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Abstract

Let C be a nonempty closed convex subset of a Hilbert space H, let B, G be two
set-valued maximal monotone operators on C into H, and let g: H — H be a
k-contraction with 0 < k < 1. A: C — H is an a-inverse strongly monotone mapping,
V:H — His a y-strongly monotone and L-Lipschitzian mapping with y > 0and
L>0,T:C— CisaA-hybrid mapping. In this paper, a general iterative scheme for
approximating a point of F(T) N (A+B)"'0 N G0 # @ is introduced, where F(T) is the
set of fixed points of T, and a strong convergence theorem of the sequence
generated by the iterative scheme is proved under suitable conditions. As
applications of our strong convergence theorem, the related equilibrium and
variational problems are also studied.
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1 Introduction
Throughout this paper, H denotes a real Hilbert space, C a nonempty closed convex subset
of H, N the set of all natural numbers and R the set of all real numbers. For a self-mapping
T on H, F(T) denotes the set of all fixed points of T.

A set-valued map B: H — 2 with domain D(B) := {x € H : Bx # @} is called monotone
if

(x=y,u-v)=0

for all x, y € D(B) and for any u € Bx, v € By; B is said to be maximal monotone if its graph
{(x,u) : x € H,u € B(x)} is not properly contained in the graph of any other monotone
operator. For a positive real number r, the resolvent ]f of a monotone operator B for r is
a single-valued mapping /2 : H — D(B) defined by z = J(x) if and only if x € z + rBz, that
is, JB(x) = (I + rB)(x) for any x € H, where I is the identity mapping on H. The Yosida
approximation A, of Bfor r > 0 is defined as A, = %(I—If). Itis known [1] that A,x € B(J2x)
forall x € H.

The fixed point theory for nonexpansive mappings can be applied to the problem of
finding a zero point v of a maximal monotone operator B on H, that is, finding a point
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v € H satisfying 0 € B(v). In the sequel, we shall denote the set of all zero points of B by
Bo.

A self-mapping V on H is called y -strongly monotone if there is a positive real number
y such that

(W= Ve—Vy) 2 7lx-yl% VxyeH;
V is called L-Lipschitzian if there is a positive real number L such that
V- Vyl <Lllx-yll, VxyeH.

A mapping A : C — H is said to be «-inverse strongly monotone if there is a positive

real number « such that
(x—y,Ax — Ay) > a||Ax — Ay||*>, Vx,yeC.

As easily seen, an «-inverse strongly monotone mapping is é—Lipschitzian on C.
For A € R, a mapping T : C — H is said to be A-hybrid if

1T - 91> < Il - yI1? + Ax— Tr,y - B), ¥,y eC.

When A =2, T is called nonspreading. It is known that F(T) is closed and convex provided
T is a A-hybrid self-mapping on C, cf. [2].

Recently, Lin and Takahashi [3] introduced an algorithm for finding a point py € (4 +
B)™'0 N G710, where A is an a-inverse strongly monotone mapping of C into #, and B,
G are two set-valued maximal monotone operators with D(B) C C and D(G) C C. More

precisely, let g be a k-contraction and V be a y-strongly monotone and L-Lipschitzian
. 5 L
%/ and0<y<? - Then the algorithm starts

with any x; € H and generates a sequence {x,} iteratively by

mapping. Choose i,y € R so that 0 <

Xt = 0y g(Xn) + (I =y V) (I = 0,A)] 3%y, mEN, 6))

where {a,} € (0,1), {0,,} € (0,00), and {r,} € (0, o0) satisfy

o0 o0
lim «, =0, E o, = 00, E let,, — ayp1| < 0O, O<a<o, <20,
n—0oQ
n=1 n=1
o0 [o¢]
E |0y — 04| < 00, liminfr, >0 and E |7y — rps1] < 00.
1 n—0oQ 1
n= n=

They proved that P, g-19ng-10(/ = V' + ¥ g) has a unique fixed point py in €2, and this po
is also a unique solution py € (4 + B)™10 N G710 to the hierarchical variational inequality

(V-v@pg-p) VgeQ.

As Lin and Takahashi said in [3], their idea for this algorithm comes from the works of
Tian [4].
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On the other hand, Manaka and Takahashi [5] used the algorithm

Xn+l = OpXy + (1 - an)T(]fn (1 - UnA)xn) (2)

to find a point po € F(T) N (A +B)™0 for a nonspreading mapping T, an a-inverse strongly
monotone mapping A and a maximal monotone operator B under the conditions

O<c<a,<d<1l and O<a<o,<b<2a,

where a,b,c,d € R are fixed. They proved that the sequence {x,} constructed above con-
verges weakly to a point p € F(T) N (A + B)~!0.

Very recently, Liu et al. [6] modified the iterative scheme (2) to approximate a point
p € F(T) N (A + B)710 for a nonspreading mapping 7, an «a-inverse strongly monotone
mapping and a maximal monotone operator B. For any u# € H, they put x; to be any point
of H and define recursively for all n € N,

Zp :]5” U - 0,A)%,,
In =5 Lo T (3)
Xn+l = Oplh + (1 - an)ym

where {«,} is a suitable sequence in [0, 1].

Motivated by the above works, in this paper we introduce a general iterative scheme for
approximating a point of F(T) N (A +B)"10N G0 # &, where T is a A-hybrid self-mapping
on C, A : C — H isan a-inverse strongly monotone mapping and B and G are two maximal
monotone operators. A strong convergence theorem of the sequence generated by our
iterative scheme is proved under suitable conditions. Our result improves and generalizes
the main theorem of Lin and Takahashi [3]. As applications of our strong convergence
theorem, the related equilibrium and variational problems are also studied.

2 Preliminaries
In order to facilitate our investigation, in what follows we recall some basic facts. A map-
ping T: C — H is said to be

(i) nonexpansive if
ITx - Tyl < llx—yll, VYxyeC
(ii) firmly nonexpansive if
T — Ty|* < (x—y, Tx — Ty), Vx,y€C.

The metric projection Pc from H onto C is the mapping that assigns each x € H the unique
point Pcx in C with the property

llx = Pex|| = min ||y — x||.
yeC

It is known that P¢ is nonexpansive and characterized by the inequality: for any x € H,

(x = Pcx,y—Pcx) <0, VyeC(C, (4)

o [7].
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For any x,y € H, one has
ll+ yI* < llel® + 20y, + ). (5)

Lemma 2.1 (Demiclosedness principle) [8] Let T be a nonexpansive self-mapping on a
nonempty closed convex subset C of H, and suppose that {x,} is a sequence in C such that
{x,} converges weakly to some z € C and lim,_,  ||%, — Tx,|| = 0. Then Tz = z.

For s > 0, the resolvent ]f of the maximal monotone operator B on H has the following
properties, cf. [9].

Lemma 2.2 Let B be a maximal monotone operator on H. Then, for any s > 0,
(a) JB is single-valued and firmly nonexpansive;
(b) DUE) =H and F(J®) = B710.

The following lemma can be derived easily from the resolvent identity of a monotone
operator B:

t t
]SBx =],B<—x + (1 - —>]sBx> for anys,t > 0 and any x € H.
s s

Lemma 2.3 Let B be a monotone operator on H. Then, for any s,t € R with s,t > 0 and for
any x € H,

725154 <

s —¢|
eyt

When B is maximal monotone, a different proof may be found in Takahashi ez al. [9].

Lemma 2.4 [5] Let A: C — H be an o-inverse strongly monotone mapping, and let B be a
maximal monotone operator on H with D(B) C C. Then, forany o > 0, one has (A +B)™0 =
FU2(I-oA)).

Lemma 2.5 [3] Let A: C — H be an a-inverse strongly monotone mapping. Then, for any
o €(0,2a], (I - 0 A) is nonexpansive.

Lemma 2.6 (3] Let g: H — H be a k-contraction with 0 <k <1,let V:H — H be a
y -strongly monotone and L-Lipschitzian mapping with y >0 and L > 0, and let y be a real
number satisfying 0 < y < % Then V —yg is a (y — yk)-strongly monotone and (L + yk)-
Lipschitzian mapping. Furthermore, for any nonempty closed convex subset Q2 of H, Po(I —
V + yg) has a unique fixed point py € 2, which is also a unique solution of the variational
inequality

(V-y92zq-2)>0, VYgeq.
Lemma 2.7 [10] Let {s,} be a sequence of nonnegative real numbers satisfying
Spsl = (1 - O(,,,)Sn + 0oy +Vy, NE N,

where {a,}, {itn} and {v,} verify the following conditions:
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@) {a.} <[0,1], Z:il oy = 0Q0;
(ii) limsup,,_, , tn <0;
(i) {v,} €[0,00) and Y o2, v, < 0.

Then lim,_, S, = 0.

3 Strong convergence theorems
We begin the proof of the main result of this paper. As the proof is rather lengthy, we divide

the proof into many assertions.

Theorem 3.1 Suppose that

(31.1) G:C — 2™ and B: C — 2™ are two maximal monotone operators with
D(G) € C and D(B) C C;

(3.1.2) g:H — H is a k-contraction, A : C — H is an a-inverse strongly monotone
mapping, and V : H — H is a y-strongly monotone and L-Lipschitzian mapping
withy >0 and L > 0;

(3.1.3) T:C — C isa \-hybrid mapping;

(314) Q:=F(NA+B)10NG0#g; )

_ 12

(3.1.5) w and y are two real numbers satisfying 0 < u < i—lz’ and 0 <y < yfkT

Start with any x, € H and define a sequence {x,} iteratively by

Zy =]fn - o,,A)]anx,,, nel,
Y=t Y10 T'ze, neN, (6)
X1 = Y E(Xn) + (I — 0, V),

where the sequences {o,}, {o,} and {r,} verify the following conditions:
(3.1.6) {ay} is a sequence in [0,1] with lim,_,oc &ty = 0 and y -, at, = 00;
(3.1.7) {04} and {r,} are sequences in (0,00) so that liminf,_, r, > 0 and there are
a,beRwith0<a<o,<b<2aforallneN.
Then the sequence {x,} constructed by algorithm (6) converges strongly to a point p € €2,
where pg is the unique fixed point of Po(I — V + yg), and this point py is also a unique

solution of the hierarchical inequality

(V-v9pg-p)=0, VgeQ. 7)

Proof In what follows, p is a pointin Q, T =y — ﬁ, and u, =]gx,, forall m e N.

2
e Assertion (A): There is N € N such that
| = @uV)yn = (I =2, V)p|| < A= 0 0) 1y - pII-

Since lim,,_, o, @, = 0, there is N € N such that 1 — «,7 >0 and u — «,, > 0 for all # > N.

Then, as V is y-strongly monotone and L-Lipschitzian, we have that for all n > N,

|t - V)yn - -, V)p|’
= -2 - V3 - V)|

=y = 21 = 20 (Y — B, Viu — V) + 02|V, — Vip|?


http://www.journalofinequalitiesandapplications.com/content/2014/1/264

Hong Journal of Inequalities and Applications 2014, 2014:264 Page 6 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/264

< llyn =pI” = 207 1y = pI* + s L? 1y = p1I°
= (1-2a,7 - ol + OtZLz) lyn —plI?
< (1=2a,7 + ;) lyn - pII* = 0l (1 — ) lyu — pII?
<@ -a,0) ly. -pl% ®)
and so the assertion holds.
e Assertion (B): The sequences {x,}, {yu}, {zu}, {ttn}, {Aun}, {Vyu}, {g(x,)} and {T"z,} are

bounded.
We firstly show that

lyn =Pl < 2o —pll < I%u —pll, VneN. )

On account of p = ]fn (I -0,A)pby Lemma 2.4, p = ],Gn p by assumption and the facts that a
resolvent is nonexpansive and A is «-inverse strongly monotone, we have
2
lzn = pII* = |2 (I = 0,A) 50 — T2 (I - 0, A)] 2 p|
2
< |t -0,A)S %, — (I -0, A p|

< llxx - pII? - 20,0 | Au, - Apl|* + o7 || Au, - Ap|?

TS = ISP - 0u(AS s~ ATCp) |

IS, ~T5p|* - 20, — p, Ay — Ap) + 02| Auy, — Ap|? (10)

n

= ||y = plI* = 04 (2t — 0,)) | Aus,, — Ap || (11)

< llan = pII?,
where the last inequality follows from the hypothesis that 2« > o,,. Therefore,
2w =PIl < ll%s = pIl.
Since T is A-hybrid, we have, for any #n € N,
1724 = pII* = 1| T2 = TpII* < |12 = PII* + 4(2n = Temp ~ Ip) = |12~ PII*,

and so, by induction, it comes easily that

| Tz - p|| < llzu —pll forallimeN. (12)
Consequently,
1 n-1
ly = pll = H =Y T'z-p
i=0

1 n-1 )
<23 |7
i=0
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=

N

n-1

> llza—pl

i=0

= llzu =2l < % - plI.

Next, we show that {||x,, — p||} is bounded. Indeed, as p = (I — @, V)p + a,, Vp, we have

%41 = P
= [lotyg(en) + I = ctuV)yu — Vo — (I — u V)p||
< |len(vg@a) = Vo) | + [T =t VIyu = I =, V)p||
< |y — e +au] vew) - Vo + [T -, V)y, — (1 - 2, V)p |

< anyklx, —pll + | ygp) - Vo | + | = 0uV)yu — (I -y V)p

’

which together with Assertion (A) implies that for all # > N,

%1 =PIl < ny Kl = pll + || yg() = Vo || + A = ) llyn - pll
< (L-an(t =y L) Ixs - pll + o | v2(p) - Vo |

< llxn-pll + |ve) - Vb

from which we inductively deduce that

%, = pll < e = pll + || ye(®) - Vp||.

Thus, {x,} is bounded, and so are {y,}, {z,} by (9). And then the boundedness of {T"z,}
follows from (12). The fact that {Vy, } and {g(x,)} are bounded is due to the fact that V and

g are L-Lipschitzian and k-contraction, respectively.
Finally, from ||z, — p|| = ||]§’;xn —](,an|| < |l%,, — pll, we deduce that {u,} is bounded, and

{Au,} is bounded comes from A is é-Lipschitzian.

e Assertion (C): limy,_, o [|%5+1 — %5l = 0.
We at first show that lim,,—, oo || Y441 — ¥x|l = 0. By Assertion (B), we can choose a positive

real number M so that

max[sup [ 7724, sup 1yl ] =M.
neN

neN

Then, for all n e N,

n n-1

1 . 1 .
yne1 = yull = H — Z T'z, — ; Z T'z,

n+1
i=0 i=0

n-1

Z Tizn

i=0

1 1 1
< Slral+ (- )
n+1 n n+l

172 + ——lyall < 22
" n+l1 7" T sl

T+l

Hence lim,,_, o |¥541 — ¥ull = 0.
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Now, for all # > N, we have from Assertion (A) that

1142 = Xnaa
= | etni1 v gFni1) + I = st VY1 — 2y g(n) = (L= V) |
< letns1yg(ne1) = nivg@n) || + ||ty glen) — any gl |
+ | = wia VIynar = I = i VIy | + | (T = win VIyn = T = u V|
< U1 Y k(a1 = Xull + ¥ [otnar — il | g(xn) | + (A = pia ) 1Y — vl
+ |otner — o[ | Vyull.
Consequently, using condition (3.1.6), Assertion (B) and lim,, .« ||¥4+1 — ¥l = 0, we get
limy,— o0 |%41 — %l = 0.

e Assertion (D): lim,_, o ||Au,, — Ap|| = 0.
Using (5), it follows from (8), (9) and (11) that

%41 — pII*
= [~ etV yn — (U~ eV p + v — Vo
< [ = euV)yu = U = u V)| + 20{v () = VI, %1 —p) by (5)
< (L= au?)lyn = PII* + 20u(yg(®n) = VD, %001 — p) by (8)
< (L= @) |20 = pII* + 200u(y (%) = VD, %01 = p) DY (9) (13)
< (1 - a,t)* (1% - pII* - 042 — 0,) [ Ausyy — Apl|®)
+ 20,y g(%n) = VP, X1 —p) by (11)
< (- ant)ll%s — pII* = (A - 0, 7)°0, (2 — 0,)) || A, — Ap|®
+20,(y g(xn) = VP, 2ni1 — p)
< lxn —pI* + ap %0 — plI* = (1 - @, 7)*0u (20 — 0,) | At — Ap||?

+ 200,y g(n) — VP Xs1 — ).
Hence, on account of 0 < g < 0, < b < 2« for all n € N, we have

(1-a,7)*a(20 - b)||Au, - Ap||®
<1 -a,1)°0,Q2x - 0,) || Au, — Apl|*
< 1% = pI* = 1%ne1 — pII* + ep 7|12, — plI?
+ 200y g(n) = VP, %na1 - p)
< 119 = Znaa | (60 = Il + 61 = plI) + 0T — pI?
+ 20, (Y g(%4) = VP, %041 — P),

which together with Assertions (B) and (C) implies that lim,,_, o ||Au,, — Ap|| = 0.
e Assertion (E): lim,,_, oo [|%, — ¥ || = lim,,—, o0 [|%, — || = 0.
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From

”xn _yn” =< ||xn _xn+1|| + ||xn+1 _yn”
= llotn = Fnar | + |ty g@n) + (I = 2t V)yn = yu|

’

= [lay — a1l + o ”Vg(xn) =V

condition (3.1.6) and Assertions (B) and (C), we conclude that lim,,_, o [|%, — ¥4| = 0.
As ]an is firmly nonexpansive, one has

2llun —pll? =2| 2

]gxn _]gp

=< 2(96,, — P Uy —P)

= 1% = pI* + Nl =PI = Nt = 211,
and so
2t =PI < N = pI* = Nt = 25117 (14)
In addition, since A is a-inverse strongly monotone, we see from (10) that

|* = 20, (1, — p, A, — Ap) + 02| Au, - Ap|®

JSxn =TSP

iz —pl* < |
= |luy — plI* = 20, (u, — p, Au, — Ap) + 0 | Au, — Ap||?
<l - pl* = 20,0 || Au, — Apl|* + o2 ||Au, — Ap||*

= llttw — pII* = 042 — 0,)) [ Ausyy — Ap||*. (15)
Then (13), (14) and (15) give us that

%01 = pII*
< (L= an)llzn — pII* + 200y g(x4) — Vo, %01 — p) by (13)
< (-0, 7)* (It — pII* - 042 — 0,,) | Aty — Apl|*) by (15)
+ 20, (Y g(%n) — Vs %11 — D)
< (= an)*(Iltn = pI* = llttn = %4 11*) = (A = 2uT)?04(20 — 7,) | Auty — Ap|)?
+20,(yg(xs) — Voo %1 —p) by (14)
< |l — pII* + apt* ln — pI* = (= €u7)? (|t — %1

-(1- an‘L’)ZO'n(2O{ — o) | Auy, —AP||2 + 2an(yg(xn) = Vb, xna —p>~
Therefore

2 2

(I —otnT) Nty — %4l
2 2 2.2 2
< %n = pI° = %001 = pI° + 0,77 (1% = pl

- (1= a,1)%0,20 — 0,) || A, — Apl® + 2a,,(yg(xn) - Vp, x4 —p)

Page9of 17
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2.2 2
< 1120 = 2psr 1 (160 = Pl + %1 = pII) + 2p 2l = pll

-(1- anT)ZUn(zo‘ - o) | Auy, —AP||2 + 2an<yg(xn) - Vb, xna —P>'
By Assertions (C), (D) and condition (3.1.6), we obtain
lim ||x, —u,l|l =0.
n—00

e Assertion (F): Q is a nonempty closed convex subset of H.
Since 2 is nonempty by assumption, it suffices to show that Q is closed and convex.
From Lemma 2.4, we have that for any o > 0,

(A+B)'0=F(2( -0cA)).

In case 0 < o < 2a, we have that / — 0 A is nonexpansive by Lemma 2.5. Then J2(I - 0 A) is
nonexpansive, and so (4 + B)™10 = F(J2(I - 0 A)) is closed and convex. In the like manner,
for any r > 0, G™10 = F(J°) is closed and convex. Besides, it is shown in [2] that F(T) is
closed and convex. Hence comes the conclusion for .

e Assertion (G): Po(l — V + yg) has a unique fixed point py in 2, and this py is also a
unique solution py € Q2 to the hierarchical variational inequality (7)

(V-vgp.a-p)=0, Vge.

Taking into account that 2 is a nonempty closed convex subset, the conclusion follows
from Lemma 2.6.

e Assertion (H): Let po be the unique solution to the hierarchical variational inequality
(7). Then

lim sup{(V - y)po, % — po) < 0.

n—o0

Choose a subsequence {x,,} of {x,} so that

limsup((V - ¥g)po, %n — po) = E&«V ~ YQ)P0o»%n, — Po)

n— 00

and {x,,} converges weakly to w € H. In view of Assertion (E), we see that both of the
sequences {u,,} and {y,,} converge weakly to w. We at first show that w € F(T). Since T
is A-hybrid, one has | Tx — Ty||* < ||x — y]|*> + A{x — Tx,y — Ty) for all x,y € C. Express X as
A =2(1-6). Then, for all x,y € C, we have
I1Tx - Ty|?

<llx=Ty+ Ty—yl* + 20 - 8)x - Tx,y — Ty)

= llx = TylI* +2(x = Ty, Ty = 9) + [ Ty = ylI* + 2(1 = ) x — T, y — Ty)

= o= Ty + 1Ty = ylI* + 2{x = (1= 8)x + (1= 8) Tx - Ty, Ty - y)

= llx = TyI* + 1 Ty = ylI* +2(8x + (1 - 8) T — Ty, Ty - y),
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that is,
0 <llx=Tyl* = ITx - Tyll* + [ Ty - yII* + 2{8x + (1 - 8) T - Ty, Ty - y).
In particular, foralli e N, all z, and all y € C,

0 < |72, - Ty - |72, - T + 1Ty -1

+2(8T 'z, + (1= 8) Tz, — Ty, Ty — y).

Summing these inequalities from i = 0 to # — 1 and dividing by n, we obtain

—_

0 < —(llza = YI* = 1 T"20 = TyII*) + 1 Ty - y11?

X

1
+ 2<5yn +(1- 8)(2%1“ - Z—") -y Ty —y>' (16)
n n
Replacing n with #; in (16) and letting i — 0o, we get via Assertion (B) that
0 < Ty -yl* +2(6w+ (1= w- Ty, Ty - y). (17)

Putting y = w in (17), we arrive at 0 < —|| Tw — w||2. This shows that w € F(T).
Since 0 < a < 0,, < b < 2a, {0,,} has a convergent subsequence. For simplicity, we as-
sume that {0, } converges to a number o € [a, b]. Note that for all # € N,
V2 = oA, —z
S H]f(l - UA)Mn _](If(l - UnA)Mn H + ”]5(1 - UnA)un —Zn ”
< |0 -0A)u, - T - 0,A)uy| + T2 - 04A)un — T2 (I - 04 A)u |
low — ol
< low— o ||| Al + "T 172vs = v, (18)

where v,, = (I — 6,,A)u,,. Furthermore, we have for all 7 € N,

172vs = val| < |7Evi = p]| + Iva = pli
= |Bv. = J2p| + Iva - p
E 2||Vn —P||

and

v, = pll = | - 0,A)u, — (I - 0,A)p — 0, Ap |

< |lu, - p|l + b||Ap| by Lemma 2.5.

Hence, {J2v,, - v,} is bounded. Now, replace # with #; in (18) and note that both {Au,,}
and {/2v,, - v,,} are bounded. Letting i — 0o, we get that

/2 = Aty =t | = 0.
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Applying Lemma 2.1 to the nonexpansive mapping J2(I — o A), we conclude that w = J3(I -
oA)w, thatis, w € (A + B)™10.

We now show that w € G™10. Since G is a maximal monotone operator, the Yosida ap-

proximation A,x = @ of G for r > 0 is in F(J¢(x)). So, for any (z,v) € G, one has

Ky, — U,
<z—uni,v— ¥> > 0.
Ty,

Since liminf,_, o 1, > 0, {u,,} converges weakly to w and x,,, — u,, — 0, we have
(z=w,v) >0,

and then the maximality of T shows that 0 € Gw, that is, 0 € G™10.

In summary, we have shown that w € , and so, by Assertion (G), we conclude that

lim sup((V — y)po, %, = po) = lim (V' — y.)po, %, — o)

n—00

=({(V = y@po,w - po) = 0.

e Assertion (I): The sequence {x,} converges strongly to py.
Replacing p with py in (13), we have

%1 = poll”> < (1= @ T)*l12n = poll* + 20t{y g (%) = V20, X1 — po)
< (= aut)?llzn = poll® + 20,y ks — pollll%ns1 — poll
+20,(yg(po) — Vo, %ns1 — Po)
< (L= )%, = poll* + cuy k(II%n = polI* + %01 = po %)

+20,(yg(Po) = Vo, %1 — o) by (9)

(A= 0u7)* + uyk) 1%, = poll* + @y kllxns1 = poll®

+20,(y g(po) — Vo, %ns1 — D).
Hence

1-20,T + (00, 7)? + vk

%1 = poll < T e,k 1% = poll?
l_z(;%ykwg@o)— Vo, %ni1 — Po)

- (1_ %)nxn ~poll® + %nxn - poll?
+ 1_2;%)//(()/8(190) = Vo, %ns1 — Po)

= (1 - ﬂn)”xn —P0||2

ant? s —pol® 1
— V , _ ,
+ ﬂn( 2(t - yk) + — yk()’g(PO) P05 Xn+1 PO))
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where B, = % Since Y 7, B, = 00, and since
2 2
. o T |%n = poll 1
lim su + - Vpo,Xni1 — <0,
s oo ( 2(7.'—)//() _L__yk<)/g(l70) P0o>Xn+1 P0> =

by Assertion (H), it follows from Lemma 2.7 that {x,,} converges strongly to p,. This com-

pletes the proof. d
When T is the identity mapping, the theorem reduces to the following corollary.

Corollary 3.2 Suppose that

(321) G:C— 2™ and B: C — 2™ are two maximal monotone operators with
D(G) C C and D(B) C C;

(3.2.2) g:H — H isa k-contraction, A : C — H is an a-inverse strongly monotone
mapping, and V : H — H is a y-strongly monotone and L-Lipschitzian mapping
with y >0 and L > 0;

(323) Q:=(A+B)0NG0#g; ,

2

(3.2.4) pand y are two real numbers satisfying 0 < . < i—g and 0 <y < yfkT .

Start with any x, € H and define a sequence {x,} iteratively by

Yn =]£n (1 - UnA)],gxm neN,
Xn+l = Olnyg(xn) + (=, V)yn,

where the sequences {a,}, {0,} and {r,} verify the following conditions:
(3.2.5) {a} is a sequence in [0,1] with lim, oot = 0 and Y ooy o, = 00;
(3.2.6) {0y} and {r,} are sequences in (0, 00) so that liminf,_, o r, > 0 and there are
a,beRwithO0<a<o,<b<2aforallneN.
Then Po(I -V + yg) has a unique fixed point po in 2, and this py is also a unique solution
Po € 2 to the hierarchical variational inequality

(V-yvgp.a-p) Vgeq.

Here we would like to remark that Corollary 3.2 is related to Theorem 8 in Lin and
Takahashi [3], although our conditions (3.2.5) and (3.2.6) are different from the corre-

sponding ones in [3].
4 Applications
In this section, we shall apply Theorem 3.1 to study the related equilibrium problem. Let
f:CxC— RandA:C — H. Then a generalized equilibrium problem is the problem of
finding % € C such that

f@y) +(Ax,y-%) >0, VyeC. 19)

The solution set for Eq. (19) is denoted by EP(f, A), that is,

EP(f,A) = { € C:f(%,9) + (A%,y — %) = 0,Vy € C}.

Page 13 of 17
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In case A = 0, problem (19) reduces to the equilibrium problem of finding & € C such that
f&y) =0, VyeC,

whose solution set is denoted by EP(f). When f = 0, the generalized equilibrium problem
becomes the variational problem of finding % € C such that

(Ax,y-%) >0, VyeC,

whose solution set is denoted by VI(C, A). For solving an equilibrium problem, we assume
that the function f satisfies the following conditions:

(Al) f(x,x)=0,Vx€C;

(A2) f is monotone, that is, f(x,y) +f(y,x) <0, Vx € C;

(A3) forallx,y,z € C,limsup, o f((1 - t)x + tz,y) < f(x,y);

(A4) forallx € C, f(x,-) is convex and lower semicontinuous.

The following Lemma 4.1 appears implicitly in Blum and Oettli [11] and is proved in
detail by Aoyama et al. [12], while Lemma 4.2 is Lemma 2.12 of Combettes and Hirstoaga
[13].

Lemma 4.1 [11, 12] Let f: C x C — R be a function satisfying conditions (Al)-(A4), and
let r >0 and x € H. Then there exists a unique z € C such that

1
fy)+-(y-zz-x)>0, VyeC.
r

Lemma 4.2 [13] Letf : C x C — R be a function satisfying conditions (Al)-(A4). Forr > 0,
define H—>cC by

Fx= {zeC:f(z,y)+ %(y—z,z—x) zO,VyeC}

for all x € H. Then the following hold.:
(a) ],( is single-valued;
(b) # s firmly nonexpansive;
() FU{)=EP(f);
(d) EP(f) is closed and convex.

We call 7 the resolvent of f for r > 0. Using Lemmas 4.1 and 4.2, Takahashi et al. [9]
established the lemma below.

Lemma 4.3 [9] Letf : C x C — R be a function satisfying conditions (A1)-(A4) and define
a set-valued mapping of H into itself by

{zeH:f(x,y)>(y—x,2),VyeC}, VxeC(C,
Gr(x) =
oz, Vx ¢ C.
Then the following hold:

(@) Gy is a maximal monotone operator with D(Gy) C C;
(b) EP(f) = Gf—lo;
(c) ],Gfx =ffxf0rallx eH.
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Theorem 4.4 Suppose that

(4.4.1) f:C x C— R is a function satisfying conditions (A1)-(A4d) and B: C — 2" isa
maximal monotone operator with D(B) C C;

(4.4.2) g:H — H isa k-contraction, A : C — H is an a-inverse strongly monotone
mapping, and V : H — H is a y-strongly monotone and L-Lipschitzian mapping
with y >0 and L > 0;

(4.4.3) T:C— Cisa A-hybrid mapping;

(4.4.4) Q:=F(T)N (A +B)0NEP(f) #2; 2

m

Y-
g

(4.4.5) p andy are two real numbers satisfying 0 < pu < i—’z’ and 0 <y <
Start with any x, € H and define a sequence {x,} iteratively by

f@ny) + 50 = thnythy = %) =20, VyeC,
Zy :]fn (I-0,A)u, neN,

Yn=1 "o Tz, nel,

Xns1 = Ay &) + ([ =, V)Y,

(20)

where the sequences {a,}, {0,} and {r,} verify the following conditions:
(4.4.6) {ay} is a sequence in [0,1] with lim,_, s o, = 0 and Y o) oty = 00;
(4.4.7) {0,} and {r,} are sequences in (0,00) so that liminf,_, o r, > 0 and there are two
a,beRwithO<a<o,<b<2uforallneN.
Then the sequence {x,} constructed by algorithm (20) converges strongly to a point py € 2,
where pg is the unique fixed point of Po(I — V + yg), and this point py is also a unique

solution of the hierarchical inequality

(V-y9pg-p)=0, VgeQ.
Proof The set-valued mapping Gy associated with f defined in Lemma 4.3 is a maximal
monotone operator with D(Gy) C C, and it follows from Lemmas 4.2 and 4.3 that F (],G Ty =
F(frf) =EP(f) = GJ?IO for any r > 0. Putting G = Gy in Theorem 3.1, we see that u, =],anxn,
and so the conclusion follows from Theorem 3.1. O

Since C is a nonempty closed convex subset of #, the indicator function ¢¢ defined by

0, x€C,

telw) = oo, x¢C

is a proper lower semicontinuous convex function, and its subdifferential d:¢ defined by
dicx)={zeH:(y-x2) <ic(y) - 1clx),Vy € H}

is a maximal monotone operator, cf. Rockafellar [14]. As shown in Lin and Takahashi [3]

the resolvent ],alc of dt¢ for r > 0 is the same as the metric projection Pc.

Theorem 4.5 Suppose that
(4.5.1) f:C x C— Risa function satisfying conditions (Al)-(A4);
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(4.5.2) g:H — H isa k-contraction, A : C — H is an a-inverse strongly monotone
mapping, and V : H — H is a y-strongly monotone and L-Lipschitzian mapping
with y >0 and L > 0;

(4.53) T:C— Cisa \-hybrid mapping;

(4.54) Q:=F(T)NVIC,A) ¥ ;

12 0

(4.5.5) wand y are two real numbers satisfying 0 < u < i—’; and 0 <y < V_TT
Start with any x, € H and define a sequence {x,} iteratively by

2, = Pc(I - 0,A)Pcx,, neN,
Yu= 1Y 00 Tz, neN, (21)
Xntl = anyg(xn) + (1 — Uy V)ym

where the sequences {a,}, {0,} and {r,} verify the following conditions:
(4.5.6) {ov,} is a sequence in [0,1] with lim,_oo oty =0 and Yy -, ot = 00;
(4.5.7) {o,} is a sequence in (0,00) so that there are two a,b € R with
0O<a<o,<b<2aforallneN.
Then the sequence {x,} constructed by algorithm (21) converges strongly to a point py € €2,
where pg is the unique fixed point of Po(I — V + yg), and this point py is also a unique
solution of the hierarchical inequality

(V-yepa-p)=0, Vgeq.

Proof Put B =G = dic in Theorem 3.1. Then, for 0, > 0 and r,, > 0, we have that J2 = ,dnlc =
Pc. Furthermore, as shown in Theorem 12 in Lin and Takahashi [3], we have

(91c)'0=C and (A +3dic)™'0=VI(C,A).

Thus we obtain the desired results from Theorem 3.1. O
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