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Abstract
For any unitarily invariant norm ‖| · ‖|, the Heinz inequalities for operators assert that
2‖|A 1

2 XB
1
2 ‖| ≤ ‖|AνXB1–ν + A1–νXBν‖| ≤ ‖|AX + XB‖|, for A, B, and X any operators on a

complex separable Hilbert space such that A, B are positive and ν ∈ [0, 1]. In this paper,
we obtain a family of refinements of these norm inequalities by using the convexity of
the function f (ν) = ‖|AνXB1–ν + A1–νXBν‖| and the Hermite-Hadamard inequality.

Keywords: Heinz inequality; convex function; Hermite-Hadamard inequality;
unitarily invariant norm

1 Introduction
Let Mn(C) be the algebra of n × n complex matrices. We denote by Hn(C) the set of all
Hermitian matrices inMn(C). The set of all positive semi-definite matrices inMn(C) shall
be denoted by H+

n (C). A norm ‖| · ‖| onMn(C) is called unitarily invariant or symmetric if

‖|UAV‖| = ‖|A‖|

for all A ∈Mn(C) and for all unitaries U ,V ∈Mn(C).
The arithmetic-geometric mean inequality for two nonnegative real numbers a and b is

√
ab ≤ a + b


,

which has been generalized to the context of matrices as follows:


∥∥∣∣A 

XB


∥∥∣∣ ≤ ‖|AX +XB‖|,

where A,B ∈H+
n (C), X ∈Mn, and ‖| · ‖| is a unitarily invariant norm onMn(C).

For ν ∈ [, ] and two nonnegative numbers a and b, the Heinz mean is defined as

Hν(a,b) =
aνb–ν + a–νbν


.

Clearly the Heinz mean interpolates between the geometric mean and the arithmetic
mean:

√
ab ≤Hν(a,b)≤ a + b


.
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The function Hν(a,b) has the following properties: it is convex, attains its minimum at
ν = 

 , its maximum at ν =  and ν = , and Hν(a,b) = H–ν(a,b) for  ≤ ν ≤ . The gen-
eralization of the above inequalities to matrices is due to Bhatia and Davis [] as fol-
lows:


∥∥∣∣A 

XB


∥∥∣∣ ≤ ∥∥∣∣AνXB–ν +A–νXBν

∥∥∣∣ ≤ ‖|AX +XB‖|, (.)

where A,B ∈ H+
n (C), X ∈ Mn(C), and ν ∈ [, ]. For a historical background and proofs

of these norm inequalities as well as their refinements, and diverse applications, we re-
fer the reader to the [–], and the references therein. Indeed, it has been proved, in [],
that f (ν) = ‖|AνXB–ν +A–νXBν‖| is a convex function of ν on [, ] with symmetry about
ν = 

 , and attains its minimum there and it has a maximum at ν =  and ν = . Moreover,
it increases on [,  ] and decreases on [  , ].
In [, ], (.) is refined by using the so-called Hermite-Hadamard inequality:

g
(
a + b


)
≤ 

b – a

∫ b

a
g(t)dt ≤ g(a) + g(b)


,

where g is a convex function on [a,b].
Recently, in [] and [], respectively, the following inequalities were used to get new

refinements of (.):

g
(
a + b


)
≤ 

b – a

∫ b

a
g(t)dt ≤ 



(
g(a) + g

(
a + b


)
+ g(b)

)
≤ g(a) + g(b)


,

g
(
a + b


)
≤ 

b – a

∫ b

a
g(t)dt ≤ 



(
g(a) + g

(
a + b


)
+ g(b)

)
≤ g(a) + g(b)


.

The purpose of this note is to obtain a family of new refinements of Heinz inequalities for
matrices. Also the two refinements, given in [] and [], are two special cases of this new
family.

2 Main results
We start by the following key lemma which plays a central role in our investigation to
obtain a further series of refinements of the Heinz inequalities.

Lemma  Let g be a convex function on the interval [a,b]. Then for any positive integer n,
we have

g
(
a + b


)
≤ 

b – a

∫ b

a
g(t)dt ≤ 

n

[
(n – )g(a) + g

(
a + b


)
+ (n – )g(b)

]

≤ g(a) + g(b)


.

Proof Since g is convex on [a,b], we have

g
(
a + b


)
≤ g(a) + g(b)


.
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Thus

(n – )g(a) + g
(
a + b


)
+ (n – )g(b) ≤ ng(a) + ng(b),

whence


n

(
(n – )g(a) + g

(
a + b


)
+ (n – )g(b)

)
≤ g(a) + g(b)


.

To prove the middle inequality, we start by


b – a

∫ b

a
g(t)dt =


b – a

[∫ a+b


a
g(t)dt +

∫ b

a+b


g(t)dt
]

≤ 
b – a

[g( a+b ) + g(a)


· b – a


+
g(b) + g( a+b )


· b – a



]

=



[
g(a) + g

(
a + b


)
+ g(b)

]

=

n

[
ng(a) + ng

(
a + b


)
+ ng(b)

]

=

n

[
ng(a) + g

(
a + b


)
+ (n – )g

(
a + b


)
+ ng(b)

]

≤ 
n

[
ng(a) + g

(
a + b


)
+ (n – )

[
g(a) + g(b)



]
+ ng(b)

]

=

n

[
ng(a) + g

(
a + b


)
+ (n – )g(a) + (n – )g(b) + ng(b)

]

=

n

[
(n – )g(a) + g

(
a + b


)
+ (n – )g(b)

]
. �

Applying the previous lemma on the convex function defined earlier

f (ν) =
∥∥∣∣AνXB–ν +A–νXBν

∥∥∣∣

on the interval [μ, –μ] when ≤ μ ≤ 
 and on the interval [–μ,μ] when 

 ≤ μ ≤ , we
obtain the following refinement of the first inequality (.) which is a kind of refinements
of Theorem  in a paper Kittaneh [] and Theorem  in a paper of Feng [].

Theorem  Let A,B ∈ H+
n (C), and X ∈ Mn(C). Let n be any positive integer. Then for any

μ ∈ [, ], and for every unitarily invariant norm ‖| · ‖| on Mn(C), we have


∥∥∣∣A 

XB


∥∥∣∣ ≤ 

| – μ|
∣∣∣∣
∫ –μ

μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

∣∣∣∣
≤ 

n
[
(n – )

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣ + 

∥∥∣∣A 
XB



∥∥∣∣]

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. (.)
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Proof First assume that  ≤ μ ≤ 
 . Then it follows from Lemma  that

f
(

μ +  –μ



)
≤ 

 – μ

∫ –μ

μ

f (t)dt

≤ 
n

[
(n – )f (μ) + f

(
 –μ +μ



)
+ (n – )f ( –μ)

]

≤ f (μ) + f ( –μ)


= f (μ).

Since f (μ) = f ( –μ), we have

f
(



)
≤ 

 – μ

∫ –μ

μ

f (t)dt ≤ 
n

[
(n – )f (μ) + f

(



)]

≤ 
n

[
(n – )f (μ) + f

(



)]
≤ f (μ).

Thus,


∥∥∣∣A 

XB


∥∥∣∣ ≤ 

 – μ

∫ –μ

μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

≤ 
n

[
(n – )

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣ + 

∥∥∣∣A 
XB



∥∥∣∣]

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. (.)

Now, assume that 
 ≤ μ ≤ . Then, by applying (.) to  –μ, it follows that


∥∥∣∣A 

XB


∥∥∣∣ ≤ 

μ – 

∫ μ

–μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

≤ 
n

[
(n – )

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣ + 

∥∥∣∣A 
XB



∥∥∣∣]

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. (.)

Since

lim
μ→ 




| – μ|

∣∣∣∣
∫ –μ

μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

∣∣∣∣

= lim
μ→ 




n

[
(n – )f (μ) + f

(



)]
= 

∥∥∣∣A 
XB



∥∥∣∣,

the inequalities in (.) follow by combining (.) and (.) and so the required result is
proved. �

Applying Lemma  to the function f (ν) = ‖|AνXB–ν +A–νXBν‖| in the interval [μ,  ] on
 ≤ μ ≤ 

 , and in the interval [

 ,μ] for


 ≤ μ ≤ , we obtain the following, which is a kind

of refinements of Theorem  in a paper Kittaneh [] and Theorem  in a paper of Feng [].
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Theorem  Let A,B ∈ H+
n (C), and X ∈ Mn(C). Then, for any positive integer n, any μ ∈

[, ], and for every unitarily invariant norm ‖| · ‖| on Mn(C), we have

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣

≤ 
| – μ|

∣∣∣∣
∫ 



μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

∣∣∣∣
≤ 

n
[
(n – )

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣ + 

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣
+ (n – )

∥∥∣∣A 
XB



∥∥∣∣]

≤ 

[∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣]. (.)

Inequalities (.) and the first inequality in (.) yield the following refinements of the
first inequality in (.).

Corollary  Let A,B ∈ H+
n (C), and X ∈ Mn(C). Then, for any positive integer n, any μ ∈

[, ], and for every unitarily invariant norm ‖| · ‖| on X ∈Mn(C), we have


∥∥∣∣A 

XB


∥∥∣∣ ≤ ∥∥∣∣A +μ

 XB
–μ
 +A

–μ
 XB

+μ


∥∥∣∣

≤ 
| – μ|

∣∣∣∣
∫ 



μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

∣∣∣∣
≤ 

n
[
(n – )

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣

+ 
∥∥∣∣A +μ

 XB
–μ
 +A

–μ
 XB

+μ


∥∥∣∣ + (n – )
∥∥∣∣A 

XB


∥∥∣∣]

≤ 

[∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣ + 
∥∥∣∣A 

XB


∥∥∣∣]

≤ ∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣. (.)

Applying the Lemma  to the function f (ν) = ‖|AνXB–ν +A–νXBν‖| on the interval [μ,  ]
when  ≤ μ ≤ 

 , and on the interval [  ,μ] when

 ≤ μ ≤ , we obtain the following theo-

rem, which is a kind of refinements of Theorem  in a paper Kittaneh [] and Theorem 
in a paper of Feng [].

Theorem  Let A,B ∈H+
n (C), and X ∈Mn(C) and let n be a positive integer. Then:

() for any  ≤ μ ≤ 
 and for every unitarily invariant norm ‖| · ‖|, we have

∥∥∣∣Aμ
 XB–μ

 +A–μ
 XB

μ

∥∥∣∣

≤ 
μ

∫ μ



∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

≤ 
n

[
(n – )‖|AX +XB‖| + 

∥∥∣∣Aμ
 XB–μ

 +A–μ
 XB

μ

∥∥∣∣

+ (n – )
∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣]

≤ 

[‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣]; (.)
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() for any 
 ≤ μ ≤  and for every unitarily invariant norm ‖| · ‖|, we have

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣
≤ 

 –μ

∫ 

μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

≤ 
n

[
(n – )‖|AX +XB‖| + 

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣]

≤ 

[‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣]. (.)

Since the function f (ν) = ‖|AνXB–ν +A–νXBν‖| is decreasing on the interval [,  ] and
increasing on the interval [  , ], and using the inequalities (.) and (.), we obtain a
family of refinements of second inequality in (.).

Corollary  Let A,B ∈H+
n (C), and X ∈Mn(C) and let n be a positive integer. Then:

() for any  ≤ μ ≤ 
 and for every unitarily invariant norm ‖| · ‖|, we have

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣

≤ ∥∥∣∣Aμ
 XB–μ

 +A– μ
 XB

μ

∥∥∣∣

≤ 
μ

∫ μ



∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

≤ 
n

[
(n – )‖|AX +XB‖| + 

∥∥∣∣Aμ
 XB–μ

 +A–μ
 XB

μ

∥∥∣∣

+ (n – )
∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣]

≤ 

[‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣]

≤ ‖|AX +XB‖|; (.)

() for any 
 ≤ μ ≤  and for every unitarily invariant norm ‖| · ‖|, we have

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣

≤ ∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣
≤ 

 –μ

∫ 

μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

≤ 
n

[
(n – )‖|AX +XB‖| + 

∥∥∣∣A +μ
 XB

–μ
 +A

–μ
 XB

+μ


∥∥∣∣
+ (n – )

∥∥∣∣AμXB–μ +A–μXBμ
∥∥∣∣]

≤ 

[‖|AX +XB‖| + ∥∥∣∣AμXB–μ +A–μXBμ

∥∥∣∣]

≤ ‖|AX +XB‖|. (.)
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It should be noted that in inequalities (.) and (.), we have

lim
μ→ 

μ

∫ μ



∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν

= lim
μ→


 –μ

∫ 

μ

∥∥∣∣AνXB–ν +A–νXBν
∥∥∣∣dν = ‖|AX +XB‖|.

Remark  The two special values n =  and n =  give the refinements of Heinz inequali-
ties obtained in [] and [], respectively.
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