# RESEARCH

**Open Access** 

# A family of refinements of Heinz inequalities of matrices

Hassane Abbas<sup>\*</sup> and Bassam Mourad

\*Correspondence: habbas@ul.edu.lb Department of Mathematics, Faculty of Sciences, Lebanese University, Hadath, Beirut, Lebanon

# Abstract

For any unitarily invariant norm  $\||\cdot\||$ , the Heinz inequalities for operators assert that  $2|||A^{\frac{1}{2}}XB^{\frac{1}{2}}||| \le |||A^{\nu}XB^{1-\nu} + A^{1-\nu}XB^{\nu}||| \le |||AX + XB|||$ , for A, B, and X any operators on a complex separable Hilbert space such that A, B are positive and  $\nu \in [0, 1]$ . In this paper, we obtain a family of refinements of these norm inequalities by using the convexity of the function  $f(\nu) = |||A^{\nu}XB^{1-\nu} + A^{1-\nu}XB^{\nu}|||$  and the Hermite-Hadamard inequality.

**Keywords:** Heinz inequality; convex function; Hermite-Hadamard inequality; unitarily invariant norm

# **1** Introduction

Let  $M_n(\mathbf{C})$  be the algebra of  $n \times n$  complex matrices. We denote by  $H_n(\mathbf{C})$  the set of all Hermitian matrices in  $M_n(\mathbf{C})$ . The set of all positive semi-definite matrices in  $M_n(\mathbf{C})$  shall be denoted by  $H_n^+(\mathbf{C})$ . A norm  $\|\|\cdot\|\|$  on  $M_n(\mathbf{C})$  is called unitarily invariant or symmetric if

|||UAV||| = |||A|||

for all  $A \in M_n(\mathbb{C})$  and for all unitaries  $U, V \in M_n(\mathbb{C})$ .

The arithmetic-geometric mean inequality for two nonnegative real numbers a and b is

$$\sqrt{ab} \leq \frac{a+b}{2}$$
,

which has been generalized to the context of matrices as follows:

$$2 \| A^{\frac{1}{2}} X B^{\frac{1}{2}} \| \le \| AX + XB \|,$$

where  $A, B \in H_n^+(\mathbb{C}), X \in M_n$ , and  $\|\| \cdot \|\|$  is a unitarily invariant norm on  $M_n(\mathbb{C})$ .

For  $\nu \in [0,1]$  and two nonnegative numbers *a* and *b*, the Heinz mean is defined as

$$H_{\nu}(a,b)=\frac{a^{\nu}b^{1-\nu}+a^{1-\nu}b^{\nu}}{2}.$$

Clearly the Heinz mean interpolates between the geometric mean and the arithmetic mean:

$$\sqrt{ab} \leq H_{\nu}(a,b) \leq \frac{a+b}{2}.$$



©2014 Abbas and Mourad; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The function  $H_{\nu}(a, b)$  has the following properties: it is convex, attains its minimum at  $\nu = \frac{1}{2}$ , its maximum at  $\nu = 0$  and  $\nu = 1$ , and  $H_{\nu}(a, b) = H_{1-\nu}(a, b)$  for  $0 \le \nu \le 1$ . The generalization of the above inequalities to matrices is due to Bhatia and Davis [1] as follows:

$$2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \le \left\| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| \le \left\| A X + X B \right\|, \tag{1.1}$$

where  $A, B \in H_n^+(\mathbf{C})$ ,  $X \in M_n(\mathbf{C})$ , and  $\nu \in [0,1]$ . For a historical background and proofs of these norm inequalities as well as their refinements, and diverse applications, we refer the reader to the [2–8], and the references therein. Indeed, it has been proved, in [1], that  $f(\nu) = ||A^{\nu}XB^{1-\nu} + A^{1-\nu}XB^{\nu}||$  is a convex function of  $\nu$  on [0,1] with symmetry about  $\nu = \frac{1}{2}$ , and attains its minimum there and it has a maximum at  $\nu = 0$  and  $\nu = 1$ . Moreover, it increases on  $[0, \frac{1}{2}]$  and decreases on  $[\frac{1}{2}, 1]$ .

In [4, 5], (1.1) is refined by using the so-called Hermite-Hadamard inequality:

$$g\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b g(t) \, dt \leq \frac{g(a)+g(b)}{2},$$

where g is a convex function on [a, b].

Recently, in [3] and [7], respectively, the following inequalities were used to get new refinements of (1.1):

$$g\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} g(t) \, dt \le \frac{1}{4} \left(g(a) + 2g\left(\frac{a+b}{2}\right) + g(b)\right) \le \frac{g(a) + g(b)}{2},$$
$$g\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} g(t) \, dt \le \frac{1}{32} \left(15g(a) + 2g\left(\frac{a+b}{2}\right) + 15g(b)\right) \le \frac{g(a) + g(b)}{2}.$$

The purpose of this note is to obtain a family of new refinements of Heinz inequalities for matrices. Also the two refinements, given in [3] and [7], are two special cases of this new family.

## 2 Main results

We start by the following key lemma which plays a central role in our investigation to obtain a further series of refinements of the Heinz inequalities.

**Lemma 1** Let g be a convex function on the interval [a, b]. Then for any positive integer n, we have

$$g\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} g(t) \, dt \le \frac{1}{4n} \left[ (2n-1)g(a) + 2g\left(\frac{a+b}{2}\right) + (2n-1)g(b) \right]$$
$$\le \frac{g(a) + g(b)}{2}.$$

*Proof* Since *g* is convex on [*a*, *b*], we have

$$g\left(\frac{a+b}{2}\right) \leq \frac{g(a)+g(b)}{2}.$$

Thus

$$(2n-1)g(a) + 2g\left(\frac{a+b}{2}\right) + (2n-1)g(b) \le 2ng(a) + 2ng(b),$$

whence

$$\frac{1}{4n}\left((2n-1)g(a)+2g\left(\frac{a+b}{2}\right)+(2n-1)g(b)\right) \le \frac{g(a)+g(b)}{2}.$$

To prove the middle inequality, we start by

$$\begin{split} \frac{1}{b-a} \int_{a}^{b} g(t) \, dt &= \frac{1}{b-a} \bigg[ \int_{a}^{\frac{a+b}{2}} g(t) \, dt + \int_{\frac{a+b}{2}}^{b} g(t) \, dt \bigg] \\ &\leq \frac{1}{b-a} \bigg[ \frac{g(\frac{a+b}{2}) + g(a)}{2} \cdot \frac{b-a}{2} + \frac{g(b) + g(\frac{a+b}{2})}{2} \cdot \frac{b-a}{2} \bigg] \\ &= \frac{1}{4} \bigg[ g(a) + 2g\bigg(\frac{a+b}{2}\bigg) + g(b) \bigg] \\ &= \frac{1}{4n} \bigg[ ng(a) + 2ng\bigg(\frac{a+b}{2}\bigg) + ng(b) \bigg] \\ &= \frac{1}{4n} \bigg[ ng(a) + 2g\bigg(\frac{a+b}{2}\bigg) + (2n-2)g\bigg(\frac{a+b}{2}\bigg) + ng(b) \bigg] \\ &\leq \frac{1}{4n} \bigg[ ng(a) + 2g\bigg(\frac{a+b}{2}\bigg) + (2n-2)\bigg[ \frac{g(a) + g(b)}{2} \bigg] + ng(b) \bigg] \\ &= \frac{1}{4n} \bigg[ ng(a) + 2g\bigg(\frac{a+b}{2}\bigg) + (n-1)g(a) + (n-1)g(b) + ng(b) \bigg] \\ &= \frac{1}{4n} \bigg[ (2n-1)g(a) + 2g\bigg(\frac{a+b}{2}\bigg) + (2n-1)g(b) \bigg]. \end{split}$$

Applying the previous lemma on the convex function defined earlier

$$f(v) = \||A^{v}XB^{1-v} + A^{1-v}XB^{v}||$$

on the interval  $[\mu, 1-\mu]$  when  $0 \le \mu \le \frac{1}{2}$  and on the interval  $[1-\mu, \mu]$  when  $\frac{1}{2} \le \mu \le 1$ , we obtain the following refinement of the first inequality (1.1) which is a kind of refinements of Theorem 1 in a paper Kittaneh [5] and Theorem 1 in a paper of Feng [3].

**Theorem 1** Let  $A, B \in H_n^+(\mathbb{C})$ , and  $X \in M_n(\mathbb{C})$ . Let *n* be any positive integer. Then for any  $\mu \in [0,1]$ , and for every unitarily invariant norm  $||| \cdot |||$  on  $M_n(\mathbb{C})$ , we have

$$2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \leq \frac{1}{|1 - 2\mu|} \left\| \int_{\mu}^{1-\mu} \left\| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| d\nu \right\|$$
  
$$\leq \frac{1}{2n} \Big[ (2n - 1) \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| + 2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \Big]$$
  
$$\leq \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\|.$$
(2.1)

*Proof* First assume that  $0 \le \mu \le \frac{1}{2}$ . Then it follows from Lemma 1 that

$$f\left(\frac{\mu+1-\mu}{2}\right) \le \frac{1}{1-2\mu} \int_{\mu}^{1-\mu} f(t) dt$$
$$\le \frac{1}{4n} \left[ (2n-1)f(\mu) + 2f\left(\frac{1-\mu+\mu}{2}\right) + (2n-1)f(1-\mu) \right]$$
$$\le \frac{f(\mu) + f(1-\mu)}{2} = f(\mu).$$

Since  $f(\mu) = f(1 - \mu)$ , we have

$$\begin{split} f\left(\frac{1}{2}\right) &\leq \frac{1}{1-2\mu} \int_{\mu}^{1-\mu} f(t) \, dt \leq \frac{1}{4n} \bigg[ (4n-2)f(\mu) + 2f\left(\frac{1}{2}\right) \bigg] \\ &\leq \frac{1}{2n} \bigg[ (2n-1)f(\mu) + f\left(\frac{1}{2}\right) \bigg] \leq f(\mu). \end{split}$$

Thus,

$$2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \leq \frac{1}{1 - 2\mu} \int_{\mu}^{1 - \mu} \left\| A^{\nu} X B^{1 - \nu} + A^{1 - \nu} X B^{\nu} \right\| d\nu$$
  
$$\leq \frac{1}{2n} \Big[ (2n - 1) \left\| A^{\mu} X B^{1 - \mu} + A^{1 - \mu} X B^{\mu} \right\| + 2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \Big]$$
  
$$\leq \left\| A^{\mu} X B^{1 - \mu} + A^{1 - \mu} X B^{\mu} \right\| .$$
(2.2)

Now, assume that  $\frac{1}{2} \leq \mu \leq$  1. Then, by applying (2.2) to  $1-\mu$  , it follows that

$$2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \leq \frac{1}{2\mu - 1} \int_{1-\mu}^{\mu} \left\| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| d\nu$$
  
$$\leq \frac{1}{2n} \Big[ (2n - 1) \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| + 2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \Big]$$
  
$$\leq \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\|.$$
(2.3)

Since

$$\begin{split} \lim_{\mu \to \frac{1}{2}} \frac{1}{|1 - 2\mu|} \left| \int_{\mu}^{1 - \mu} \left\| A^{\nu} X B^{1 - \nu} + A^{1 - \nu} X B^{\nu} \right\| d\nu \right| \\ &= \lim_{\mu \to \frac{1}{2}} \frac{1}{4n} \left[ (4n - 2) f(\mu) + f\left(\frac{1}{2}\right) \right] = 2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\|, \end{split}$$

the inequalities in (2.1) follow by combining (2.2) and (2.3) and so the required result is proved.  $\hfill \Box$ 

Applying Lemma 1 to the function  $f(v) = |||A^{v}XB^{1-v} + A^{1-v}XB^{v}|||$  in the interval  $[\mu, \frac{1}{2}]$  on  $0 \le \mu \le \frac{1}{2}$ , and in the interval  $[\frac{1}{2}, \mu]$  for  $\frac{1}{2} \le \mu \le 1$ , we obtain the following, which is a kind of refinements of Theorem 2 in a paper Kittaneh [5] and Theorem 2 in a paper of Feng [3].

$$\begin{split} \left\| A^{\frac{1+2\mu}{4}} XB^{\frac{3-2\mu}{4}} + A^{\frac{3-2\mu}{4}} XB^{\frac{1+2\mu}{4}} \right\| \\ &\leq \frac{2}{|1-2\mu|} \left\| \int_{\mu}^{\frac{1}{2}} \left\| A^{\nu} XB^{1-\nu} + A^{1-\nu} XB^{\nu} \right\| d\nu \right\| \\ &\leq \frac{1}{4n} \Big[ (2n-1) \left\| A^{\mu} XB^{1-\mu} + A^{1-\mu} XB^{\mu} \right\| + 2 \left\| A^{\frac{1+2\mu}{4}} XB^{\frac{3-2\mu}{4}} + A^{\frac{3-2\mu}{4}} XB^{\frac{1+2\mu}{4}} \right\| \\ &\quad + 2(2n-1) \left\| A^{\frac{1}{2}} XB^{\frac{1}{2}} \right\| \Big] \\ &\leq \frac{1}{2} \Big[ \left\| A^{\mu} XB^{1-\mu} + A^{1-\mu} XB^{\mu} \right\| + 2 \left\| A^{\frac{1}{2}} XB^{\frac{1}{2}} \right\| \Big]. \end{split}$$

$$(2.4)$$

Inequalities (2.4) and the first inequality in (1.1) yield the following refinements of the first inequality in (1.1).

**Corollary 1** Let  $A, B \in H_n^+(\mathbb{C})$ , and  $X \in M_n(\mathbb{C})$ . Then, for any positive integer n, any  $\mu \in [0,1]$ , and for every unitarily invariant norm  $||| \cdot |||$  on  $X \in M_n(\mathbb{C})$ , we have

$$2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| \leq \left\| A^{\frac{1+2\mu}{4}} X B^{\frac{3-2\mu}{4}} + A^{\frac{3-2\mu}{4}} X B^{\frac{1+2\mu}{4}} \right\|$$

$$\leq \frac{2}{|1-2\mu|} \left| \int_{\mu}^{\frac{1}{2}} \left\| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| d\nu \right|$$

$$\leq \frac{1}{4n} [(2n-1) \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\|$$

$$+ 2 \left\| A^{\frac{1+2\mu}{4}} X B^{\frac{3-2\mu}{4}} + A^{\frac{3-2\mu}{4}} X B^{\frac{1+2\mu}{4}} \right\| + 2(2n-1) \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| ]$$

$$\leq \frac{1}{2} [\left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| + 2 \left\| A^{\frac{1}{2}} X B^{\frac{1}{2}} \right\| ]$$

$$\leq \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| .$$

$$(2.5)$$

Applying the Lemma 1 to the function  $f(v) = |||A^{\nu}XB^{1-\nu} + A^{1-\nu}XB^{\nu}|||$  on the interval  $[\mu, \frac{1}{2}]$  when  $0 \le \mu \le \frac{1}{2}$ , and on the interval  $[\frac{1}{2}, \mu]$  when  $\frac{1}{2} \le \mu \le 1$ , we obtain the following theorem, which is a kind of refinements of Theorem 3 in a paper Kittaneh [5] and Theorem 3 in a paper of Feng [3].

**Theorem 3** Let  $A, B \in H_n^+(\mathbb{C})$ , and  $X \in M_n(\mathbb{C})$  and let n be a positive integer. Then: (1) for any  $0 \le \mu \le \frac{1}{2}$  and for every unitarily invariant norm  $||| \cdot |||$ , we have

$$\begin{split} \left\| A^{\frac{\mu}{2}} X B^{1-\frac{\mu}{2}} + A^{1-\frac{\mu}{2}} X B^{\frac{\mu}{2}} \right\| \\ &\leq \frac{1}{\mu} \int_{0}^{\mu} \left\| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| d\nu \\ &\leq \frac{1}{4n} \Big[ (2n-1) \left\| AX + XB \right\| + 2 \left\| A^{\frac{\mu}{2}} X B^{1-\frac{\mu}{2}} + A^{1-\frac{\mu}{2}} X B^{\frac{\mu}{2}} \right\| \\ &+ (2n-1) \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \Big] \\ &\leq \frac{1}{2} \Big[ \left\| AX + XB \right\| + \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \Big]; \end{split}$$
(2.6)

(2) for any  $\frac{1}{2} \le \mu \le 1$  and for every unitarily invariant norm  $\|\cdot\|$ , we have

$$\begin{split} \left\| A^{\frac{1+\mu}{2}} XB^{\frac{1-\mu}{2}} + A^{\frac{1-\mu}{2}} XB^{\frac{1+\mu}{2}} \right\| \\ &\leq \frac{1}{1-\mu} \int_{\mu}^{1} \left\| A^{\nu} XB^{1-\nu} + A^{1-\nu} XB^{\nu} \right\| d\nu \\ &\leq \frac{1}{4n} \Big[ (2n-1) \left\| AX + XB \right\| + 2 \left\| A^{\frac{1+\mu}{2}} XB^{\frac{1-\mu}{2}} + A^{\frac{1-\mu}{2}} XB^{\frac{1+\mu}{2}} \right\| \Big] \\ &\leq \frac{1}{2} \Big[ \left\| AX + XB \right\| + \left\| A^{\mu} XB^{1-\mu} + A^{1-\mu} XB^{\mu} \right\| \Big]. \end{split}$$
(2.7)

Since the function  $f(v) = |||A^{v}XB^{1-v} + A^{1-v}XB^{v}|||$  is decreasing on the interval  $[0, \frac{1}{2}]$  and increasing on the interval  $[\frac{1}{2}, 1]$ , and using the inequalities (2.6) and (2.7), we obtain a family of refinements of second inequality in (1.1).

**Corollary 2** Let  $A, B \in H_n^+(\mathbb{C})$ , and  $X \in M_n(\mathbb{C})$  and let n be a positive integer. Then: (1) for any  $0 \le \mu \le \frac{1}{2}$  and for every unitarily invariant norm  $||| \cdot |||$ , we have

$$\begin{split} \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \\ &\leq \left\| A^{\frac{\mu}{2}} X B^{1-\frac{\mu}{2}} + A^{1-\frac{\mu}{2}} X B^{\frac{\mu}{2}} \right\| \\ &\leq \frac{1}{\mu} \int_{0}^{\mu} \left\| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| d\nu \\ &\leq \frac{1}{4n} \Big[ (2n-1) \left\| AX + XB \right\| + 2 \left\| A^{\frac{\mu}{2}} X B^{1-\frac{\mu}{2}} + A^{1-\frac{\mu}{2}} X B^{\frac{\mu}{2}} \right\| \\ &+ (2n-1) \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \Big] \\ &\leq \frac{1}{2} \Big[ \left\| AX + XB \right\| + \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \Big] \\ &\leq \left\| AX + XB \right\|; \end{split}$$
(2.8)

(2) for any  $\frac{1}{2} \le \mu \le 1$  and for every unitarily invariant norm  $\||\cdot|||$ , we have

$$\begin{split} \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \\ &\leq \left\| A^{\frac{1+\mu}{2}} X B^{\frac{1-\mu}{2}} + A^{\frac{1-\mu}{2}} X B^{\frac{1+\mu}{2}} \right\| \\ &\leq \frac{1}{1-\mu} \int_{\mu}^{1} \left\| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| d\nu \\ &\leq \frac{1}{4n} \Big[ (2n-1) \left\| AX + XB \right\| + 2 \left\| A^{\frac{1+\mu}{2}} X B^{\frac{1-\mu}{2}} + A^{\frac{1-\mu}{2}} X B^{\frac{1+\mu}{2}} \right\| \\ &+ (2n-1) \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \Big] \\ &\leq \frac{1}{2} \Big[ \left\| AX + XB \right\| + \left\| A^{\mu} X B^{1-\mu} + A^{1-\mu} X B^{\mu} \right\| \Big] \\ &\leq \left\| AX + XB \right\|. \end{split}$$
(2.9)

It should be noted that in inequalities (2.8) and (2.9), we have

$$\begin{split} &\lim_{\mu\to 0^{\frac{1}{\mu}}} \int_{0}^{\mu} \left\| \left| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| \right| d\nu \\ &= \lim_{\mu\to 1} \frac{1}{1-\mu} \int_{\mu}^{1} \left\| \left| A^{\nu} X B^{1-\nu} + A^{1-\nu} X B^{\nu} \right\| \right| d\nu = \left\| \left| A X + X B \right| \right\|. \end{split}$$

**Remark 1** The two special values n = 1 and n = 8 give the refinements of Heinz inequalities obtained in [3] and [7], respectively.

### **Competing interests**

The authors declare that they have no competing interests.

### Authors' contributions

The authors contributed equally to the manuscript and read and approved the final manuscript.

### Acknowledgements

Thanks for both reviewers for their helpful comments and suggestions. The authors wish also to express their thanks to professor Mohammad S Moslehian for helpful suggestions for revising the manuscript. This research is supported by the Lebanese University grants program for the Discrete Mathematics and Algebra group.

### Received: 17 February 2014 Accepted: 30 June 2014 Published: 22 Jul 2014

### References

- 1. Bhatia, R: Matrix Analysis. Springer, New York (1997)
- Bhatia, R, Davis, C: More matrix forms of the arithmetic-geometric mean inequality. SIAM J. Matrix Anal. Appl. 14, 132-136 (1993)
- 3. Feng, Y: Refinements of Heinz inequalities. J. Inequal. Appl. 2012, 18 (2012)
- 4. Kittaneh, F, Manasrah, Y: Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361, 262-269 (2010)
- 5. Kittaneh, F: On the convexity of the Heinz mean. Integral Equ. Oper. Theory 68, 519-527 (2010)
- 6. Kaur, R, Moslehian, MS, Singh, M, Conde, C: Further refinements of the Heinz. J. Linear algebra and its applications (Available online 27 February 2013)
- 7. Wang, S: Some new refinements of Heinz inequalities for matrices. J. Inequal. Appl. 1, 132-136 (2013)
- 8. Zou, L, He, C: On some inequalities for unitarily invariant norms and singular values. Linear Algebra Appl. 436, 3354-3361 (2012)

### 10.1186/1029-242X-2014-267

Cite this article as: Abbas and Mourad: A family of refinements of Heinz inequalities of matrices. Journal of Inequalities and Applications 2014, 2014:267

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com