
Braha Journal of Inequalities and Applications 2014, 2014:273
http://www.journalofinequalitiesandapplications.com/content/2014/1/273

RESEARCH Open Access

On some properties of new paranormed
sequence space defined by λ-convergent
sequences
Naim L Braha*

*Correspondence:
nbraha@yahoo.com
Department of Mathematics and
Computer Sciences, University of
Prishtina, Avenue ‘Mother Teresa’ 5,
Prishtinë, 10000, Kosovo
Department of Computer Sciences
and Applied Mathematics, College
Vizioni per Arsim, Ferizaj, 70000,
Kosovo

Abstract
In this paper, we introduce the new sequence space l(λ2,p) and we will show some
topological properties like completeness, isomorphism, and some inclusion relations
between this sequence spaces and some of the other sequence spaces. In addition we
will compute the α-, β-, and γ -duals of these spaces. At the end of the article we will
show some matrix transformations between the l(λ2,p) space and the other spaces.
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1 Introduction
By w we denote the space of all complex sequences. If x ∈ w, then we simply write x = (xk)
instead of x = (xk)∞k=. Also, we shall use the conventions that e = (, , . . .) and e(n) is
the sequence whose only non-zero term is  in the nth place for each n ∈ N, where
N = {, , , . . .}. Any vector subspace of w is called a sequence space. We shall write l,
c, and c for the sequence spaces of all bounded, convergent, and null sequences, respec-
tively. Further, by lp (≤ p <∞), we denote the sequence space of all p-absolutely conver-
gent series, that is, lp = {x = (xk) ∈ w :

∑∞
k= |xk|p < ∞} for  ≤ p < ∞. Moreover, we write

bs, cs, and cs for the sequence spaces of all bounded, convergent, and null series, respec-
tively. A sequence space X is called an FK space if it is a complete linear metric space
with continuous coordinates pn : X → C (n ∈ N), where C denotes the complex field and
pn(x) = xn for all x = (xn) ∈ X and every n ∈ N. A normed FK space is called a BK space,
that is, a BK space is a Banach sequence space with continuous coordinates.
The sequence spaces l, c, and c areBK spaceswith the usual sup-norm given by ‖x‖∞ =

supn |x(n)|. Also, the space lp is a BK space with the usual lp-norm defined by

‖x‖p =
( ∞∑

n=

|xn|p
) 

p

,

where  ≤ p <∞. A sequence (yn)∞n= in a normed space X is called a Schauder basis for X
if for every x ∈ X there is a unique sequence (an)∞n= of scalars such that x =

∑∞
n= anyn, i.e.,

limn ‖x –∑n
k= anyn‖ = . The α-, β-, and γ -duals of a sequence space X are, respectively,

defined by

Xα =
{
a = (ak) ∈ w : ax = (akxk) ∈ l for all x = (xk) ∈ X

}
,
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Xβ =
{
a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X

}
and

Xγ =
{
a = (ak) ∈ w : ax = (akxk) ∈ bs for all x = (xk) ∈ X

}
.

If A is an infinite matrix with complex entries ank (n,k ∈ N), then we write A = (ank)
instead of A = (ank)∞n,k=. Also, we write An for the sequence in the nth row of A, that is,
An = (ank)∞k= for every n ∈ N. Further, if x = (xk) ∈ w then we define the A-transform of x
as the sequence Ax = (An(x))∞n=, where

An(x) =
∞∑
k=

an,kxk (n ∈N) ()

provided the series on () is convergent for each n ∈N.
Furthermore, the sequence x is said to be A-summable to a ∈ C if Ax converges to a

which is called the A-limit of x. In addition, let X and Y be sequence spaces. Then we say
thatA defines amatrixmapping fromX into Y if for every sequence x ∈ X theA-transform
of x exists and is in Y . Moreover, we write (X,Y ) for the class of all infinite matrices that
map X into Y . Thus A ∈ (X,Y ) if and only if An ∈ Xβ for all n ∈ N and Ax ∈ Y for all
x ∈ X. For an arbitrary sequence space X, the matrix domain of an infinite matrix A in X
is defined by

XA = {x ∈ w : Ax ∈ X}, ()

which is a sequence space. The approach constructing a new sequence space by means of
thematrix domain of a particular limitationmethod has recently been employed by several
authors; see for instance [–]. In this paper, we introduce the new sequence space l(λ,p)
and we will show some topological properties as completeness, isomorphism, and some
inclusion relations between this sequence spaces and some of the other sequence spaces.
In addition we will compute the α-, β-, and γ -duals of these spaces.

2 Notion of the λ2-convergent sequences
Let � = {λk : k = , , . . .} be a nondecreasing sequence of positive numbers tending to ∞,
as k → ∞, and λn+ ≥  · λn, for each n ∈ N. From this relation it follows that �λn ≥ .
The first difference is defined as follows: �λk = λk – λk–, where λ– = λ– = , and the
second difference is defined as �(λk) = �(�(λk)) = λk – λk– + λk–.
Let x = (xk) be a sequence of complex numbers, such that x– = x– = . In [] is given

the concept of λ-convergent sequence as follows: Let x = (xk) be any given sequence of
complex numbers, we will say that it converges λ-strongly to number x if

lim
n


λn – λn–

n∑
k=

∣∣λk(xk – x) – λk–(xk– – x) + λk–(xk– – x)
∣∣ = .

This generalizes the concept of �-strong convergence in [].
Let us denote

�
n(x) =


λn – λn–

n∑
k=

(λk – λk– + λk–)xk ()
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for all n ∈ N. Assume here and below that (pk), (qk) are bounded sequences of strictly
positive real numbers with supk pk = H and maxk(,H) =M, for  < pk < ∞ for all k ∈ N.
The linear space l(p) as defined by Madoxx [] is as follows:

l(p) =

{
x = (xn) ∈ w :

∞∑
n=

|xn|pn < ∞
}
, ()

which are complete spaces paranormed by

h(x) =

( ∞∑
n=

|xn|pn
) 

M

. ()

3 The sequence space l(λ2,p)
In this sectionwewill define the sequence space l(λ,p) and prove that this sequence space
according to its paranorm is a complete linear space. We have

l
(
λ,p

)
=

{
x = (xk) ∈ w :

∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)xk

∣∣∣∣∣
pn

<∞
}

()

and in case where pn = p, for every n ∈N we get

lλ


p =

{
x = (xk) ∈ w :

∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)xk

∣∣∣∣∣
p

< ∞
}
. ()

Let x = (xn) ∈ w be any sequence; we will define the �
n-transform of the sequence x =

(xn) as follows:

�
n(x) =


λn – λn–

n∑
k=

(λk – λk– + λk–)xk , n ∈N. ()

Theorem  The sequence space l(λ,p) is the complete linear metric space with respect to
the paranorm defined by

g(x) =

( ∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)xk

∣∣∣∣∣
pn) 

M

. ()

Proof The linearity of l(λ,p) follows fromMinkowski’s inequality. In what follows we will
prove that g(x) defines a paranorm. In fact, for any x, y ∈ l(λ,p) we get

( ∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)(xk + yk)

∣∣∣∣∣
pn) 

M

≤
( ∞∑

n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)xk

∣∣∣∣∣
pn) 

M

+

( ∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)yk

∣∣∣∣∣
pn) 

M

()
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and for any α ∈ R

|α|pk ≤max
{
, |α|M}

. ()

It is clear that g(θ ) = , g(x) = g(–x) for all x ∈ l(λ,p). From inequalities () and () we
find the subadditivity of g(x) and hence g(αx)≤max{, |α|M}g(x). Let xm be any sequence
of points {xm} ∈ l(λ,p) such that g(xm –x) →  and (αm) also any sequence of scalars such
that αm → α. Then, since the inequality

g
(
xm

) ≤ g(x) + g
(
xm – x

)
()

holds by the subadditivity of g , we find that {g(xm)} is bounded and we thus have

g
(
αmxm – αx

)
=

( ∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)
(
αmxmk – αxk

)∣∣∣∣∣
pn) 

M

≤ |αm – α| 
M g

(
xm

)
+ |α| 

M g
(
xm – x

)
, ()

which tends to zero as n → ∞. Therefore, the scalar multiplication is continuous. Hence
g is a paranorm on the space l(λ,p). It remains to prove the completeness of the space
l(λ,p). Let {xj} be any Cauchy sequence in the space l(λ,p), where xj = {xj,xj, . . .}. Then,
for a given ε > , there exists a positive integer m(ε) such that g(xj – xi) < ε

 for all i, j >
m(ε). Using the definition of g , we obtain for each fixed n ∈N

∣∣�
n
(
xj

)
–�

n
(
xi

)∣∣ ≤
( ∞∑

n=

∣∣�
n
(
xj

)
–�

n
(
xi

)∣∣pn)

M

<
ε


()

for every i, j > m(ε), which leads to the fact that {�
n(x),�

n(x), . . .} is a Cauchy se-
quence of real numbers for every fixed n ∈ N. Since R is complete, it converges, say
�

n(xi) → �
n(x) as i → ∞. Using these infinitely many limits, we may write the sequence

{�
n(x),�

n(x), . . .}. From () as i → ∞, we have

∣∣�
n
(
xj

)
–�

n(x)
∣∣ < ε


, j ≥m(ε) ()

for every fixed n ∈ N. By using () and boundedness of the Cauchy sequence, we have

( ∞∑
n=

∣∣�
n(x)

∣∣pn)

M

≤
( ∞∑

n=

∣∣�
n
(
xj

)
–�

n(x)
∣∣pn)


M

+

( ∞∑
n=

∣∣�
n
(
xj

)∣∣pn)

M

< ∞. ()

Hence, we get x ∈ l(λ,p). Therefore, the space l(λ,p), is complete. �

Theorem  The sequence space l(λ,p) is a BK space.

Proof Let us denote by � = (λ
n,k)

∞
n,k= the following matrix:

(
λn,k

) =
{

λk–λk–+λk–
λn–λn–

, ≤ k ≤ n,
, k > n

http://www.journalofinequalitiesandapplications.com/content/2014/1/273
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for all n,k ∈ N. Then the �-transform of a sequence x ∈ w is the sequence �(x) =
(�

n(x))∞n=, where �
n(x) is given by () for every n ∈N. Thus

‖x‖l(λ,p) =
∥∥�(x)

∥∥
l(p).

Now the proof of the theorem follows from Theorem .. given in []. �

Theorem  The sequence space l(λ,p) is linearly isomorphic to the space l(p), where  <
pk ≤H <∞.

Proof Let T : l(λ,p) → l(p) be an operator defined by x → y = �(x), where � is given
by (). The operator T is linear and injective, from T(x) =  it follows that x = . In what
follows we will prove that T is surjective. Let y ∈ l(p) be any element; we define x = (xn) by

xn(λ) =
�λnyn –�λn–yn–
λn – λn– + λn–

; ()

then we get

( ∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(λk – λk– + λk–)xk

∣∣∣∣∣
pn) 

M

=

( ∞∑
n=

∣∣∣∣∣ 
λn – λn–

n∑
k=

(�λkyk –�λk–yk–)

∣∣∣∣∣
pn) 

M

=

( ∞∑
n=

|yn|pn
) 

M

. �

As a consequence of Theorem  and Theorem  we get the following result.

Corollary  Define the sequence e(n)
λ

∈ c(λ,p) for every fixed n ∈N by

e(n)
λ

=

{
(–)n–k λn–λn–

λk–λk–+λk–
(k ≤ n≤ k + ),

 otherwise,

where k ∈N. Then we have the following.
() The sequence (e()

λ
, e()

λ
, e()

λ
, . . .) is a Schauder basis for the space c(λ,p) and every

x ∈ c(λ,p) has a unique representation: x =
∑∞

n= �
n(x)e

(n)
λ
.

() The sequence (e, e()
λ
, e()

λ
, e()

λ
, . . .) is a Schauder basis for the space c(λ,p) and every

x ∈ c(λ,p) has a unique representation: x = le +
∑∞

n= (�
n(x) – l)e(n)

λ
, where

l = limn �
n(x).

Proof Since �(e) = e and �(e(n)
λ
) = e(n) for every n ∈N, the proof of the theorem follows

from Corollary . given in []. �

Theorem  The inclusion l(λ,p) ⊂ c(λ,p) holds. The inclusion is strict.

http://www.journalofinequalitiesandapplications.com/content/2014/1/273


Braha Journal of Inequalities and Applications 2014, 2014:273 Page 6 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/273

Proof Let x ∈ l(λ,p); then it follows that �(x) ∈ l(p), from which follows that

∞∑
n=

∣∣�
n(x)

∣∣pn < ∞.

From the last relation we get limn �
n(x)→ , as n → ∞, respectively, �(x) ∈ c(p) ⇒ x ∈

c(�,p). To prove that the inclusion is strict we will show the following.

Example  Let  < pn < , ∀n ∈ N, xn = (
n√

n
n+ – n+

√
n+

n+ ) · 
λn–λn–+λn–

, and λn = n. Then
it follows that


λn – λn–

n∑
k=

(λk – λk– + λk–)xk =


n–

n∑
k=

(
k

√
k

k + 
–
k+

√
k + 

k + 

)

=
–

√
n

n + 
→ , as n→ ∞.

Hence x = (xn) ∈ c(λ,p). On the other hand x = (xn) /∈ l(λ,p), for  < pn < , ∀n ∈N.With
which we have proved the theorem. �

Theorem  The inclusions c(λ,p) ⊂ c(λ,p) ⊂ l∞(λ,p) strictly hold.

Proof It is clear that the inclusion c(λ,p) ⊂ c(λ,p) ⊂ l∞(λ,p) holds. Further, since c ⊂
c is strict, from Lemmas  and  from [] it follows that c(λ,p) ⊂ c(λ,p) is also strict.
In what follows we will show that the last inclusion is strict, too. For this reason we will
show the following.

Example  Let

xn = (–)n
λn – λn–

λn – λn– + λn–
,

then it follows that

�
n(x) =


λn – λn–

n∑
k=

(λk – λk– + λk–)xk

=


λn – λn–

n∑
k=

(–)k(λk – λk–) = (–)n.

From the last relation it follows that x = (xk) ∈ l∞(λ,p) \ c(λ,p). �

Theorem  The inclusion l(λ,p) ⊂ l(p) holds if and only if S(x) ∈ l(p) for every sequence
x ∈ l(λ,p), where ≤ pk ≤H . Here S(x) = {Sn(x)} and Sn(x) = xn –�

n(x).

Proof The proof of the theorem is similar to Theorem . given in []. �

Theorem 
() If pn >  for all n ∈N, then the inclusion lλp ⊂ l(λ,p) holds.
() If pn <  for all n ∈N, then the inclusion l(λ,p) ⊂ lλp holds.

http://www.journalofinequalitiesandapplications.com/content/2014/1/273
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Proof () Let p = (pn) >  for all n ∈N and x ∈ lλp . Then it follows that �(x) ∈ l(p). Hence

lim
n

∣∣�
n(x)

∣∣ = ,

we find n ∈N such that |�(x)| < , for every n > n, respectively,

∣∣�
n(x)

∣∣pn < ∣∣�
n(x)

∣∣ for pn > ,∀n > n.

From the last relation we get x ∈ l(λ,p).
() Let us suppose that x ∈ l(λ,p). Then �(x) ∈ l(p), ∃n ∈ N, such that

∀n > n ⇒ ∣∣�
n(x)

∣∣pn < ,
∣∣�

n(x)
∣∣ = (∣∣�

n(x)
∣∣pn) 

pn <
∣∣�

n(x)
∣∣pn

for all n > n. Hence x ∈ l�
p . �

4 Duals of the space l(λ2,p)
In this section we will give the theorems in which the α-, β-, and γ -duals are determined
of the sequence space l(λ,p). In proving the theorems we apply the technique used in [].
Also we will give somematrix transformations from l(p,λ,p) into l(q) by using thematrix
given in [].

Theorem  Let K = {k ∈ N : pk ≤ } and K = {k ∈ N : pk > }. Define the matrix Ma =
(ma

nk) by

ma
nk =

{
(–)n–k · �λk

λn–λn–+λn–
· an, n –  ≤ k ≤ n,

,  ≤ k ≤ n –  or k > n.
()

Then

laK

(
λ,p

)
=

{
a = (an) ∈ w :Ma ∈ (

l(p); l∞
)}
, ()

laK

(
λ,p

)
=

{
a = (an) ∈ w :Ma ∈ (

l(p); l
)}
. ()

Proof Let x = (xn) ∈ l(λ,p), a = (an) ∈ w, and (yn) = (�
n(x)). Then we have

anxn = an
n∑

k=n–

(
(–)n–k

�λk

λn – λn– + λn–

)
yk =

(
May

)
n; n ∈N, ()

where Ma is defined by (). From () it follows that ax = (anxn) ∈ l or ax = (anxn) ∈ l∞
whenever x ∈ l(λ,p) if and only if May ∈ l or May ∈ l∞ whenever y ∈ l(p). This means
that a ∈ lαK

(λ,p) or a ∈ lαK
(λ,p) if and only ifMa ∈ (l(p), l) orMa ∈ (l(p), l∞). �

As a direct consequence of Theorem , we get the following.

Corollary  Let K∗ = {k ∈ N : n –  ≤ k ≤ n} ∪K for every K ∈ F , where F is the collection
of all finite subsets of N. Then

http://www.journalofinequalitiesandapplications.com/content/2014/1/273
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() lαK
(λ,p) = {a = (an) ∈ w : supK supn∈N |∑n∈K∗ ma

nk|pk <∞},
() lαK

(λ,p) =
⋃

M>{a = (an) ∈ w : supK∈F
∑

K |∑n∈K∗ ma
nkM

–|pk <∞},
for some constant M.

In what follows we will characterize the β- and γ -dual of the sequence space l(λ,p).

Theorem  Let K = {k ∈ N : pk ≤ }, K = {k ∈ N : pk > }. Define the sequence d = (d
k),

d = (d
k ), and the matrix Da = (da

nk) by

da
nk =

⎧⎪⎨
⎪⎩
d
k ,  ≤ k ≤ n – ,

d
k , k = n,

, k > n,

where d
k = ( ak

λk–λk–+λk–
– ak+

λk+–λk+λk–
)�λk , d

k =
ak�λk

λk–λk–+λk–
. Then

lβK

(
λ,p

)
= lγK

(
λ,p

)
=

{
a = (an) ∈ w :Da ∈ (

l(p), l∞
)}
, ()

lβK

(
λ,p

)
= lγK

(
λ,p

)
=

{
a = (an) ∈ w :Da ∈ (

l(p), c
)}
. ()

Proof Let x = (xn) ∈ l(λ,p). Then we obtain

n∑
k=

akxk =
n–∑
k=

d
kyk + d

nyn =
(
Day

)
n. ()

From () it follows that ax = (anxn) ∈ cs or bs if and only if Da(y) ∈ c or l∞. This means
that a = (an) ∈ {lβK

(λ,p) or lβK
(λ,p)} or a = (an) ∈ {lγK

(λ,p) or lγK
(λ,p)}. With which

the theorem is proved. �

As an immediate result of the above theorem, we get the following.

Corollary  Let (p′
k) be a conjugate sequence of numbers (pk), it means that 

pk
+ 

p′
k
= 

and  < pk < ∞ for all k ∈N. Then
() lβK

(λ,p) = lγK
(λ,p) = {a = (an) ∈ w : d

k ,d

k ∈ l∞(p)},

() lβK
(λ,p) = lγK

(λ,p) =
⋃

M>{a = (an) ∈ w : d
kM–,d

kM– ∈ l∞(p)∩ l(p′)}.

5 Somematrix transformations related to sequence space l(λ2,p)
In this section we will show some matrix transformations between the sequence space
l(λ,p) and sequence spaces l(q), c(q), c(q), and l∞(q) where q = (qn) is a sequence of
nondecreasing, bounded positive real numbers. Let x, y ∈ w be connected by the relation
y =�(x). For an infinite matrix A = (ank), taking into consideration Theorem , we get

m∑
k=

ankxk =
m–∑
k=

ankyk +
anm�λn

λn – λn– + λn–
(m,n ∈N), ()

where

ank =
(

ank
λk – λk– + λk–

–
an,k+

λk+ – λk + λk–

)
�λk (n,k ∈N). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/273
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Let N , K be a finite subsets of the natural numbers N and L, T be a natural numbers.
K = {k ∈ N : pk ≤ } and K = {k ∈ N : pk > } and also let (p′

k) be a conjugate sequence
of numbers (pk). Prior to giving the theorems, let us suppose that (qn) is a nondecreasing
bounded sequence of positive real numbers and consider the following conditions:

sup
n

sup
k∈K

∣∣∣∣∑
n∈N

ank
∣∣∣∣
qn
< ∞, ()

∃T sup
N

∑
k∈K

∣∣∣∣∑
n

ankT–
∣∣∣∣
pk
< ∞, ()

∃T sup
k

∑
n

∣∣akT –
pk

∣∣qn < ∞, ()

lim
n

|ank|qn =  (∀k ∈N), ()

∀L, sup
n

sup
K

∣∣ankL 
qn

∣∣ < ∞, ()

∀L, ∃T sup
n

∑
K

∣∣akL 
qn T–∣∣pk <∞, ()

sup
n

sup
K

|ank|pk < ∞, ()

∃T sup
n

∑
K

∣∣akT–∣∣pk < ∞, ()

∀L, sup
n

sup
K

(|ak – ak|L

qn

)pk < ∞, ()

lim
n

|ak – ak|qn = , ∀k, ()

∀L, ∃T sup
n

∑
K

(|ank – ak|L

qn T–)pk <∞, ()

∃L, sup
n

sup
K

∣∣ankL –
qn

∣∣pk <∞, ()

∃L, sup
n

∑
K

∣∣ankL –
qn

∣∣pk <∞, ()

(
ank�λk

λk – λk– + λk–

)∞

k=
∈ c(q), ∀n ∈N, ()

(
ank�λk

λk – λk– + λk–

)∞

k=
∈ c(q), ∀n ∈N, ()

(
ank�λk

λk – λk– + λk–

)∞

k=
∈ l∞(q), ∀n ∈N. ()

From the above conditions we get the following.

Theorem 
A ∈ (l(λ,p); l(q)) if and only if (), (), (), and () hold,
A ∈ (l(λ,p); c(q)) if and only if (), (), (), and () hold,
A ∈ (l(λ,p); l(q)) if and only if (), (), (), (), (), and () hold,
A ∈ (l(λ,p); l(q)) if and only if (), (), and () hold.
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