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Mustafa Cemil Bişgin* and Abdulcabbar Sönmez

*Correspondence:
mbisgin@erciyes.edu.tr
Department of Mathematics,
Faculty of Science, Erciyes
University, Talas Street,
Melikgazi/Kayseri, 38039, Turkey

Abstract
In this work, we introduce two sequence spaces cλ0 (G

m) and cλ(Gm) generated by the
composition ofmth order generalized difference matrix and lambda matrix and
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spaces. Afterward, we investigate inclusion relations and obtain the Schauder basis of
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1 Introduction
The family of all real (or complex) valued sequences is denoted by w. w is a vector space
under point-wise addition and scalar multiplication. Any vector subspace of w is called a
sequence space. In the literature, the classical sequence spaces are symbolized with �∞,
c, c and �p which are called all bounded, null, convergent and absolutely p-summable
sequence spaces, respectively, where  ≤ p < ∞.
A sequence space Xwith a linear topology is called a K-space provided each of themaps

pi : X →C defined by pi(x) = xi is continuous for all i ∈N. It is assumed thatw is always en-
dowed with its locally convex topology generated by the sequence {pn}∞n= of semi-norms
on w, where pn(x) = |xn|, n = , , , . . . . A K-space X is called an FK-space provided X
is a complete linear metric space. An FK-space whose topology is normable is called a
BK-space [].
The classical sequence spaces �∞, c and c are BK-spaces with their usual sup-norm

defined by ‖x‖∞ = supk∈N |xk| and �p is a BK-space with its �p-norm defined by

‖x‖�p =

( ∞∑
k=

|xk|p
) 

p

,

where p ∈ [,∞) [].
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Given an infinite matrix A = (ank) with ank ∈C, for all n,k ∈N and a sequence x ∈ w, the
A-transform of x is defined by

(Ax)n =
∞∑
k=

ankxk (.)

and is assumed to be convergent for all n ∈ N []. For using simple notations here and
in what follows, the summation without limits runs from  to ∞. If x ∈ X implies that
Ax ∈ Y , then we say that A defines a matrix mapping from X into Y and denote it by
A : X −→ Y . By using the notation (X : Y ), we mean the class of all infinite matrices A such
that A : X −→ Y .
For an arbitrary sequence space X, XA is called the domain of an infinite matrix A and

is defined by

XA =
{
x = (xk) ∈ w : Ax ∈ X

}
, (.)

which is also a sequence space. By bs and cs we denote the spaces of all bounded and con-
vergent series, and define them by means of the matrix domain of the summation matrix
S = (snk) such that bs = (�∞)S and cs = cS , respectively, where S = (snk) is defined by

snk =

⎧⎨
⎩, ≤ k ≤ n,

, k > n,

which is a triangle matrix too. AmatrixA is called a triangle if ank =  for k > n and ann �= 
for all n,k ∈N. Moreover, a triangle matrix A uniquely has an inverse A– = Bwhich is also
a triangle matrix.
Unless stated otherwise, any term with negative subscript is assumed to be zero. The

theory ofmatrix transformationwas prompted by summability theorywhichwas obtained
by Cesàro, Riesz and others. The Cesàro mean of order one and the Riesz mean according
to the sequence p = (pn) are defined by using the matrices C = (cnk) and Rp = (rpnk) such
that

cnk =

⎧⎨
⎩


n+ , ≤ k ≤ n,

, k > n,
and rpnk =

⎧⎨
⎩

pk
Pn , ≤ k ≤ n,

, k > n,

respectively, where p > , pn ≥  (n≥ ) and Pn =
∑n

k= pk .
Moreover, the theory of matrix transformation has been continued until nowadays.

Many authors have constructed new sequence spaces by using matrix domain of infinite
matrices. For example, (�∞)Nq and cNq in [], arp and ar∞ in [], ar and arc in [], Z(u, v;�p)
in [], Xp and X∞ in [], erp and er∞ in [], rt∞, rt and rtc in [], rtp in [], er and erc in
[], c̃ and c̃ in []. Also, many authors introduced new sequence spaces by using espe-
cially difference matrices. For instance, c(�), c(�) and �∞(�) in [], c(�), c(�) and
�∞(�) in [], ar(�) and arc(�) in [], c(�m), c(�m) and �∞(�m) in [], �c(p), �c(p)
and ��∞(p) in [], c(u : �), c(u : �) and �∞(u : �) in [], c(u,�,p), c(u,�,p) and
�∞(u,�,p) in [], c(u,�,p), c(u,�,p) and �∞(u,�,p) in [], �mc(p), �mc(p) and
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�m�∞(p) in [], rq(p,Bm) in [], �̂∞, ĉ, ĉ and �̂p in [], c(B), c(B), �∞(B) and �p(B) in
[], c(�(m)), c(�(m)) and �∞(�(m)) in [], �(m)

u X in [].
In this work, we introduce two sequence spaces cλ(Gm) and cλ(Gm) generated by the

composition ofmth order generalized difference matrix and lambda matrix and define an
isomorphism between new sequence spaces and classical sequence spaces. Afterward, we
investigate inclusion relations and obtain the Schauder basis of those spaces. Furthermore,
we determine their α-, β- and γ -duals. Lastly, we characterize somematrix classes related
to those spaces.

2 Two new sequence spaces
In this section, we give some historical information and define the sequence spaces cλ(Gm)
and cλ(Gm) generated by the composition ofmth order generalized difference matrix and
lambda matrix. Moreover, we speak of some inclusion relations.
The idea of using the notion of λ-convergent was first motivated by Mursaleen and No-

man in []. They defined the sequence spaces cλ, �λ∞ and cλ by means of the Lambda
matrix � = (λnk) such that

cλ =

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)xk = 

}
,

cλ =

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)xk exists

}

and

�λ
∞ =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣∣∣ 
λn

n∑
k=

(λk – λk–)xk

∣∣∣∣∣ <∞
}
,

where λ = (λk) consists of positive reals such that

 < λ < λ < · · · and lim
k→∞

λk =∞

and the lambda matrix � = (λnk) is defined by

λnk =

⎧⎨
⎩

λk–λk–
λn

, ≤ k ≤ n,

, k > n

for all k,n ∈N. Here, wewould like to touch on a point, if we take λn = n+ and λn = Pn, for
all n ∈ N, we obtain the Cesàromean of order one and the Rieszmeanmatrix, respectively.
So, the � = (λnk) matrix generalizes the C = (cnk) and Rp = (rpnk) matrices.
Also, they improved their work by constructing the spaces cλ(�) and cλ(�) in []. The

sequence spaces cλ(�) and cλ(�) are defined by

cλ(�) =

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)(xk – xk–) = 

}
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and

cλ(�) =

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)(xk – xk–) exists

}
,

where � is a difference matrix.
Afterward, Sönmez and Başar defined the sequence spaces cλ(B) and cλ(B) in [] and

improved Mursaleen and Noman’s work as follows:

cλ(B) =

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)(bxk + bxk–) = 

}

and

cλ(B) =

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)(bxk + bxk–) exists

}
,

where B = B(b,b) is called a double band (generalized difference) matrix defined by

bnk =

⎧⎪⎪⎨
⎪⎪⎩
b, k = n,

b, k = n – ,

, otherwise.

Let r and s be non-zero real numbers, then themth order generalized difference matrix
Gm(r, s) = (gmnk(r, s)) is defined by

gmnk(r, s) =

⎧⎨
⎩

(m–
n–k

)
rm–n+k–sn–k , max{,n –m + } ≤ k ≤ n,

, otherwise

for all n,k ∈ N and m ∈ N = {, , , . . .}. We want to recall that G(r, s) = B(b,b),
G(r, s) = B(b,b,b), G(r, s) = B(b,b,b,b), G(r, s) = B(b,b,b,b,b), . . . where
B(b,b), B(b,b,b), B(b,b,b,b), B(b,b,b,b,b), . . . are double band (that is, the
generalized difference matrix), triple band, quadruple band, quinary band, . . . matrix, re-
spectively. Moreover, Gm(, –) = �m, G(, –) = �, G(, –) = �. So, our results ob-
tained from the matrix domain of the mth order generalized difference matrix Gm are
more general and more extensive than the results on the matrix domain of B(b,b),
B(b,b,b), B(b,b,b,b), B(b,b,b,b,b), . . . , �m, � and �.
By considering the definition of mth order generalized difference matrix Gm, we define

the sequence spaces cλ(Gm) and cλ(Gm) as follows:

cλ
(
Gm)

=

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑxk–ϑ = 

}

and

cλ
(
Gm)

=

{
x = (xk) ∈ w : lim

n→∞

λn

n∑
k=

(λk – λk–)
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑxk–ϑ exists

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/274
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If we recall the notation of (.), the sequence spaces cλ(Gm) and cλ(Gm) can be redefined
by the matrix domain of Gm as follows:

cλ
(
Gm)

=
(
cλ

)
Gm and cλ

(
Gm)

= cλGm . (.)

Also, by constructing a triangle matrix Tmλ = (tmλ
nk ) so that

tmλ
nk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


λn

∑m–
ϑ=

(m–
ϑ

)
rm–ϑ–sϑ (λk+ϑ – λk+ϑ–), k < n –m + ,


λn

∑m–
ϑ=

(m–
ϑ–

)
rm–ϑ sϑ–(λn–m+ϑ+ – λn–m+ϑ ), k = n –m + ,


λn

∑m–
ϑ=

(m–
ϑ–

)
rm–ϑ+sϑ–(λn–m+ϑ+ – λn–m+ϑ ), k = n –m + ,

...
rm–(λn––λn–)+(m–)rm–s(λn–λn–)

λn
, k = n – ,

rm–(λn–λn–)
λn

, k = n,

, k > n

for all n,k ∈ N andm ∈ N, we rearrange the sequence spaces cλ(Gm) and cλ(Gm) bymeans
of the Tmλ = (tmλ

nk ) matrix as follows:

cλ
(
Gm)

= (c)Tmλ and cλ
(
Gm)

= cTmλ . (.)

So, for a given arbitrary sequence x = (xk), the Tmλ-transform of x is denoted by

yk =
(
Tmλx

)
k =


λk

k∑
j=

(λj – λj–)
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑxj–ϑ (.)

for all k ∈ N, or, by using another representation, we can rewrite the sequence y = (yk) as
follows:

yk =

λk

k–m+∑
j=

m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑ (λj+ϑ – λj+ϑ–)xj + · · · + rm–(λk – λk–)

λk
xk (.)

for all k ∈N.

Theorem . The sequence spaces cλ(Gm) and cλ(Gm) are BK-spaces according to their
norms defined by

‖x‖cλ(Gm) = ‖x‖cλ(Gm) =
∥∥(
Tmλx

)
n

∥∥∞ = sup
n∈N

∣∣(Tmλx
)
n

∣∣.
Proof It is known that c and c are BK-spaces with their sup-norm []. Also (.) holds
and Tmλ = (tmλ

nk ) is a triangle matrix. If we consider these three facts and Theorem ..
of Wilansky [], we conclude that cλ(Gm) and cλ(Gm) are BK-spaces. This step completes
the proof. �

Theorem . The sequence spaces cλ(Gm) and cλ(Gm) are linearly isomorphic to the se-
quence spaces c and c, respectively.

http://www.journalofinequalitiesandapplications.com/content/2014/1/274
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Proof To avoid the repetition of similar statements, we give the proof of the theorem for
only the sequence space cλ(Gm). For the proof, the existence of a linear bijection between
the spaces cλ(Gm) and c should be shown. Let us define a transformation L such that L :
cλ(Gm) −→ c, L(x) = Tmλx. Then it is clear that for all x ∈ cλ(Gm), L(x) = Tmλx ∈ c. Also, it
is trivial that L is a linear transformation and x =  whenever L(x) = . On account of this,
L is injective.
Furthermore, for a given sequence y = (yk) ∈ c, we define the sequence x = (xk) as follows:

xk =


rm–

k∑
j=

(
m + k – j – 

m – 

)(
–
s
r

)k–j j∑
i=j–

(–)j–i
λi

λj – λj–
yi

for all k ∈N. Then, for every n ∈N, we obtain

m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑxk–ϑ =

k∑
i=k–

(–)k–i
λi

λk – λk–
yi.

If we consider the equality above, for all n ∈N, we conclude that

(
Tmλx

)
n =


λn

n∑
k=

(λk – λk–)
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑxk–ϑ

=

λn

n∑
k=

(λk – λk–)
k∑

i=k–

(–)k–i
λi

λk – λk–
yi

=

λn

n∑
k=

k∑
i=k–

(–)k–iλiyi

= yn.

So, Tmλx = y and since y ∈ c, we bring to a conclusion that Tmλx ∈ c. Hence, we conclude
that x ∈ cλ(Gm) and L(x) = y. Thus L is surjective.
Furthermore, we have for every x ∈ cλ(Gm) that

∥∥L(x)∥∥∞ =
∥∥Tmλx

∥∥∞ = ‖x‖cλ(Gm).

So, L is norm preserving. As a consequence, L is a linear bijection. This step shows that
the spaces cλ(Gm) and c are linearly isomorphic, namely cλ(Gm)∼= c. �

Lemma . [] The inclusions c ⊂ cλ and c⊂ cλ hold.

Theorem . The inclusion cλ(Gm)⊂ cλ(Gm) strictly holds.

Proof It is well known that every null sequence is also convergent. So, the inclusion
cλ(Gm) ⊂ cλ(Gm) holds. Now we define a sequence x = (xk) such that

xk =


rm–

k∑
j=

(
m + j – 
m – 

)(
–
s
r

)j
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for all k ∈N. Then we obtain by (.) that

(
Tmλx

)
n =


λn

n∑
k=

(λk – λk–) = 

for all n ∈ N, which gives us that Tmλx = e, where e = (, , . . .). Then Tmλx = e ∈ c \ c,
namely x ∈ cλ(Gm) \ cλ(Gm). This shows that the inclusion cλ(Gm)⊂ cλ(Gm) strictly holds.
This step completes the proof. �

Theorem . If r + s = , the inclusion c⊂ cλ(Gm) is strict.

Proof It is clear that �x,�x,�x, . . . ,�mx ∈ c whenever x ∈ c. Assume that r + s =  and
x ∈ c. Then Gmx = rm–�mx and because of �mx ∈ c, Gmx ∈ c. If we consider this fact
and Lemma ., we deduce that Gmx ∈ cλ. This shows that x ∈ cλ(Gm). As a consequence,
c ⊂ cλ(Gm) holds. Now we define a sequence y = (yk) such that yk = lnk for all k ∈ N and
k > m. Then it is obvious that Gmy ∈ c but y /∈ c. Because of c ⊂ cλ, we conclude that
Gmy ∈ cλ and thereby y ∈ cλ(Gm). This shows that c ⊂ cλ(Gm) strictly holds if r + s = .
This step completes the proof. �

If we combine Theorem . and Theorem ., we give the following result.

Corollary . If r + s = , the inclusions c ⊂ cλ(Gm) and c⊂ cλ(Gm) are strict.

Nowwe define two sequences x = (xk) and y = (yk) such that xk = k
k+ and yk =

√
k +m for

all k ∈N andm ∈ N. Then we can see that x ∈ �∞ and Gmx ∈ c ⊂ cλ, namely x ∈ cλ(Gm).
Also, it is clear that y ∈ cλ(Gm) \ �∞. These two facts give us the following corollary.

Corollary . The spaces �∞ and cλ(Gm) overlap but the space �∞ does not include the
space cλ(Gm).

Now we give the following lemma which is needed in the next theorem.

Lemma . [] A ∈ (�∞ : c) ⇔ limn→∞
∑

k |ank| = .

Theorem . Let a sequence z = (zk) be as follows:

zk =

∣∣∣∣∣ 
λk – λk–

m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑ (λk+ϑ – λk+ϑ–)

∣∣∣∣∣
for all k ∈N. Then the inclusion �∞ ⊂ cλ(Gm) is strict if and only if z ∈ cλ.

Proof We assume that the inclusion �∞ ⊂ cλ(Gm) holds. Then it is obvious that for every
x ∈ �∞, x ∈ cλ(Gm), namely Tmλ ∈ c. Thus Tmλ ∈ (�∞ : c). If we consider the last result
and Lemma ., we deduce that

lim
n→∞

∑
k

∣∣tmλ
nk

∣∣ = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/274
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Also, by using the definition of the matrix Tmλ = (tmλ
nk ), we obtain by the equality above

that

lim
n→∞


λn

n–m+∑
k=

∣∣∣∣∣
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑ (λk+ϑ – λk+ϑ–)

∣∣∣∣∣ = , (.)

lim
n→∞

∣∣∣∣∣ 
λn

m–∑
ϑ=

(
m – 
ϑ – 

)
rm–ϑ sϑ–(λn–m+ϑ+ – λn–m+ϑ )

∣∣∣∣∣ = , (.)

... (.)

lim
n→∞

∣∣∣∣ rm–(λn– – λn–) + (m – )rm–s(λn – λn–)
λn

∣∣∣∣ = , (.+m)

lim
n→∞

∣∣rm–∣∣λn – λn–

λn
= . (.+m)

By considering equalities (.), (.), . . . , (.+m) and (.+m), we conclude that

lim
n→∞

λn–

λn
= , lim

n→∞
λn–

λn
= , . . . , lim

n→∞
λn–m+

λn
= .

For all n≥m – , we write the equality as follows:


λn

n–m+∑
k=

∣∣∣∣∣
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑ (λk+ϑ – λk+ϑ–)

∣∣∣∣∣
=

λn–m+

λn

[


λn–m+

n–m+∑
k=

(λk – λk–)zk

]
. (.+m)

By combining limn→∞ λn–m+
λn

= , (.) and (.+m), we deduce that

lim
n→∞


λn–m+

n–m+∑
k=

(λk – λk–)zk = . (.+m)

This means that z ∈ cλ.
On the contrary, assume that z ∈ cλ. Then we have (.+m). Also, for all n ≥ m – , we

write the inequality as follows:

 ≤
∣∣∣∣ rm–λn–m+ + (m – )rm–s(λn–m+ – λ) + · · · + sm–(λn – λm–)

λn

∣∣∣∣
=

∣∣∣∣∣ 
λn

n–m+∑
k=

m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑ (λk+ϑ – λk+ϑ–)

∣∣∣∣∣
≤ 

λn

n–m+∑
k=

∣∣∣∣∣
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑ (λk+ϑ – λk+ϑ–)

∣∣∣∣∣
=


λn

n–m+∑
k=

(λk – λk–)zk

≤ 
λn–m+

n–m+∑
k=

(λk – λk–)zk .

http://www.journalofinequalitiesandapplications.com/content/2014/1/274
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By combining the last inequality and (.+m), we conclude that

lim
n→∞

rm–λn–m+ + (m – )rm–s(λn–m+ – λ) + · · · + sm–(λn – λm–)
λn

= .

Specially, if we take (r = , s = – and m = ), (r = , s = – and m = ), . . . then we ob-
tain limn→∞ λn–λn–

λn
= , limn→∞ λn––λn–

λn
= , . . . , respectively. These equalities show that

(.+m), (.+m), . . . , (.) and (.) hold, respectively. If we take into account the last
result and Lemma ., we conclude that Tmλ ∈ (�∞ : c). Thus, the inclusion �∞ ⊂ cλ(Gm)
holds and is strict by Corollary .. This step completes the proof. �

3 The Schauder basis and α-, β- and γ -duals
In the present section, we give the Schauder basis and determine α-, β- and γ -duals of the
sequence spaces cλ(Gm) and cλ(Gm).
Let (X,‖x‖X) be a normed space. A set {xk : xk ∈ X,k ∈ N} is called a Schauder basis for

X if for every x ∈ X there exist unique scalars μk , k ∈N, such that x =
∑

k μkxk ; i.e.,

∥∥∥∥∥x –
n∑

k=

μkxk

∥∥∥∥∥
X

−→ 

as n→ ∞.
Note that the Hamel basis is free from topology, whereas the Schauder basis involves

convergence and hence topology (see []).
For example, let e(k) be a sequence with  in the kth place and zeros elsewhere, and let

e = (, , , . . .). Then the sequence (e(k)) is a Schauder basis for c. Moreover, {e, e, e, . . .}
is a Schauder basis for c.
Due to the transformation, L defined in the proof of Theorem . is an isomorphism;

the inverse image of (e(k)) is a Schauder basis for cλ(Gm).
Now we give the following results.

Theorem . Let σk = {Tmλx}k for all k ∈N. For every fixed k ∈N, we define the sequences
h = (hn) and hmλ

(k) (r, s) = {hmλ
n(k)(r, s)}n∈N such that

hn =


rm–

n∑
k=

(
m + k – 
m – 

)(
–
s
r

)k

,

hmλ
n(k)(r, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


rm– (– s

r )
n–k[ (

m+n–k–
m– )λk

r(λk–λk–)
+ (m+n–k–

m– )λk
s(λk+–λk )

], k < n,
λk

rm–(λk–λk–)
, k = n,

, k > n.

Then
(a) The sequence {hmλ

(k) (r, s)}k∈N is a Schauder basis for the space cλ(Gm), and every
x ∈ cλ(Gm) has a unique representation of the form

x =
∑
k

σkhmλ
(k) (r, s).
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(b) The sequence {h,hmλ
() (r, s),h

mλ
() (r, s), . . .} is a Schauder basis for the space cλ(Gm), and

every x ∈ cλ(Gm) has a unique representation of the form

x = lh +
∑
k

[σk – l]hmλ
(k) (r, s),

where l = limk→∞ σk .

If we consider the results of Theorem . and Theorem ., we give the following result.

Corollary . The sequence spaces cλ(Gm) and cλ(Gm) are separable.

Given arbitrary sequence spaces X and Y , the setM(X,Y ) defined by

M(X,Y ) =
{
y = (yk) ∈ w : xy = (xkyk) ∈ Y for all x = (xk) ∈ X

}
(.)

is called the multiplier space of X and Y . For a sequence space Z with Y ⊂ Z ⊂ X, one can
easily observe thatM(X,Y ) ⊂M(Z,Y ) andM(X,Y ) ⊂M(X,Z) hold, in turn.
By using the sequence spaces �, cs and bs and notation (.), the α-, β- and γ -duals of

a sequence space X are defined by

Xα =M(X,�), Xβ =M(X, cs) and Xγ =M(X,bs),

respectively.
Now we give some properties which are needed in the next lemma

sup
K∈F

∑
n

∣∣∣∣∑
k∈K

ank
∣∣∣∣
p

< ∞, (.)

sup
n∈N

∑
k

|ank| < ∞, (.)

lim
n→∞ank = αk for each k ∈N, (.)

lim
n→∞

∑
k

ank = α, (.)

where F is the collection of all finite subsets of N and p ∈ [,∞).

Lemma . [] Let A = (ank) be an infinite matrix, then the following hold:
(i) A = (ank) ∈ (c : �) = (c : �) ⇔ (.) holds with p = ;
(ii) A = (ank) ∈ (c : c) ⇔ (.) and (.) hold;
(iii) A = (ank) ∈ (c : c) ⇔ (.), (.) and (.) hold;
(iv) A = (ank) ∈ (c : �∞) = (c : �∞) ⇔ (.) holds;
(v) A = (ank) ∈ (c : �p) = (c : �p) ⇔ (.) holds with ≤ p < ∞;
(vi) A = (ank) ∈ (c : c) ⇔ (.), (.) and (.) hold with αk = , ∀k ∈N and α = ;
(vii) A = (ank) ∈ (c : c) ⇔ (.) and (.) hold with αk = , ∀k ∈N.
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Theorem . Define the set umλ
 (r, s) by

umλ
 (r, s) =

{
a = (an) ∈ w : sup

K∈F

∑
n

∣∣∣∣∑
k∈K

dmλ
nk

∣∣∣∣ < ∞
}
,

where the matrix Dmλ = (dmλ
nk ) is defined by means of the sequence a = (an) by

dmλ
nk (r, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩


rm– (– s

r )
n–k[ (

m+n–k–
m– )λk

r(λk–λk–)
+ (m+n–k–

m– )λk
s(λk+–λk )

]an, k < n,
λn

rm–(λn–λn–)
an, k = n,

, k > n.

Then {cλ(Gm)}α = {cλ(Gm)}α = umλ
 (r, s).

Proof For given a = (an) ∈ w, by taking into account the sequence x = (xn) that is defined
in the proof of Theorem ., we obtain

anxn =


rm–

n∑
k=

(
m + n – k – 

m – 

)(
–
s
r

)n–k k∑
i=k–

(–)k–i
λi

λk – λk–
anyi =Dmλ

n (y)

for all n ∈N. If we consider the equality above, we conclude that ax = (anxn) ∈ � whenever
x = (xk) ∈ cλ(Gm) or cλ(Gm) if and only ifDmλy ∈ � whenever y = (yk) ∈ c or c. This means
that a = (an) ∈ {cλ(Gm)}α = {cλ(Gm)}α if and only if Dmλ ∈ (c : �) = (c : �). If we consider
this and Lemma .(i), we write

a = (an) ∈
{
cλ

(
Gm)}α =

{
cλ

(
Gm)}α ⇔ sup

K∈F

∑
n

∣∣∣∣∑
k∈K

dmλ
nk

∣∣∣∣ <∞

and conclude {cλ(Gm)}α = {cλ(Gm)}α = umλ
 (r, s). This step completes the proof. �

Theorem . Given the sets umλ
 (r, s), umλ

 (r, s), umλ
 (r, s) and umλ

 (r, s) as follows:

umλ
 (r, s) =

{
a = (ak) ∈ w :

∞∑
j=k

(
m + n – j – 

m – 

)(
–
s
r

)n–j

aj exists for all k ∈N

}
,

umλ
 (r, s) =

{
a = (ak) ∈ w : sup

n∈N

n–∑
k=

∣∣bmλ
k (n)

∣∣ <∞
}
,

umλ
 (r, s) =

{
a = (ak) ∈ w : sup

n∈N

∣∣∣∣ λn

rm–(λn – λn–)
an

∣∣∣∣ < ∞
}

and

umλ
 (r, s) =

{
a = (ak) ∈ w :

∑
k


rm–

k∑
j=

(
m + j – 
m – 

)(
–
s
r

)j

ak converges

}
,
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where

bmλ
k (n) = λk

[
ak

rm–(λk – λk–)

+


rm–

n∑
j=k+

(
–
s
r

)n–j( (m+n–j–
m–

)
r(λk – λk–)

+
(m+n–j–

m–
)

s(λk+ – λk)

)
aj

]
, k < n.

Then {cλ(Gm)}β = umλ
 (r, s) ∩ umλ

 (r, s) ∩ umλ
 (r, s) and {cλ(Gm)}β = umλ

 (r, s) ∩ umλ
 (r, s) ∩

umλ
 (r, s).

Proof Given a = (ak) ∈ w, by considering the sequence x = (xk) that is defined in the proof
of Theorem ., we obtain

n∑
k=

akxk =
n∑

k=

{


rm–

k∑
j=

(
m + k – j – 

m – 

)(
–
s
r

)k–j j∑
i=j–

(–)j–i
λi

λj – λj–
yi

}
ak

=
n–∑
k=

λk

[
ak

rm–(λk – λk–)

+


rm–

n∑
j=k+

(
–
s
r

)n–j( (m+n–j–
m–

)
r(λk – λk–)

+
(m+n–j–

m–
)

s(λk+ – λk)

)
aj

]
yk

+
λn

rm–(λn – λn–)
anyn

=
n–∑
k=

bmλ
k (n)yk +

λn

rm–(λn – λn–)
anyn

= Vmλ
n (y)

∀n ∈ N, where the matrix Vmλ = (vmλ
nk ) is defined as follows:

vmλ
nk (r, s) =

⎧⎪⎪⎨
⎪⎪⎩
bmλ
k (n), k < n,

λn
rm–(λn–λn–)

an, k = n,

, k > n

for all n,k ∈ N. Then ax = (akxk) ∈ cs whenever x = (xk) ∈ cλ(Gm) if and only if Vmλy ∈ c
whenever y = (yk) ∈ c. This shows that a = (ak) ∈ {cλ(Gm)}β if and only if Vmλ ∈ (c : c). If
we consider this and Lemma .(ii), we obtain

∞∑
j=k

(
m + n – j – 

m – 

)(
–
s
r

)n–j

aj exists ∀k ∈N, (.)

sup
n∈N

n–∑
k=

∣∣bmλ
k (n)

∣∣ < ∞ (.)
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and

sup
n∈N

∣∣∣∣ λn

rm–(λn – λn–)
an

∣∣∣∣ <∞. (.)

These results show that {cλ(Gm)}β = umλ
 (r, s)∩ umλ

 (r, s)∩ umλ
 (r, s).

By using a similar way, we obtain a = (ak) ∈ {cλ(Gm)}β if and only if Vmλ ∈ (c : c). If we
consider this and Lemma .(iii), we conclude that (.), (.) and (.) hold.
Moreover, one can easily see that


rm–

n∑
k=

k∑
j=

(
m + j – 
m – 

)(
–
s
r

)j

ak =
n–∑
k=

bmλ
k (n) +

λn

rm–(λn – λn–)
an =

∑
k

vmλ
nk .

As a consequence, we derive from (.) that

{


rm–

k∑
j=

(
m + j – 
m – 

)(
–
s
r

)j

ak

}
∈ cs.

Since condition (.) is weaker, it can be omitted.
Therefore we conclude that {cλ(Gm)}β = umλ

 (r, s) ∩ umλ
 (r, s) ∩ umλ

 (r, s). This step com-
pletes the proof. �

Theorem . {cλ(Gm)}γ = {cλ(Gm)}γ = umλ
 (r, s)∩ umλ

 (r, s).

Proof It can be proved by combining the proofmethod of Theorem. and Lemma.(iv).
�

4 Matrix transformations
In the present section, we determine some matrix classes related to the sequence spaces
cλ(Gm) and cλ(Gm). Let us begin with two lemmas which are needed in the proof of theo-
rems.

Lemma . [] Any matrix map between BK-spaces is continuous.

Lemma . [] Let X, Y be any two sequence spaces, A be an infinite matrix and U be a
triangle matrix. Then A ∈ (X : YU ) ⇔UA ∈ (X : Y ).

For simplicity of notation, in what follows, we use the following equalities.

bmλ
nk (i) = λk

[
ank

rm–(λk – λk–)

+


rm–

i∑
j=k+

(
–
s
r

)n–j( (m+n–j–
m–

)
r(λk – λk–)

+
(m+n–j–

m–
)

s(λk+ – λk)

)
anj

]
, k < i

and

bmλ
nk = λk

[
ank

rm–(λk – λk–)
+


rm–

∞∑
j=k+

(
–
s
r

)n–j( (m+n–j–
m–

)
r(λk – λk–)

+
(m+n–j–

m–
)

s(λk+ – λk)

)
anj

]
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Bişgin and Sönmez Journal of Inequalities and Applications 2014, 2014:274 Page 14 of 20
http://www.journalofinequalitiesandapplications.com/content/2014/1/274

for all n,k, i ∈ N provided the convergence of the series. Also, unless stated otherwise, we
assume throughout Section  that the sequence y = (yk) is connected with the sequence
x = (xk) as follows:

xk =


rm–

k∑
j=

(
m + k – j – 

m – 

)(
–
s
r

)k–j j∑
ϕ=j–

(–)j–ϕ λϕ

λj – λj–
yϕ

for all k ∈N.

Theorem . Given an infinite matrix A = (ank) of complex numbers, the following state-
ments hold.
() Let ≤ p <∞. Then A ∈ (cλ(Gm) : �p) if and only if

sup
K∈F

∑
n

∣∣∣∣∑
k∈K

bmλ
nk

∣∣∣∣
p

< ∞, (.)

sup
i∈N

i–∑
k=

∣∣bmλ
nk (i)

∣∣ <∞ (n ∈N), (.)

{


rm–

k∑
j=

(
m + j – 
m – 

)(
–
s
r

)j

ank

}∞

k=

∈ cs (n ∈ N), (.)

lim
k→∞

λk

rm–(λk – λk–)
ank = an (n ∈ N), (.)

(an) ∈ �p. (.)

() A ∈ (cλ(Gm) : �∞) if and only if (.) and (.) hold, and

sup
n∈N

∑
k

∣∣bmλ
nk

∣∣ <∞, (.)

(an) ∈ �∞. (.)

Proof For a given sequence x = (xk) ∈ cλ(Gm), we assume that conditions (.)-(.) hold.
Then, by remembering Theorem ., we deduce that {ank}k∈N ∈ {cλ(Gm)}β for all n ∈ N.
Therefore the A-transform of x exists. Moreover, it is trivial that y ∈ c, namely ∃l ∈ C �
limk→∞ |yk – l| = . Furthermore, if we consider Lemmas . and ., we conclude that the
matrix Bmλ ∈ (c : �p), where  ≤ p < ∞.
Now, we consider the following equality:

i∑
k=

ankxk =
i–∑
k=

bmλ
nk (i)yk +

λi

rm–(λi – λi–)
aniyi (n, i ∈N). (.)

Then Bmλy exists and the series
∑

k bmλ
nk yk converges for all n ∈ N. Moreover, we derive

from (.) that the series
∑∞

j=k(–
s
r )

n–j[ (
m+n–j–

m– )
r(λk–λk–)

+ (m+n–j–
m– )

s(λk+–λk )
]anj converges for all n,k ∈ N;

and therefore limi→∞ bmλ
nk (i) = bmλ

nk . Hence, if we take limit (.) side by side as i → ∞, we
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obtain by (.) that

∑
k

ankxk =
∑
k

bmλ
nk yk + lan (.)

for all n ∈N. Then we write the equality above as follows:

An(x) = Bmλ
n (y) + lan (.)

for all n ∈ N. Also, we know (Bmλy)n ∈ �p and a = (an) ∈ �p. Then we have ‖Bmλy‖�p < ∞
and ‖an‖�p < ∞. By taking �p-norm (.) side by side, we obtain that

‖Ax‖�p ≤ ∥∥Bmλy
∥∥

�p
+ |l|‖an‖�p < ∞.

Therefore Ax ∈ �p and so A ∈ (cλ(Gm) : �p).
On the contrary, assume that A ∈ (cλ(Gm) : �p), where  ≤ p < ∞. This leads us to

{ank}k∈N ∈ {cλ(Gm)}β for all n ∈ N. Then, if we consider Theorem ., conditions (.)
and (.) hold.
We know that cλ(Gm) and �p are BK-spaces. If we combine this fact and Lemma ., we

conclude that there is a constantM >  such that

‖Ax‖�p ≤M‖x‖cλ(Gm) (.)

holds for all x ∈ cλ(Gm). Let us define a sequence z = (zk) such that z =
∑

k∈K hmλ
(k) (r, s) for

every fixed k ∈N, where the sequence hmλ
(k) (r, s) = {hmλ

n(k)(r, s)}n∈N and K ∈F .
We know from Theorem . that z ∈ cλ(Gm) and Tmλ(hmλ

(k) (r, s)) = e(k), ∀k ∈ N. Then we
obtain

‖z‖cλ(Gm) =
∥∥Tmλ(z)

∥∥
�∞ =

∥∥∥∥∑
k∈K

Tmλ
(
hmλ
(k) (r, s)

)∥∥∥∥
�∞

=
∥∥∥∥∑
k∈K

e(k)
∥∥∥∥

�∞
= 

and

An(z) =
∑
k∈K

An
(
hmλ
(k) (r, s)

)
=

∑
k∈K

∑
j

anjhmλ
j(k)(r, s) =

∑
k∈K

bmλ
nk

for all n ∈ N. Since inequality (.) holds for every x ∈ cλ(Gm), the inequality is satisfied
also for z ∈ cλ(Gm). Then we have

(∑
n

∣∣∣∣∑
k∈K

bmλ
nk

∣∣∣∣
p) 

p
≤M

for all K ∈ F . Therefore (.) holds. If we consider this and Lemma .(v), we conclude
that Bmλ = (bmλ

nk ) ∈ (c : �p). Given y = (yk) ∈ c \ c. Then x ∈ cλ(Gm) so that y = Tmλ(x).
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Hence Ax and Bmλy exist. So one can easily see that the series
∑

k ankxk and
∑

k bmλ
nk yk are

convergent for all n ∈N. Thus, we conclude that

lim
i→∞

i–∑
k=

bmλ
nk (i)yk =

∑
k

bmλ
nk yk (.)

or all n ∈N. As a consequence, if we pass to the limit in (.) as i → ∞, we obtain

lim
i→∞

λi

rm–(λi – λi–)
aniyi exists

for all n ∈N. Because of y = (yk) ∈ c \ c, this leads us

lim
i→∞

λi

rm–(λi – λi–)
ani exists

for all n ∈ N. Therefore, (.) holds. If we take l = limk→∞ yk , also relation (.) holds.
Because of Ax,Bmλy ∈ �p, we conclude a = (an) ∈ �p. The last result is the necessity of
(.). This step completes the proof of part ().
If we take Lemma .(iv) instead of Lemma .(v), the second part of theorem can be

proved similarly. �

Moreover, from (.) we derive

lim
i→∞

i–∑
k=

∣∣bmλ
nk (i)

∣∣ =∑
k

∣∣bmλ
nk

∣∣ ≤ sup
n∈N

∑
k

∣∣bmλ
nk

∣∣. (.)

If we combine (.) and (.), we conclude that

lim
i→∞

i–∑
k=

∣∣bmλ
nk (i)

∣∣

exists for each n ∈N. So, condition (.) implies condition (.).

Theorem . Given an infinite matrix A = (ank) of complex numbers, the following state-
ments hold.
() Let ≤ p <∞. Then A ∈ (cλ(Gm) : �p) if and only if (.) and (.) hold, and

∞∑
j=k

(
–
s
r

)n–j[ (m+n–j–
m–

)
r(λk – λk–)

+
(m+n–j–

m–
)

s(λk+ – λk)

]
anj exists for all n,k ∈ N, (.)

{
λk

rm–(λk – λk–)
ank

}∞

k=
∈ �∞ for all n ∈N. (.)

() A ∈ (cλ(Gm) : �∞) if and only if (.), (.) and (.) hold.

Proof From Lemma .(iv) and (v), we know (c : �p) = (c : �p) and (c : �∞) = (c : �∞).
Therefore, the theorem can be proved similarly. �
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Theorem . A ∈ (cλ(Gm) : c) if and only if (.), (.) and (.) hold, and the conditions

lim
n→∞an = a, (.)

lim
n→∞bmλ

nk = αk , ∀k ∈N, (.)

lim
n→∞

∑
k

bmλ
nk = α (.)

hold.

Proof Given arbitrary x ∈ cλ(Gm), we assume that conditions (.), (.), (.), (.),
(.) and (.) hold for an infinite matrix A = (ank). We consider Theorem ., and con-
dition (.) implies condition (.). Then we conclude that {ank}k∈N ∈ {cλ(Gm)}β for all
n ∈N, and so Ax exists. From (.) and (.) we have

k∑
j=

|αj| = lim
n→∞

k∑
j=

∣∣bmλ
nj

∣∣ ≤ sup
n∈N

∑
j

∣∣bmλ
nj

∣∣ < ∞

for all k ∈ N. This leads us to (αk) ∈ �, and therefore the series
∑

k αk(yk – l) converges,
where limk→∞ yk = l and so y ∈ c. If we combine Lemma .(iii) with conditions (.),
(.) and (.), we deduce that Bmλ = (bmλ

nk ) ∈ (c : c). Also from condition (.) we have

An(x) =
∑
k

ankxk =
∑
k

bmλ
nk yk + lan.

With a basic calculation, we obtain

∑
k

ankxk =
∑
k

bmλ
nk (yk – l) + l

∑
k

bmλ
nk + lan (.)

for all n ∈N. If we pass to the limit in (.), we write

lim
n→∞An(x) =

∑
k

αk(yk – l) + l(α + a).

This shows that Ax ∈ c and so A ∈ (cλ(Gm) : c).
On the contrary, we assume that A ∈ (cλ(Gm) : c). Since every convergent sequence

is also bounded, we deduce that A ∈ (cλ(Gm) : �∞). If we consider this fact and Theo-
rem ., we conclude that conditions (.), (.) and (.) hold. Let us take the sequences
hmλ
(k) (r, s) = {hmλ

n(k)(r, s)}n∈N ∈ cλ(Gm) and z =
∑

k hmλ
(k) (r, s) defined in Theorem . and the

proof of Theorem ., respectively. Then it is clear that Ahmλ
(k) (r, s) = {bmλ

nk }n∈N ∈ c for ev-
ery k ∈ N. Hence condition (.) holds. Moreover, from Theorem . we know that the
transformation L : cλ(Gm) −→ c, L(x) = Tmλx is continuous. So, we write

Tmλ
n (z) =

∑
k

Tmλ
n

(
hmλ
(k) (r, s)

)
=

∑
k

δnk = 
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for all n ∈N, where

δnk =

⎧⎨
⎩, k = n,

, k �= n.

This leads us to Tmλz = e ∈ c and so z ∈ cλ(Gm).
It is well known that c is a BK-space. If we combine Theorem . and Lemma ., we

conclude that the matrix transformation A : cλ(Gm) −→ c is continuous. Therefore the
equality

An(z) =
∑
k

An
(
hmλ
(k) (r, s)

)
=

∑
k

bmλ
nk

holds for all n ∈N. This shows that (.) holds.
By considering conditions (.), (.), (.) and Lemma .(iii), we deduce that Bmλ =

(bmλ
nk ) ∈ (c : c). Hence, (.), (.) and the last result give us that condition (.) holds for

all x ∈ cλ(Gm) and y ∈ c. Finally, if we consider Ax,Bmλy ∈ c and (.), we conclude that
condition (.) holds. This step completes the proof. �

Theorem. A ∈ (cλ(Gm) : c) if and only if (.), (.), (.) and the following conditions
hold:

lim
n→∞an = , (.)

lim
n→∞bmλ

nk = , ∀k ∈N, (.)

lim
n→∞

∑
k

bmλ
nk = . (.)

Proof In Theorem ., if we take Lemma .(vi) instead of Lemma .(iii), the present
theorem can be proved by using a similar way. �

Theorem . A ∈ (cλ(Gm) : c) if and only if (.), (.), (.) and (.) hold.

Proof If we combine Lemma.(ii) Theorem. andTheorem.(), the present theorem
can be proved by using a similar way. �

Theorem . A ∈ (cλ(Gm) : c) if and only if (.), (.), (.), (.), (.) and (.)
hold.

Proof If we combine Lemma .(vii), Theorem . and Theorem ., the present theorem
can be proved by using a similar way. �

Now, by using Lemma ., we give one more result.

Corollary . Given an infinite matrix A = (ank) of complex numbers, we define a matrix
E = (enk) as follows:

enk =

λn

n∑
j=

(λj – λj–)
m–∑
ϑ=

(
m – 

ϑ

)
rm–ϑ–sϑa(j–ϑ)k
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for all n,k ∈ N. Then A belongs to matrix classes (c : cλ(Gm)), (c : cλ(Gm)), (�p : cλ(Gm)),
(c : cλ(Gm)), (c : cλ(Gm)) and (�p : cλ(Gm)) if and only if E belongs to matrix classes (c : c),
(c : c), (�p : c), (c : c), (c : c) and (�p : c).

Finally, we put a period to our work by mentioning as of now that the sequence space
f (Gm) of almost convergent sequences derived by the domain of mth order generalized
difference matrix will be defined and studied analogously in the next paper.
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