a triangle matrix. If we consider these three facts and Theorem 4.3.12
of Wilansky [3], we conclude that ¢f;(G™) and ¢*(G™) are BK -spaces. This step completes
the proof. d

Theorem 2.2 The sequence spaces ci(G™) and ¢*(G™) are linearly isomorphic to the se-
quence spaces ¢y and c, respectively.
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Proof To avoid the repetition of similar statements, we give the proof of the theorem for
only the sequence space c¢*(G™). For the proof, the existence of a linear bijection between
the spaces ¢*(G™) and ¢ should be shown. Let us define a transformation L such that L :
MG™) — ¢, L(x) = T"*x. Then it is clear that for all x € ¢*(G™), L(x) = T"x € c. Also, it
is trivial that L is a linear transformation and x = 0 whenever L(x) = 0. On account of this,
L is injective.

Furthermore, for a given sequence y = (yx) € ¢, we define the sequence x = (x;) as follows:

~ m+k— ] 2 s\ 7 A
_V’“Z< )<_;> 2.V Nk

i=j-1 J

for all k € N. Then, for every n € N, we obtain
m-1 m—1
- m—-9-1_19 k—i i
1
§< 4 ) § e = Z( ) M= Mt

i=k-1

If we consider the equality above, for all n € N, we conclude that

(T’”Ax)n = }Ll Z A — Ak 1)2 <Wl 1) (AT L

" k=0
k
‘—Z*k—kkl DNy,
S i—k—1 )”"_)‘kl
1 n k
:Z Z(—l)k_l)w’yi

k=0 i

i
>

-1

I
=
3

So, T"x = y and since y € ¢, we bring to a conclusion that T"*x € ¢. Hence, we conclude
that x € ¢*(G™) and L(x) = y. Thus L is surjective.
Furthermore, we have for every x € c*(G™) that

|2 = 1772, = Nl @m-

So, L is norm preserving. As a consequence, L is a linear bijection. This step shows that

the spaces c*(G™) and c are linearly isomorphic, namely ¢*(G™) = c. O
Lemma 2.3 [28] The inclusions ¢y C ¢ and ¢ C c* hold.
Theorem 2.4 The inclusion cj(G™) C c*(G™) strictly holds.

Proof 1t is well known that every null sequence is also convergent. So, the inclusion
c5(G™) C *(G™) holds. Now we define a sequence x = (x;) such that

« ,
1 m+j—2 sY
w2 (005) )
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for all k € N. Then we obtain by (2.3) that

n

("), = % > O = M) =1

" k=0

for all # € N, which gives us that T"*x = e, where e = (1,1,...). Then T"*x =e € ¢\ ¢y,
namely x € ¢*(G™) \ ¢}(G™). This shows that the inclusion c}j(G™) C c*(G™) strictly holds.
This step completes the proof. O

Theorem 2.5 Ifr +s =0, the inclusion ¢ C cj(G™) is strict.

Proof It is clear that Ax, A%x, A3x,..., A"x € ¢y whenever x € ¢. Assume that 7 +s = 0 and
x € c. Then G"x = "1 A™x and because of A™x € ¢y, G« € co. If we consider this fact
and Lemma 2.3, we deduce that G"x € c}. This shows that x € cj(G™). As a consequence,
¢ C ¢§(G™) holds. Now we define a sequence y = (yx) such that y; = lnk for all k € N and
k > m. Then it is obvious that G™y € ¢ but y ¢ c. Because of ¢y C c}j, we conclude that
G™y € c;; and thereby y € ¢§(G™). This shows that ¢ C ¢}(G™) strictly holds if r + s = 0.
This step completes the proof. d

If we combine Theorem 2.4 and Theorem 2.5, we give the following result.
Corollary 2.6 Ifr+s =0, the inclusions cy C c5(G™) and ¢ C ¢*(G™) are strict.

Now we define two sequences x = (x¢) and y = (y) such that xx = ﬁ and yx = vk + m for
all k € Nand m € N,. Then we can see that x € £, and G"x € ¢y C cé, namely x € cé(G”‘).

Also, it is clear that y € ¢§(G™) \ £«. These two facts give us the following corollary.

Corollary 2.7 The spaces {, and cj(G™) overlap but the space L, does not include the
space ci(G™).

Now we give the following lemma which is needed in the next theorem.
Lemma 2.8 [31] A € ({x:co) < limyoo ) 4 |amk] =0

Theorem 2.9 Let a sequence z = (zx) be as follows:

m—

)»k—)»k 1

1
< ) PG Mgy = Merp-1)
0

9=
for all k € N. Then the inclusion £, C ci(G™) is strict if and only if z € c}.

Proof We assume that the inclusion £+, C c5(G™) holds. Then it is obvious that for every
x € Loo, x € cj(G™), namely T € ¢y. Thus T™ € (£os : co). If we consider the last result

and Lemma 2.8, we deduce that

lim Z £ =
n—00 k |nk
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Also, by using the definition of the matrix 7" = (¢£7%"), we obtain by the equality above
that

(2.5)

— (m-1
Z( ) M My = hkana)| =

9=0

1 —-m+1
s s Z

1
An

3
L

lim =0, (2.6)
n— 00

¥ -1

m-—1
( )rm_ﬁsﬁ_l(kn—wﬁﬂﬂ = Ammeo)

%
I

1
(2.7)

m—l)\__)\’_ -1 mfz)\—)\_
" (et = Ay2) + (m = )" 2s(hy — A1) -0, (2.34m)

lim
n— 00

lim |22 < 0. (2.4+m)

By considering equalities (2.5), (2.6), ..., (2.3+m) and (2.4+m), we conclude that

Ao A A
lim 22t -, lim 2222 -1, .., lim 22l g
n—00 A, n—>00 A, n—-oo A,

For all n > m — 1, we write the equality as follows:

m-1

m—1
Z( ) G (Mkesy = Merp—1)

¥=0

n-m+1

1
An

k=0

A 1 n-m+1
n—-m+1
= [ > (- kk_l)zk:|. (2.5+m)

A A
n n-m+1 k=0

By combining lim,,_, o A”;\—;’“l =1, (2.5) and (2.5+m), we deduce that

n-m+1

(A — Ak_1)zi = 0. (2.6+m)

lim
n—00 }‘n—m+l k=0
This means that z € c}.

On the contrary, assume that z € cjj. Then we have (2.6+m). Also, for all n > m — 1, we

write the inequality as follows:

0 rm_l)hn—mﬂ +(m— l)rm_zs(}\n—mﬂ —Xo)+ -+ smt (A = An2)
An
1 n-m+1 m-1 m—1
= Z( 9 )Vmﬁlﬁ()»kﬂ—kkmﬂ
" k=0 =0
1 n-m+1|m-1 -1
=< )\_ < 9 )rm_ﬁ_lsﬁ()‘-kH? — Mew—1)
" k=0 [9=0
1 n-m+1
= D O = M)z
" k=0
1 n-m+l
< Z (Ak = Ax-1)zk

Page 8 of 20
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By combining the last inequality and (2.6+m), we conclude that

lim rWFl)"n—mﬂ + (Wl - l)rmizs()\n—m-*—Z - )"0) L Smil()‘-n - )"m—Z)

n—00 An

=0.

Specially, if we take (r=1,s=-1and m =2), (r=1,s=-1 and m = 3), ... then we ob-

A”;& =0, lim,— o A’HA’# =0, ..., respectively. These equalities show that

tain lim,,_, oo »
(2.4+m), (2.3+m), ..., (2.6) and (2.5) hold, respectively. If we take into account the last
result and Lemma 2.8, we conclude that 7" € (£« : ¢o). Thus, the inclusion £, C ¢§(G™)

holds and is strict by Corollary 2.7. This step completes the proof. g

3 The Schauder basis and «-, 8- and y-duals
In the present section, we give the Schauder basis and determine «-, 8- and y -duals of the
sequence spaces cj(G™) and ¢*(G™).

Let (X, ||x||x) be a normed space. A set {x; : xx € X, k € N} is called a Schauder basis for
X if for every x € X there exist unique scalars pu, k € N, such that x = >, exy; i.e.,

— 0

n
5=
k=0

X

as n — o0.

Note that the Hamel basis is free from topology, whereas the Schauder basis involves
convergence and hence topology (see [1]).

For example, let ) be a sequence with 1 in the kth place and zeros elsewhere, and let
e=(1,1,1,...). Then the sequence (¢®)) is a Schauder basis for cy. Moreover, {e, e, ¢!, ...}
is a Schauder basis for c.

Due to the transformation, L defined in the proof of Theorem 2.2 is an isomorphism;
the inverse image of (e¥)) is a Schauder basis for c§(G™).

Now we give the following results.

Theorem 3.1 Let oy = {T"*x} for all k € N. For every fixed k € N, we define the sequences
h = (hy) and W (r,s) = {(H)G, (r,8)}nen such that

1 K m+k=2 s\
= (") ()

k=0
1 Loy, O
r r r(A=Ag-1) s(ier1=A)
hnm(z)(r,s) = m, k=n,
0, k>n.

Then
(a) The sequence {hg{;(r, 8)}ken is a Schauder basis for the space cj(G™), and every

x € c4(G™) has a unique representation of the form

X = Z okh%x(r, s).
k
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(b) The sequence {h, h(’g;\(r, s), hg‘)*(r,s), ...} is a Schauder basis for the space c*(G™), and

every x € ¢*(G™) has a unique representation of the form
x=1lh+ Z h(k) s

where | = limy_, o O%.
If we consider the results of Theorem 2.1 and Theorem 3.1, we give the following result.
Corollary 3.2 The sequence spaces ci(G™) and c*(G™) are separable.

Given arbitrary sequence spaces X and Y, the set M(X, Y) defined by
M(X,Y) = {y (yx) € w:xy = (xryx) € Y for all x = (x) eX} (3.1)

is called the multiplier space of X and Y. For a sequence space Z with Y C Z C X, one can
easily observe that M(X,Y) C M(Z,Y) and M(X,Y) C M(X, Z) hold, in turn.
By using the sequence spaces ¢;, ¢s and bs and notation (3.1), the o-, 8- and y-duals of

a sequence space X are defined by
X% = M(X, 1), XP =M(X,cs) and X" =M(X,bs),

respectively.
Now we give some properties which are needed in the next lemma

sup Z Zank < 00, (3.2)
KeF ™, kek

sup Y _ || < 0o, (33)
neN P

lim a,x = o foreachkeN, (3.4)
n— 00

lim Xk:ank =a, (3.5)

where F is the collection of all finite subsets of N and p € [1, 00).

Lemma 3.3 [31] Let A = (a,k) be an infinite matrix, then the following hold:
() A=(am) € (co:ty)=(c:¥4y) < (3.2) holds withp =1,
A = (au) € (co : ¢) < (3.3) and (3.4) hold,;
= (aux) € (c:c) & (3.3),(3.4) and (3.5) hold,
=(aur) € (co : Loo) = (c: lso) & (3.3) holds;
= (auw) € (co : £p) = (c: £,) < (3.2) holds with 1 < p < o0;
= (aux) € (c:co) & (3.3), (3.4) and (3.5) hold with oy =0,Vk € N and a = 0;
= (@) € (co : co) © (3.3) and (3.4) hold with ay = 0, Yk € N.

Page 10 of 20
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Theorem 3.4 Define the set u"(r,s) by

it

keK

)

where the matrix D™ = (dr *) is defined by means of the sequence a = (a,,) by

(r,s)—{a (a,) ew: supz

KeF ™,

(m+n k— 2))\ (m+n —k— 3) "

1 n-k
rm—Z( r) [ = g1) SOuder1 =) ]ﬂn, k < n,
mh A
r,S) = — =
e (1,8) TGy k=n,
0, k> n.

Then {c}(G™)}* = {(G™)}* = ul™(r,s).

Proof For given a = (a,) € w, by taking into account the sequence x = (x,,) that is defined

in the proof of Theorem 2.2, we obtain

1 & (min—k-2\( s\"*& .
ﬂanZWZ m—2 —; Z( 1 ﬂnyl D ()’)

k=0 i=k-1

for all n € N. If we consider the equality above, we conclude that ax = (a,x,) € £; whenever
x = (%) € cj(G™) or *(G™) if and only if D"y € ¢; whenever y = (yx) € ¢o or c. This means
that a = (a,) € {cj(G™)}* = {c*(G™)} if and only if D" € (co : £1) = (c: £1). If we consider

this and Lemma 3.3(i), we write

> d

keK

a=(a,) € {cé(G’")}a = {CA(G’”)}O( & sup Z

KeF ™,

and conclude {c}(G™)}* = {c*(G™)}* = u"™(r,s). This step completes the proof. O

Theorem 3.5 Given the sets uy™(r,s), s (r,s), uy*(r,s) and ul™(r,s) as follows:

[ee] _._2 n—j
ug')‘(r,s): ﬂz(ﬂk)EW:Z(m+n ] )(—E> a; exists forall k e N ¢,
pn m—2 r

ugnl(r,S)z a=(ay) ew: supZ’bk (n)|<oo}

neN k=0
An
dy| <00

rm-l ()"n - )\n—l)

uy *(r,s) = {a = (ay) € w:sup
neN

and

‘ .
1 j—2 /
u™(r,s) = {a =(ax) ew: E :W E :(’”ﬂ:iz )<_§> ak convergeS},
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where

ax
(A — A1)

1 n s n—j m+n—j-2 m+n—j-3
+ 5 Z(__) ( ( m—2 ) + ( m=2 ) )dj . k<n
AN r(hie = A1) (i = M)

Then {cl(G™)} = uly*(r,s) N uf*(r,s) N uf™(r,s) and {(G™)}F = uf™(r,s) N u*(r,s) N

by (n) = xk[

ug™(r, s).

Proof Given a = (ax) € w, by considering the sequence x = (x;) that is defined in the proof

of Theorem 2.2, we obtain

n n k k—i— k- J o ;
S (L)) e e

k= j=0 i=j-1

n-1 a
K
=S —— %
2k |:fm‘1()»k = Ak-1)

k=0
1 n s n—j (m+n—j—2) (m+n—j—3)
o _2 m-2 + m-2 >a, X
rm=2 1=2k+:1( f> <"(kk —hie) SO =) ) Y
An

+ —a
rm—l ()‘n - )\n—l) )

n-1 A
= bmA ‘ nyn
kX:o: €+ (A _)‘n—l)ﬂ )

= V"0

Vn € N, where the matrix V" = (%) is defined as follows:

byt (n), k<mn,

A _ A _
Vi (r,s) = A k=,
0, k>n

for all n,k € N. Then ax = (axxr) € cs whenever x = (x) € ¢5(G™) if and only if V"™ y € ¢
whenever y = (y) € co. This shows that a = (a;) € {c5(G™)}* if and only if V""* € (co : ¢). If

we consider this and Lemma 3.3(ii), we obtain

[oe] i 2 n-j
Z <m M ) (—f) aj exists VkeN, (3.6)
m—2 r

n-1
supZ|bk’”*(n)| <00 (3.7)
neN k=0
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and

A
sup z a,| < oo. (3.8)

neN rM71()‘n - )\n—l)

These results show that {c}(G™)}¥ = uy"*(r,s) N uy™(r,s) N uf™(r,5).

By using a similar way, we obtain a = (a;) € {¢*(G™)}? if and only if V""* € (c: c). If we
consider this and Lemma 3.3(iii), we conclude that (3.6), (3.7) and (3.8) hold.

Moreover, one can easily see that

2 j n-1 .
- 1ZZ(WZ+J )(_;) ﬂkngkk(n)*'im G ) ZV

As a consequence, we derive from (3.5) that

[R5

Since condition (3.6) is weaker, it can be omitted.
Therefore we conclude that {c*(G™)}f = u*(r,s) N uf*(r,s) N u’g“(r, s). This step com-

pletes the proof. g
Theorem 3.6 {c}(G™)}" = {M(G™)} = uf™*(r,s) N u*(r,s).

Proof It can be proved by combining the proof method of Theorem 3.5 and Lemma 3.3(iv).
O

4 Matrix transformations
In the present section, we determine some matrix classes related to the sequence spaces
c5(G™) and ¢*(G™). Let us begin with two lemmas which are needed in the proof of theo-

rems.
Lemma 4.1 [3] Any matrix map between BK-spaces is continuous.

Lemma 4.2 [32] Let X, Y be any two sequence spaces, A be an infinite matrix and U be a
triangle matrix. Then A€ (X : Yy) © UA € (X:Y).

For simplicity of notation, in what follows, we use the following equalities.

. Ank
b i) = | =
ik () = D |:rm‘1()»/< — Ak-1)

B (L S v
2 = Meat) s =20 )|

j=k+1

and

LS ()
o= ey ) (R o )

j=k+1
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for all n,k,i € N provided the convergence of the series. Also, unless stated otherwise, we
assume throughout Section 4 that the sequence y = (y¢) is connected with the sequence

x = (x¢) as follows:

for all k € N.

Theorem 4.3 Given an infinite matrix A = (a,) of complex numbers, the following state-
ments hold.
(1) Let1<p<oo. Then A € ("(G™): £,) if and only if

bt ) 4.1

Iilelg:z ; <00 (4.1)

supZ|b (z)| <00 (meN), (4.2)

1 & (m +j-2 s >

— ( ) (——) Ak ccs (neN), (4.3)

r P m—2 r o
Ak
m ————agu=a, (meN), (4.4)

(an) € Lp. (4.5)

(2) A e (c*(G™): Ls) if and only if (4.3) and (4.4) hold, and

supZ|bm’\| < 00, (4.6)
neN P
(an) € Leo- (4.7)

Proof For a given sequence x = (x;) € c*(G™), we assume that conditions (4.1)-(4.5) hold.
Then, by remembering Theorem 3.5, we deduce that {a,}ren € {c*(G™)}? for all n € N.
Therefore the A-transform of x exists. Moreover, it is trivial that y € ¢, namely 3/ € C >
limg—, o0 |yx — | = 0. Furthermore, if we consider Lemmas 3.3 and 4.1, we conclude that the
matrix B™ e (c: £,), where1 < p < oo.

Now, we consider the following equality:

A .
Zankxk = Zb (l)y]( + mam‘yi (I’l,l (S N) (4‘8)

Then B™y exists and the series Y, b”}?yk converges for all # € N. Moreover, we derive
+n—j—2 (m+n—/ -3

from (4.3) that the series Z (=) [ Ak’” Azk 5+ sy
N

and therefore lim;_, . b (l) b”’A Hence, if we take limit (4.8) side by side as i — oo, we

]a,,, converges for all n,k e N;
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obtain by (4.4) that
> awxi= Y by + la, (4.9)
3 X

for all n € N. Then we write the equality above as follows:
Au(x) = B (y) + la, (4.10)

for all € N. Also, we know (B™y),, € £, and a = (a,) € £,. Then we have ||Bmxy||ep <00
and ||ayl¢, < 0o. By taking £,,-norm (4.10) side by side, we obtain that

lAxlle, < |B" 3], + llanlle, <o

Therefore Ax € £, and so0 A € (¢*(G™) : £,).

On the contrary, assume that A € (c*(G™) : £,), where 1 < p < oo. This leads us to
{@nctken € {H(G™)P for all n € N. Then, if we consider Theorem 3.5, conditions (4.2)
and (4.3) hold.

We know that ¢*(G™) and £, are BK-spaces. If we combine this fact and Lemma 4.1, we

conclude that there is a constant M > 0 such that
lAxle, < Ml|xlogm) (4.11)

holds for all x € ¢*(G™). Let us define a sequence z = (z) such that z =), h%*(r, s) for
every fixed k € N, where the sequence /() (r,s) = (i (r,8)} ey and K € F.
We know from Theorem 3.1 that z € ¢*(G™) and T"‘A(h%\(r, s)) = e®, Yk € N. Then we

obtain

Izl gm = | T @), = =1

Z T (i (r,5))

keK

3 e

keK

Loo loo

and

An@) =Y AW 9) = SN an i (rs) = S b

keK keK j keK

for all # € N. Since inequality (4.11) holds for every x € ¢*(G™), the inequality is satisfied

also for z € ¢*(G™). Then we have

"
)=

for all K € F. Therefore (4.1) holds. If we consider this and Lemma 3.3(v), we conclude
that B™ = (b/}) € (c : £,). Given y = (y) € ¢ \ co. Then x € ¢*(G™) so that y = T"*(x).

(=

n

Db

keK
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Hence Ax and B™"y exist. So one can easily see that the series Y, a,xxx and >, b7 yi are

convergent for all # € N. Thus, we conclude that
i-1
tim SO = S @)
k=0 k
or all 7 € N. As a consequence, if we pass to the limit in (4.8) as i — 0o, we obtain

lim ———a,,;y; exists
i—oo 1Y (X; — Aiq) i

for all n € N. Because of y = (yx) € ¢\ ¢, this leads us

A

lim ——a,,; exists
i=oo P (A = A1)

for all n € N. Therefore, (4.4) holds. If we take [ = limk_, o ¥, also relation (4.10) holds.
Because of Ax, By € {,, we conclude a = (a,) € {,. The last result is the necessity of
(4.5). This step completes the proof of part (1).

If we take Lemma 3.3(iv) instead of Lemma 3.3(v), the second part of theorem can be

proved similarly. 0

Moreover, from (4.12) we derive

i-1
tim 3 b00] = Y62 < sup 3l 13
0 X neN

If we combine (4.13) and (4.6), we conclude that

i-1
lim " |b(3)|
i—00 o
exists for each # € N. So, condition (4.6) implies condition (4.2).

Theorem 4.4 Given an infinite matrix A = (auk) of complex numbers, the following state-

ments hold.
(1) Let1 <p<oo. Then A € (c§(G™) : £,) if and only if (4.1) and (4.2) hold, and

[} n—j m+n—j-2 m+n—j-3
Z(—£> |: ( m=2 ) + ( m=2 ) ]anj exists forallmk €N, (4.14)

TN r(e = Ak-1) - S(hgar = Ax)
[o¢]
{ A } €ls forallneN (4.15)
—  au . .
P (A = Aieot) o

(2) A€ (c5(G™): L) if and only if (4.6), (4.14) and (4.15) hold.

Proof From Lemma 3.3(iv) and (v), we know (co : £,) = (¢ : £,) and (co : £oo) = (€2 €oo).

Therefore, the theorem can be proved similarly. O
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Theorem 4.5 A € (X (G™) : c) if and only if (4.3), (4.4) and (4.6) hold, and the conditions

lim a, = a, (4.16)

n— 00

lim b7 =ay, VkeN, (4.17)

n— 00

lim > b= (4.18)
k

hold.

Proof Given arbitrary x € ¢*(G™), we assume that conditions (4.3), (4.4), (4.6), (4.16),
(4.17) and (4.18) hold for an infinite matrix A = (a,x). We consider Theorem 3.5, and con-
dition (4.6) implies condition (4.2). Then we conclude that {@,}ren € {c*(G™)} for all
n €N, and so Ax exists. From (4.6) and (4.17) we have

k k

Z ogj] = lim Z|b;’;*| < supZ|bZ]’4X| <00
- n—>00 4« neN <

j=0 j=0 j

for all k € N. This leads us to () € €1, and therefore the series D", a(yx — [) converges,
where limg_, o, yx = [ and so y € c. If we combine Lemma 3.3(iii) with conditions (4.6),
(4.17) and (4.18), we deduce that B"™* = (b;"k’\) € (c: ¢). Also from condition (4.9) we have

A,lx) = Zankxk = Zb,’f}fyk +la,.
k k
With a basic calculation, we obtain
> amxe= Y B -D+ 1Y by +lay (4.19)
k k k

for all #n € N. If we pass to the limit in (4.19), we write

lim A,@) =) owli =) + e + a).
k

This shows that Ax € ¢ and so A € (c*(G™) : ¢).

On the contrary, we assume that A € (c*(G™) : ¢). Since every convergent sequence
is also bounded, we deduce that A € (c*(G™) : £4). If we consider this fact and Theo-
rem 4.3, we conclude that conditions (4.3), (4.4) and (4.6) hold. Let us take the sequences
hg’()*(r,s) = {h;’%(r,s)},,eN ecr(G" andz=Y, h%\(r, s) defined in Theorem 3.1 and the
proof of Theorem 4.3, respectively. Then it is clear that Ah(”’kj\(r, 8) = {0 }yen € c for ev-
ery k € N. Hence condition (4.17) holds. Moreover, from Theorem 2.2 we know that the

transformation L : ¢*(G™) — ¢, L(x) = T""x is continuous. So, we write

T 2) =y T (Wi (rs) = Y 8w =1
k k


http://www.journalofinequalitiesandapplications.com/content/2014/1/274

Bisgin and Sénmez Journal of Inequalities and Applications 2014, 2014:274 Page 18 of 20
http://www.journalofinequalitiesandapplications.com/content/2014/1/274

for all n € N, where

1, k=n,
0, k+#n.

5nk =

This leads us to 7"z = e € c and so z € ¢*(G™).

It is well known that ¢ is a BK-space. If we combine Theorem 2.1 and Lemma 4.1, we
conclude that the matrix transformation A : ¢*(G”) — ¢ is continuous. Therefore the
equality

Au(2) =Y Au(Hiy(rs)) = Y b
k k

holds for all # € N. This shows that (4.18) holds.

By considering conditions (4.6), (4.17), (4.18) and Lemma 3.3(iii), we deduce that B"* =
(b;”k*) € (c:¢). Hence, (4.3), (4.4) and the last result give us that condition (4.10) holds for
all x € ¢*(G™) and y € c. Finally, if we consider Ax, By € ¢ and (4.10), we conclude that
condition (4.16) holds. This step completes the proof. d

Theorem 4.6 A € (c*(G™): ¢o) if and only if (4.3), (4.4), (4.6) and the following conditions

hold:
lim a, =0, (4.20)
n— 00
lim b7 =0, VkeN, (4.21)
n— 00
lim > bk =o. (4.22)
k

Proof In Theorem 4.5, if we take Lemma 3.3(vi) instead of Lemma 3.3(iii), the present
theorem can be proved by using a similar way. O

Theorem 4.7 A € (c§(G™) : ¢) if and only if (4.6), (4.14), (4.15) and (4.17) hold.

Proof If we combine Lemma 3.3(ii) Theorem 3.5 and Theorem 4.4(2), the present theorem
can be proved by using a similar way. d

Theorem 4.8 A € (¢}(G™): co) if and only if (4.6), (4.14), (4.15), (4.20), (4.21) and (4.22)
hold.

Proof 1f we combine Lemma 3.3(vii), Theorem 3.5 and Theorem 4.7, the present theorem
can be proved by using a similar way. O

Now, by using Lemma 4.2, we give one more result.

Corollary 4.9 Given an infinite matrix A = (a,x) of complex numbers, we define a matrix
E = (eyx) as follows:

1 n m-1 m—1
enk = )\‘— Z()\] - )‘-j—l) Z ( 9 >rm—l7—ls17a(jﬁ)k
" j=0 9=0
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Jor all n,k € N. Then A belongs to matrix classes (co : c§(G™)), (c: ¢§(G™), (£ : c5(G™)),
(co : M(G™)), (c: (G™)) and (£, : ¢*(G™)) if and only if E belongs to matrix classes (co : ¢o),

(c:

f(G™) of almost convergent sequences derived by the domain of mth order generalized

o) (Up:co), (co:¢), (c:c) and (£, :c).

Finally, we put a period to our work by mentioning as of now that the sequence space

difference matrix will be defined and studied analogously in the next paper.
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