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1 Introduction and preliminaries
Equilibrium problems which were introduced by Ky Fan [] and further studied by Blum
and Oettli [] have intensively been investigated based on iterative methods. The equilib-
rium problems have emerged as an effective and powerful tool for studying a wide class
of problems which arise in economics, ecology, transportation, network, elasticity, and
optimization; see [–] and the references therein. It is well known that the equilibrium
problems cover fixed point problems, variational inequality problems, saddle problems,
inclusion problems, complementarity problems, and minimization problems; see [–]
and the references therein.
In this paper, an iterative algorithm is proposed for treating common fixed point and

generalized equilibrium problems. It is proved that the sequence generated in the algo-
rithm converges strongly to a common element in the solution set of generalized equilib-
rium problems and in the common fixed point set of a family of nonexpansive mappings.
From now on, we always assume thatH is a real Hilbert space, whose inner product and

norm are denoted by 〈·, ·〉 and ‖ ·‖, respectively. LetC be a nonempty closed convex subset
of H and let PC be the projection of H onto C.
Let S : C → C be a mapping. Throughout this paper, we use F(S) to denote the fixed

point set of the mapping S. Recall that S : C → C is said to be nonexpansive iff

‖Sx – Sy‖ ≤ ‖x – y‖, ∀x, y ∈ C.

S : C → C is said to be firmly nonexpansive iff

‖Sx – Sy‖ ≤ 〈Sx – Sy,x – y〉, ∀x, y ∈ C.
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It is easy to see that every firmly nonexpansive mapping is nonexpansive.
Let A : C →H be a mapping. Recall that A is said to be monotone iff

〈Ax –Ay,x – y〉 ≥ , ∀x, y ∈ C.

A is said to be inverse-strongly monotone iff there exists a constant α >  such that

〈Ax –Ay,x – y〉 ≥ δ‖Ax –Ay‖, ∀x, y ∈ C.

For such a case, A is also said to be α-inverse-strongly monotone. It is known that if S :
C → C is nonexpansive, then A = I – S is 

 -inverse-strongly monotone. Recall that a set-
valued mapping T :H → H is called monotone if, for all x, y ∈H , f ∈ Tx and g ∈ Ty imply
〈x – y, f – g〉 ≥ . A monotone mapping T :H → H is maximal if the graph of G(T) of T
is not properly contained in the graph of any other monotone mapping. It is well known
that a monotone mapping T is maximal if and only if for (x, f ) ∈ H ×H , 〈x – y, f – g〉 ≥ 
for every (y, g) ∈ G(T) implies f ∈ Tx. Let B be a monotone map of C into H and let NCv
be the normal cone to C at v ∈ C, i.e., NCv = {w ∈H : 〈v – u,w〉 ≥ ,∀u ∈ C} and define

Tv =

⎧⎨
⎩
Bv +NCv, v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and  ∈ Tv if and only if 〈Av,u– v〉 ≥ , for ∀u ∈ C; see []
and the references therein
Recall that the classical variational inequality is to find u ∈ C such that

〈Au, v – u〉 ≥ , ∀v ∈ C. (.)

In this paper, we use VI(C,A) to denote the solution set of the variational inequality (.).
One can see that the variational inequality (.) is equivalent to a fixed point problem.
The element u ∈ C is a solution of the variational inequality (.) if and only if u ∈ C is a
fixed point of the mapping PC(I –λA), where λ >  is a constant and I denotes the identity
mapping. If A is an α-inverse strongly monotone, we remark here that the mapping PC(I –
λA) is nonexpansive iff  < λ < α. Indeed,

∥∥PC(I – λA)x – PC(I – λA)y
∥∥ ≤ ∥∥(I – λA)x – (I – λA)y

∥∥

= ‖x – y‖ – λ〈x – y,Ax –Ay〉 + λ‖Ax –Ay‖

≤ ‖x – y‖ – λ(α – λ)‖Ax –Ay‖.

This alternative equivalent formulation has played a significant role in the studies of the
variational inequalities and related optimization problems.
Let A be an inverse-strongly monotone mapping, F a bifunction of C ×C into R, where

R is the set of real numbers. We consider the following equilibrium problem:

Find z ∈ C such that F(z, y) + 〈Az, y – z〉 ≥ , ∀y ∈ C. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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In this paper, the set of such z ∈ C is denoted by EP(F ,A), i.e.,

EP(F ,A) =
{
z ∈ C : F(z, y) + 〈Az, y – z〉 ≥ ,∀y ∈ C

}
.

If the case of A≡ , the zero mapping, the problem (.) is reduced to

Find z ∈ C such that F(z, y) ≥ , ∀y ∈ C. (.)

In this paper, we use EP(F) to denote the solution set of the problem (.). The problem
of (.) and (.) have been considered by many authors; see, for example, [–] and
the references therein. In the case of F ≡ , the problem (.) is reduced to the classical
variational inequality (.).
To study the equilibrium problems, we assume that the bifunction F : C ×C →R satis-

fies the following conditions:
(A) F(x,x) =  for all x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤  for all x, y ∈ C;
(A) for each x, y, z ∈ C,

lim sup
t↓

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) for each x ∈ C, y → F(x, y) is convex and lower semi-continuous.
The well-known convex feasibility problem which captures applications in various dis-

ciplines such as image restoration, and radiation therapy treatment planning is to find a
point in the intersection of common fixed point sets of a family of nonlinear mappings. In
this paper, we propose an iterative algorithm for finding a common element in the solution
set of the generalized equilibrium problem (.) and in the common fixed point set of a
family of nonexpansive mappings. Strong convergence of the algorithm is established in
the framework of Hilbert spaces.
In order to prove our main results, we need the following definitions and lemmas.
A space X is said to satisfy Opial’s condition [] if for each sequence {xn}∞n= in X which

converges weakly to point x ∈ X, we have

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖, ∀y ∈ X, y �= x.

It is well known that the above inequality is equivalent to

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖, ∀y ∈ X, y �= x.

The following lemma can be found in [].

Lemma . Let C be a nonempty closed convex subset of H ad let F : C × C → R be a
bifunction satisfying (A)-(A). Then, for any r >  and x ∈H , there exists z ∈ C such that

F(z, y) +

r
〈y – z, z – x〉 ≥ , ∀y ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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Further, if Trx = {z ∈ C : F(z, y) + 
r 〈y – z, z – x〉 ≥ ,∀y ∈ C}, then the following hold:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all z ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e., for any x, y ∈H ,

‖Trx – Try‖ ≤ 〈Trx – Try,x – y〉;

() F(Tr) = EP(F);
() EP(F) is closed and convex.

Lemma . [] Let C, H , F and Tr be as in Lemma .. Then the following holds:

‖Tsx – Ttx‖ ≤ s – t
s

〈Tsx – Ttx,Tsx – x〉

for all s, t >  and x ∈H .

Lemma . [] Assume that {αn} is a sequence of nonnegative real numbers such that

αn+ ≤ ( – γn)αn + δn,

where {γn} is a sequence in (, ) and {δn} is a sequence such that
(a)

∑∞
n= γn =∞;

(b) lim supn→∞ δn/γn ≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ αn = .

Definition . [] Let {Si : C → C} be a family of infinitely nonexpansive mappings and
{γi} be a nonnegative real sequence with  ≤ γi < , ∀i ≥ . For n ≥  define a mapping
Wn : C → C as follows:

Un,n+ = I,

Un,n = γnSnUn,n+ + ( – γn)I,

Un,n– = γn–Sn–Un,n + ( – γn–)I,

...

Un,k = γkSkUn,k+ + ( – γk)I, (.)

un,k– = γk–Sk–Un,k + ( – γk–)I,

...

Un, = γSUn, + ( – γ)I,

Wn =Un, = γSUn, + ( – γ)I.

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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Such a mappingWn is nonexpansive from C to C and it is called aW -mapping generated
by Sn,Sn–, . . . ,S and γn,γn–, . . . ,γ.

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H , {Si : C →
C} be a family of infinitely nonexpansive mappings with

⋂∞
i= F(Si) �= ∅, {γi} be a real se-

quence such that  < γi ≤ l < , ∀i≥ . Then
() Wn is nonexpansive and F(Wn) =

⋂∞
i= F(Si), for each n≥ ;

() for each x ∈ C and for each positive integer k, the limit limn→∞ Un,k exists;
() the mappingW : C → C defined by

Wx := lim
n→∞Wnx = lim

n→∞Un,x, x ∈ C, (.)

is a nonexpansive mapping satisfying F(W ) =
⋂∞

i= F(Si) and it is called the
W -mapping generated by S,S, . . . and γ,γ, . . . .

Lemma . [] Let C be a nonempty closed convex subset of a Hilbert space H , {Si : C →
C} be a family of infinitely nonexpansive mappings with

⋂∞
i= F(Si) �= ∅, {γi} be a real se-

quence such that  < γi ≤ l < , ∀i≥ . If K is any bounded subset of C, then

lim
n→∞ sup

x∈K
‖Wx –Wnx‖ = .

Throughout this paper, we always assume that  < γi ≤ l < , ∀i≥ .

Lemma . [] Let {xn} and {yn} be bounded sequences in a Hilbert space H and let {βn}
be a sequence in [, ] with  < lim infn→∞ βn ≤ lim supn→∞ βn < . Suppose that xn+ =
( – βn)yn + βnxn for all n ≥  and

lim sup
n→∞

(‖yn+ – yn‖ – ‖xn+ – xn‖
) ≤ .

Then limn→∞ ‖yn – xn‖ = .

2 Main results
Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and let F be
a bifunction from C × C to R which satisfies (A)-(A). Let A : C → H be an α-inverse-
strongly monotone mapping and let {Si : C → C} be a family of infinitely nonexpansive
mappings. Assume that � :=

⋂∞
i= F(Si) ∩ EP(F ,A) �= ∅. Let f : C → C be a κ-contractive

mapping. Let {xn} be a sequence generated in the following process: let it be a sequence
generated in

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

F(yn, y) + 〈Axn, y – yn〉 + 
rn 〈y – yn, yn – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)Wn(αnf (Wnxn) + ( – αn)yn), ∀n≥ ,

where {Wn} is the mapping sequence defined by (.), {αn}, and {βn} are sequences in [, ]
and {rn} is a positive number sequence. Assume that the above control sequences satisfy the
following restrictions:

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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(a)  < a≤ βn ≤ b < ,  < c≤ rn ≤ d < α;
(b) limn→∞ αn = , and

∑∞
n= αn =∞;

(c) limn→∞(rn – rn+) = .
Then {xn} converges strongly to a point x ∈ �, where x = P�f (x).

Proof First, we show that the sequence {xn} and {yn} are bounded. Fixing x∗ ∈ �, we find
that

∥∥yn – x∗∥∥ =
∥∥Trn (xn – rnAxn) – Trn

(
x∗ – rnAx∗)∥∥

≤ ∥∥(xn – rnAxn) –
(
x∗ – rnAx∗)∥∥

=
∥∥(
xn – x∗) – rn

(
Axn –Ax∗)∥∥

=
∥∥xn – x∗∥∥ – rn

〈
xn – x∗,Axn –Ax∗〉 + rn

∥∥Axn –Ax∗∥∥

≤ ∥∥xn – x∗∥∥ – rnα
∥∥Axn –Ax∗∥∥ + rn

∥∥Axn –Ax∗∥∥

=
∥∥xn – x∗∥∥ + rn(rn – α)

∥∥Axn –Ax∗∥∥. (.)

Using the restriction (a), we find that

∥∥yn – x∗∥∥ ≤ ∥∥xn – x∗∥∥. (.)

From the above, we also find that the mappings I – rnA is nonexpansive. Putting zn =
αnf (Wnxn) + ( – αn)yn, we find from (.) that

∥∥zn – x∗∥∥ =
∥∥αnf (Wnxn) + ( – αn)yn – x∗∥∥

≤ αn
∥∥f (Wnxn) – x∗∥∥ + ( – αn)

∥∥yn – x∗∥∥
≤ αnκ

∥∥xn – x∗∥∥ + αn
∥∥f (x∗) – x∗∥∥ + ( – αn)

∥∥yn – x∗∥∥
≤ (

 – αn( – κ)
)∥∥xn – x∗∥∥ + αn

∥∥f (x∗) – x∗∥∥. (.)

It follows from (.) that

∥∥xn+ – x∗∥∥ ≤ βn
∥∥xn – x∗∥∥ + ( – βn)

∥∥Wnzn – x∗∥∥
≤ βn

∥∥xn – x∗∥∥ + ( – βn)
∥∥zn – x∗∥∥

≤ (
 – αn( – βn)( – κ)

)∥∥xn – x∗∥∥ + αn( – βn)
∥∥f (x∗) – x∗∥∥

≤ · · ·
≤ max

{∥∥x – x∗∥∥, ‖f (x∗) – x∗‖
 – κ

}
.

This shows that the sequence {xn} is bounded, and so are {yn} and {zn}. Without loss of
generality, we can assume that there exists a bounded set K ⊂ C such that xn, yn, zn ∈ K ;

‖yn+ – yn‖ =
∥∥Trn+ (xn+ – rn+Axn+) – Trn+ (xn – rnAxn)

+ Trn+ (xn – rnAxn) – Trn (xn – rnAxn)
∥∥

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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≤ ∥∥(xn+ – rn+Axn+) – (xn – rnAxn)
∥∥

+
∥∥Trn+ (xn – rnAxn) – Trn (xn – rnAxn)

∥∥
≤ ‖xn+ – xn‖ + |rn+ – rn|‖Axn‖

+
∥∥Trn+ (xn – rnAxn) – Trn (xn – rnAxn)

∥∥. (.)

It follows that

‖zn+ – zn‖
≤ αn+

∥∥f (Wn+xn+) – f (Wnxn)
∥∥ + |αn+ – αn|

(∥∥f (Wn+xn+)
∥∥ + ‖yn‖

)
+ ( – αn+)‖yn+ – yn‖

≤ αn+κ‖Wn+xn+ –Wnxn‖ + |αn+ – αn|
(∥∥f (Wn+xn+)

∥∥ + ‖yn‖
)

+ ‖xn+ – xn‖ + |rn+ – rn|‖Axn‖ +
∥∥Trn+ (xn – rnAxn) – Trn (xn – rnAxn)

∥∥. (.)

Note that

‖Wn+zn+ –Wnzn‖
= ‖Wn+zn+ –Wzn+ +Wzn+ –Wzn +Wzn –Wnzn‖
≤ ‖Wn+zn+ –Wzn+‖ + ‖Wzn+ –Wzn‖ + ‖Wzn –Wnzn‖
≤ sup

x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}
+ ‖zn+ – zn‖. (.)

Combing (.) with (.) yields

‖Wn+zn+ –Wnzn‖ – ‖xn+ – xn‖
≤ sup

x∈K

{‖Wn+x –Wx‖ + ‖Wx –Wnx‖
}
+ αn+κ‖Wn+xn+ –Wnxn‖

+ |αn+ – αn|
(∥∥f (Wn+xn+)

∥∥ + ‖yn‖
)

+ |rn+ – rn|‖Axn‖ +
∥∥Trn+ (xn – rnAxn) – Trn (xn – rnAxn)

∥∥.

From the restrictions (a), (b), and (c), we find from Lemma . that

lim sup
n→∞

{‖Wn+zn+ –Wnzn‖ – ‖xn+ – xn‖
} ≤ .

Using Lemma ., we obtain

lim
n→∞‖Wnzn – xn‖ = . (.)

It follows that

lim
n→∞‖xn+ – xn‖ = . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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Using (.), we find that

∥∥xn+ – x∗∥∥ =
∥∥βnxn + ( – βn)Wnzn – x∗∥∥

≤ βn
∥∥xn – x∗∥∥ + ( – βn)

∥∥zn – x∗∥∥

≤ βn
∥∥xn – x∗∥∥ + ( – βn)

(
αn

∥∥f (Wnxn) – x∗∥∥ + ( – αn)
∥∥yn – x∗∥∥)

≤ ∥∥xn – x∗∥∥ + αn
∥∥f (Wnxn) – x∗∥∥

+ rn(rn – α)( – αn)( – βn)
∥∥Axn –Ax∗∥∥,

which in turn yields

rn(α – rn)( – αn)( – βn)
∥∥Axn –Ax∗∥∥

≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ + αn

∥∥f (Wnxn) – x∗∥∥

≤ (∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖ + αn

∥∥f (Wnxn) – x∗∥∥.

Using (.), we find from the restrictions (a), (b), and (c) that

lim
n→∞

∥∥Axn –Ax∗∥∥ = . (.)

On the other hand, we see that

∥∥yn – x∗∥∥ =
∥∥Trn (I – rnA)xn – Trn (I – rnA)x∗∥∥

≤ 〈
(I – rnA)xn – (I – rnA)x∗, yn – x∗〉

≤ 

(∥∥xn – x∗∥∥ +

∥∥yn – x∗∥∥ –
∥∥(xn – yn) – rn

(
Axn –Ax∗)∥∥)

=


(∥∥xn – x∗∥∥ +

∥∥yn – x∗∥∥ – ‖xn – yn‖

+ rn
〈
xn – yn,Axn –Ax∗〉 – rn

∥∥Axn –Ax∗∥∥).
Hence, we have

∥∥yn – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – ‖xn – yn‖ + rn‖xn – yn‖
∥∥Axn –Ax∗∥∥.

It follows that

∥∥xn+ – x∗∥∥ ≤ ∥∥xn – x∗∥∥ + αn
∥∥f (Wnxn) – x∗∥∥ – ( – αn)( – βn)‖xn – yn‖

+ rn( – αn)( – βn)‖xn – yn‖
∥∥Axn –Ax∗∥∥

≤ ∥∥xn – x∗∥∥ + αn
∥∥f (Wnxn) – x∗∥∥ – ( – αn)( – βn)‖xn – yn‖

+ rn‖xn – yn‖
∥∥Axn –Ax∗∥∥.

This implies that

( – αn)( – βn)‖xn – yn‖ ≤ (∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn – xn+‖

+ αn
∥∥f (Wnxn) – x∗∥∥ + rn‖xn – yn‖

∥∥Axn –Ax∗∥∥.

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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Using (.) and (.), we find from the restrictions (a), (b), and (c) that

lim
n→∞‖xn – yn‖ = . (.)

Since zn = αnf (Wnxn) + ( – αn)yn, we find that

lim
n→∞‖zn – yn‖ = . (.)

Notice that

‖xn+ – xn‖ = ( – βn)‖Wnzn – xn‖.

This implies from (.)

lim
n→∞‖Wnzn – xn‖ = . (.)

Note that

‖Wnzn – zn‖ ≤ ‖zn – yn‖ + ‖yn – xn‖ + ‖xn –Wnzn‖.

From (.), (.), and (.), we obtain

lim
n→∞‖Wnzn – zn‖ = . (.)

Since the mapping P�f is contractive, we denote the unique fixed point by x. Next, we
prove that lim supn→∞〈f (x) – x, zn – x〉 ≤ . To see this, we choose a subsequence {zni} of
{zn} such that

lim sup
n→∞

〈
f (x) – x, zn – x

〉
= lim

i→∞
〈
f (x) – x, zni – x

〉
.

Since {zni} is bounded, there exists a subsequence {znij } of {zni} which converges weakly
to z. Without loss of generality, we may assume that zni ⇀ z. Indeed, we also have yni ⇀ f .
First, we show that z ∈ ⋂∞

i= F(Si). Suppose the contrary,Wz �= z. Note that

‖zn –Wzn‖ ≤ ‖Wzn –Wnzn‖ + ‖Wnzn – zn‖
≤ sup

x∈K

{‖Wx –Wnx‖
}
+ ‖Wnzn – zn‖.

Using Lemma ., we obtain from (.) that limn→∞ ‖zn –Wzn‖ = . By Opial’s condition,
we see that

lim inf
i→∞ ‖zni – z‖ < lim inf

i→∞ ‖zni –Wz‖

≤ lim inf
i→∞

{‖zni –Wzni‖ + ‖Wzni –Wz‖}

≤ lim inf
i→∞

{‖zni –Wzni‖ + ‖zni – z‖}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/263
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This implies that lim infi→∞ ‖zni – z‖ < lim infi→∞ ‖zni – z‖, which leads to a contradiction.
Thus, we have z ∈ ⋂∞

i= F(Si).
Next, we show that f ∈ EP(F ,A). Note that yn ⇀ z. Since yn = Trn (xn – rnAxn), we have

F(yn, y) + 〈Axn, y – yn〉 + 
rn

〈y – yn, yn – xn〉 ≥ , ∀y ∈ C.

From the condition (A), we see that

〈Axn, y – yn〉 + 
rn

〈y – yn, yn – xn〉 ≥ F(y, yn), ∀y ∈ C.

Replacing n by ni, we arrive at

〈Axni , y – yni〉 +
〈
y – yni ,

yni – xni
rni

〉
≥ F(y, yni ), ∀y ∈ C. (.)

For t with  < t ≤  and ρ ∈ C, let ρt = tρ + ( – t)z. Since ρ ∈ C and z ∈ C, we have ρt ∈ C.
It follows from (.) that

〈ρt – yni ,Aρt〉 ≥ 〈ρt – yni ,Aρt〉 – 〈Axni ,ρt – yni〉 –
〈
ρt – yni ,

yni – xni
rni

〉
+ F(ρt , yni )

= 〈ρt – yni ,Aρt –Ayn,i〉 + 〈ρt – yni ,Ayn,i –Axni〉

–
〈
ρt – yni ,

yni – xni
rni

〉
+ F(ρt , yni ). (.)

Using (.), we have Ayn,i – Axni →  as i → ∞. On the other hand, we get from the
monotonicity of A that 〈ρt – yni ,Aρt –Ayn,i〉 ≥ . It follows from (A) and (.) that

〈ρt – z,Aρt〉 ≥ F(ρt , z). (.)

From (A) and (A), we see from (.) that

 = F(ρt ,ρt) ≤ tF(ρt ,ρ) + ( – t)F(ρt , z)

≤ tF(ρt ,ρ) + ( – t)〈ρt – z,Aρt〉
= tF(ρt ,ρ) + ( – t)t〈ρ – z,Aρt〉,

which yields F(ρt ,ρ) + ( – t)〈ρ – f ,Aρt〉 ≥ . Letting t →  in the above inequality, we
arrive at F(z,ρ) + 〈ρ – z,Az〉 ≥ . This shows that f ∈ EP(F ,A). It follows that

lim sup
n→∞

〈
f (x) – x, zn – x

〉 ≤ . (.)

Finally, we show that xn → x, as n→ ∞. Note that

‖zn – x‖ = αn
〈
f (Wnxn) – x, zn – x

〉
+ ( – αn)〈yn – x, zn – x〉

≤ (
 – αn( – κ)

)‖xn – x‖‖zn – x‖ + αn
〈
f (x) – x, zn – x

〉

≤  – αn( – κ)


(‖xn – x‖ + ‖zn – x‖) + αn
〈
f (x) – x, zn – x

〉
.
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Hence, we have

‖zn – x‖ ≤ (
 – αn( – κ)

)‖xn – x‖ + αn
〈
f (x) – x, zn – x

〉
.

This implies that

‖xn+ – x‖ =
∥∥βnxn + ( – βn)Wnzn – x

∥∥

≤ βn‖xn – x‖ + ( – βn)‖zn – x‖

≤ (
 – αn( – βn)( – κ)

)‖xn – x‖ + αn( – βn)
〈
f (x) – x, zn – x

〉
.

Using Lemma . and (.), we find from the restrictions (a), (b), and (c) that limn→∞ ‖xn–
x‖ = . This completes the proof. �

3 Applications
For a single mapping, we find from Theorem . the following result.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and let F
be a bifunction from C ×C to R which satisfies (A)-(A). Let A : C →H be an α-inverse-
strongly monotonemapping and let S be a nonexpansive mapping.Assume that� := F(S)∩
EP(F ,A) �= ∅. Let f : C → C be a κ-contractive mapping. Let {xn} be a sequence generated
in the following process: let it be a sequence generated in

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

F(yn, y) + 〈Axn, y – yn〉 + 
rn 〈y – yn, yn – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)S(αnf (Sxn) + ( – αn)yn), ∀n≥ ,

where {αn} and {βn} are sequences in [, ] and {rn} is a positive number sequence. Assume
that the above control sequences satisfy the following restrictions:
(a)  < a≤ βn ≤ b < ,  < c≤ rn ≤ d < α;
(b) limn→∞ αn = , and

∑∞
n= αn =∞;

(c) limn→∞(rn – rn+) = .
Then {xn} converge strongly to a point x ∈ �, where x = P�f (x).

If S is the identity, we find the following result on the generalized equilibrium problem.

Corollary . Let C be a nonempty closed convex subset of a Hilbert space H and let F
be a bifunction from C ×C to R which satisfies (A)-(A). Let A : C →H be an α-inverse-
strongly monotone mapping. Assume that EP(F ,A) �= ∅. Let f : C → C be a κ-contractive
mapping. Let {xn} be a sequence generated in the following process: let it be a sequence
generated in

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

F(yn, y) + 〈Axn, y – yn〉 + 
rn 〈y – yn, yn – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)(αnf (xn) + ( – αn)yn), ∀n≥ ,
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where {αn} and {βn} are sequences in [, ] and {rn} is a positive number sequence. Assume
that the above control sequences satisfy the following restrictions:
(a)  < a≤ βn ≤ b < ,  < c≤ rn ≤ d < α;
(b) limn→∞ αn = , and

∑∞
n= αn =∞;

(c) limn→∞(rn – rn+) = .
Then {xn} converge strongly to a point x ∈ EP(F ,A), where x = PEP(F ,A)f (x).

Next, we give a result on the equilibrium problem (.).

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and let F
be a bifunction from C × C to R which satisfies (A)-(A). Let {Si : C → C} be a family of
infinitely nonexpansive mappings. Assume that � :=

⋂∞
i= F(Si)∩ EP(F) �= ∅. Let f : C → C

be a κ-contractive mapping. Let {xn} be a sequence generated in the following process: let it
be a sequence generated in

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

F(yn, y) + 
rn 〈y – yn, yn – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)Wn(αnf (Wnxn) + ( – αn)yn), ∀n≥ ,

where {Wn} is the mapping sequence defined by (.), {αn} and {βn} are sequences in [, ]
and {rn} is a positive number sequence. Assume that the above control sequences satisfy the
following restrictions:
(a)  < a≤ βn ≤ b < ,  < c≤ rn ≤ d < +∞;
(b) limn→∞ αn = , and

∑∞
n= αn =∞;

(c) limn→∞(rn – rn+) = .
Then {xn} converge strongly to a point x ∈ �, where x = P�f (x).

Proof By putting A ≡ , the zero operator, we can easily get the desired conclusion. This
completes the proof. �

Next, we give a result on the classical variational inequality.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H . Let A : C →
H be an α-inverse-strongly monotone mapping and let {Si : C → C} be a family of infinitely
nonexpansive mappings. Assume that � :=

⋂∞
i= F(Si) ∩ VI(C,A) �= ∅. Let f : C → C be a

κ-contractive mapping. Let {xn} be a sequence generated in the following process: let it be a
sequence generated in

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

yn = PC(xn – rnAxn),

xn+ = βnxn + ( – βn)Wn(αnf (Wnxn) + ( – αn)yn), ∀n≥ ,

where {Wn} is the mapping sequence defined by (.), {αn} and {βn} are sequences in [, ]
and {rn} is a positive number sequence. Assume that the above control sequences satisfy the
following restrictions:

(a)  < a ≤ βn ≤ b < ,  < c ≤ rn ≤ d < α;
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(b) limn→∞ αn = , and
∑∞

n= αn =∞;
(c) limn→∞(rn – rn+) = .

Then {xn} converge strongly to a point x ∈ �, where x = P�f (x).

Proof Putting F ≡ , we see from Theorem . that

〈Axn, y – yn〉 + 
rn

〈y – yn, yn – xn〉 ≥ , ∀y ∈ C,∀y ∈ C,∀n≥ .

This implies that

〈y – yn,xn – rnAxn – yn〉 ≤ , ∀y ∈ C.

It follows that

yn = PC(xn – rnAxn).

This completes the proof. �

Finally, we utilize the results presented in the paper to study the following optimization
problem:

min
x∈C h(x), (.)

where C is a nonempty closed convex subset of a Hilbert space, and h : C →R is a convex
and lower semi-continuous functional. We use � to denote the solution set of the prob-
lem (.). Let F : C × C → R be a bifunction defined by F(x, y) = h(y) – h(x). We consider
the following equilibrium problem: to find x ∈ C such that

F(x, y)≥ , ∀y ∈ C.

It is easy to see that the bifunction F satisfies conditions (A)-(A) and EP(F) = �.

Theorem . Let C be a nonempty closed convex subset of a Hilbert space H and let h :
C →R be defined as above. Assume that � �= ∅. Let f : C → C be a κ-contractive mapping.
Let {xn} be a sequence generated in the following process: let it be a sequence generated in

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C, chosen arbitrarily,

h(y) – h(un) + 
rn 〈y – yn, yn – xn〉 ≥ , ∀y ∈ C,

xn+ = βnxn + ( – βn)(αnf (xn) + ( – αn)yn), ∀n≥ ,

where {αn} and {βn} are sequences in [, ] and {rn} is a positive number sequence. Assume
that the above control sequences satisfy the following restrictions:
(a)  < a≤ βn ≤ b < ,  < c≤ rn ≤ d < +∞;
(b) limn→∞ αn = , and

∑∞
n= αn =∞;

(c) limn→∞(rn – rn+) = .
Then {xn} converges strongly to a point x ∈ �, where x = P�f (x).
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