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Abstract
In this paper, we perform a further investigation for the Frobenius-Euler polynomials.
Some new formulae of products of the Frobenius-Euler polynomials are established
by applying the generating function methods and some summation transform
techniques. It turns out that some corresponding known results are obtained as
special cases.
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1 Introduction
Let λ be a complex number with λ �= . Frobenius [] studied in great detail the so-
called Frobenius-Euler polynomials Hn(x|λ) satisfying the following exponential gener-
ating function:

 – λ

et – λ
ext =

∞∑
n=

Hn(x|λ) t
n

n!
. (.)

In particular, Hn(λ) = Hn(|λ) are called the Frobenius-Euler numbers. In fact, the
Frobenius-Euler polynomials can also be defined recursively by the Frobenius-Euler num-
bers, as follows:

Hn(x|λ) =
n∑

k=

(
n
k

)
Hk(λ)xn–k (n≥ ), (.)

where the Frobenius-Euler numbers obey the recurrence relation

H(λ) = ,
(
H(λ) + 

)n –Hn(λ) =

⎧⎨
⎩ – λ, n = ,

, n≥ ,
(.)

with the usual convention about replacingHn(λ) byHn(λ). For some interesting arithmetic
properties of the Frobenius-Euler polynomials and numbers, one is referred to [–].
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Some analogues of the Frobenius-Euler polynomials are the classical Bernoulli polyno-
mials Bn(x) and Euler polynomials En(x). They are usually defined by the following expo-
nential generating functions:

text

et – 
=

∞∑
n=

Bn(x)
tn

n!
and

ext

et + 
=

∞∑
n=

En(x)
tn

n!
. (.)

Especially, the rational numbers Bn = Bn() and integers En = nEn(/) are called
the classical Bernoulli numbers and Euler numbers, respectively. These numbers and
polynomials play important roles in many different areas of mathematics including
number theory, combinatorics, special functions and analysis. Numerous interesting
properties for them can be found in many books; see, for example, [–]. Obviously
the Frobenius-Euler polynomials give the classical Euler polynomials when λ = – in
(.).
In [], Nielsen investigated three formulae of products of the classical Bernoulli and

Euler polynomials. In particular, Nielsen showed that for positive integers m, n,

Bm(x)Bn(x) =
∞∑
k=

{
n
(
m
k

)
+ n

(
n
k

)}
Bk

Bm+n–k(x)
m + n – k

+ (–)m+ m! · n!
(m + n)!

Bm+n, (.)

which was reobtained by Carlitz [] applying a different method. For further discover-
ies of Nielsen’s formulae on the classical Bernoulli and Euler polynomials, see [–] for
details. In [], Carlitz explored some formulae of products of the Frobenius-Euler poly-
nomials and obtained that for non-negative integers m, n,

Hm(x|λ)Hn(x|μ) = λ(μ – )
λμ – 

m∑
k=

(
m
k

)
Hk(λ)Hm+n–k(x|λμ)

+
μ(λ – )
λμ – 

n∑
k=

(
n
k

)
Hk(μ)Hm+n–k(x|λμ)

–
(λ – )(μ – )

λμ – 
Hm+n(x|λμ), (.)

when λ �= , μ �= , λμ �= , and if λ �= , then for positive integer m and non-negative inte-
ger n,

Bm(x)Hn(x|λ) =
m∑
k=

(
m
k

)
BkHm+n–k(x|λ)

–
λ

λ – 
m

n∑
k=

(
n
k

)
Hk(λ)Hm+n–k–(x|λ)

+mHm+n–(x|λ), (.)
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and if λ �= , , then for positive integers m, n,

Hm(x|λ)Hn

(
x
∣∣∣∣ λ

)
= (λ – )

m∑
k=

(
m
k

)
Hk(λ)

Bm+n+–k(x)
m + n +  – k

+
(

λ
– 

) n∑
k=

(
n
k

)
Hk

(

λ

)
Bm+n+–k(x)
m + n +  – k

+ (–)n(λ – )
m! · n!

(m + n + )!
Hm+n+(λ). (.)

Further, Carlitz [] showed that the case λ = – in (.) and (.) can be used to give the
expression of Bm(x)En(x) and Em(x)En(x) stated in [], respectively.
Motivated by the work of Carlitz [], in the present paper we establish some new for-

mulae of products of the Frobenius-Euler polynomials by applying the generating function
methods and some summation transform techniques. It turns out that some known results
including (.), (.) and (.) are obtained as special cases.

2 Restatement of themain results
In this section, we shall establish three new formulae of products of the Frobenius-Euler
polynomials to extend formulae (.), (.) and (.) by making use of the generating func-
tion methods. As further applications, we also give some new sum relations of products
of the Frobenius-Euler polynomials by applying some summation transform techniques,
which are analogous to some sum relations of products of the classical Euler polynomials
and Frobenius-Euler polynomials stated in [, ]. For convenience, in the following we
shall denote by Hn the harmonic number of order n given by

H =  and Hn =
n∑
k=


k
=  +



+ · · · + 

n
(n≥ ). (.)

We now state our main results as follows.

Theorem . Let m, n be non-negative integers. Then, for λ �= , μ �= , λμ �= ,

Hm(x|λ)Hn(y|μ) = λ(μ – )
λμ – 

m∑
k=

(
m
k

)
Hm–k(x – y|λ)Hn+k(y|λμ)

+
μ(λ – )
λμ – 

n∑
k=

(
n
k

)
Hn–k(y – x|μ)Hm+k(x|λμ)

–
(λ – )(μ – )

λμ – 

m∑
k=

(
m
k

)
(x – y)m–kHn+k(y|λμ). (.)

Proof Observe that


λeu – 

· 
μev – 

=
(

λeu

λeu – 
+


μev – 

)


λμeu+v – 
. (.)
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If we multiply (λ – )(μ – )exu+yv on both sides of (.), then

(λ – )exu

λeu – 
· (μ – )eyv

μev – 
=

λ(μ – )
λμ – 

· (λ – )e(+x–y)u

λeu – 
· (λμ – )ey(u+v)

λμeu+v – 

+
λ – 

λμ – 
· (μ – )e(y–x)v

μev – 
· (λμ – )ex(u+v)

λμeu+v – 
. (.)

Note that from (.) we have

λ – 
λeu – 

exu =
 – 

λ

eu – 
λ

exu =
∞∑
m=

Hm

(
x
∣∣∣∣ λ

)
um

m!
. (.)

More generally, the Taylor theorem gives

λ – 
λeu+v – 

ex(u+v) =
∞∑
n=

∂n

∂un

(
λ – 

λeu – 
exu

)
vn

n!

=
∞∑
m=

∞∑
n=

Hm+n

(
x
∣∣∣∣ λ

)
um

m!
· v

n

n!
. (.)

By applying (.) and (.) to (.), we obtain

∞∑
m=

∞∑
n=

Hm

(
x
∣∣∣∣ λ

)
Hn

(
y
∣∣∣∣ μ

)
um

m!
· v

n

n!

=
λ(μ – )
λμ – 

( ∞∑
m=

Hm

(
 + x – y

∣∣∣∣ λ
)
um

m!

)( ∞∑
m=

∞∑
n=

Hm+n

(
y
∣∣∣∣ 
λμ

)
um

m!
· v

n

n!

)

+
λ – 

λμ – 

( ∞∑
n=

Hn

(
y – x

∣∣∣∣ μ
)
vn

n!

)( ∞∑
m=

∞∑
n=

Hm+n

(
x
∣∣∣∣ 
λμ

)
um

m!
· v

n

n!

)
. (.)

It follows from (.) and the Cauchy product that

∞∑
m=

∞∑
n=

Hm

(
x
∣∣∣∣ λ

)
Hn

(
y
∣∣∣∣ μ

)
um

m!
· v

n

n!

=
λ(μ – )
λμ – 

∞∑
m=

∞∑
n=

[ m∑
k=

(
m
k

)
Hm–k

(
 + x – y

∣∣∣∣ λ
)
Hn+k

(
y
∣∣∣∣ 
λμ

)]
um

m!
· v

n

n!

+
λ – 

λμ – 

∞∑
m=

∞∑
n=

[ n∑
k=

(
n
k

)
Hn–k

(
y – x

∣∣∣∣ μ
)
Hm+k

(
x
∣∣∣∣ 
λμ

)]
um

m!
· v

n

n!
. (.)

Comparing the coefficients of umvn/m! · n! in (.) gives

Hm

(
x
∣∣∣∣ λ

)
Hn

(
y
∣∣∣∣ μ

)
=

λ(μ – )
λμ – 

m∑
k=

(
m
k

)
Hm–k

(
 + x – y

∣∣∣∣ λ
)
Hn+k

(
y
∣∣∣∣ 
λμ

)

+
λ – 

λμ – 

n∑
k=

(
n
k

)
Hn–k

(
y – x

∣∣∣∣ μ
)
Hm+k

(
x
∣∣∣∣ 
λμ

)
. (.)
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Substituting λ for /λ and μ for /μ in (.), we get

Hm(x|λ)Hn(y|μ) = μ – 
λμ – 

m∑
k=

(
m
k

)
Hm–k( + x – y|λ)Hn+k(y|λμ)

+
μ(λ – )
λμ – 

n∑
k=

(
n
k

)
Hn–k(y – x|μ)Hm+k(x|λμ). (.)

Since the Frobenius-Euler polynomials obey the difference equation (see, e.g., [])

Hn(x + |λ) – λHn(x|λ) = ( – λ)xn (n≥ ), (.)

so by applying (.) to (.), the desired result follows immediately. �

It follows that we show some special cases of Theorem .. By setting x = y in Theo-
rem ., we rediscover formula (.). Setting λ = μ and x = y in Theorem ., for non-
negative integersm, n and λ �=±, we have

Hm(x|λ)Hn(x|λ) = λ

λ + 

m∑
k=

(
m
k

)
Hm–k(λ)Hn+k

(
x|λ)

+
λ

λ + 

n∑
k=

(
n
k

)
Hn–k(λ)Hm+k

(
x|λ) – λ – 

λ + 
Hm+n

(
x|λ). (.)

Clearly, H(x|λ) =  (see, e.g., []). Hence, by setting n =  in (.), we obtain that for
non-negative integer n,

Hn(x|λ) = λ

λ + 

n∑
k=

(
n
k

)
Hn–k(λ)Hk

(
x|λ) + 

λ + 
Hn

(
x|λ). (.)

Setting x = y and μ = /λ in Theorem ., we get that for non-negative integers m, n and
λ �= , ,

Hm(x|λ)Hn

(
x
∣∣∣∣ 
λ

)
= (λ + )

m∑
k=

(
m
k

)
Hm–k(λ)Hn+k

(
x
∣∣∣∣ λ

)

–

λ

n∑
k=

(
n
k

)
Hn–k

(

λ

)
Hm+k

(
x
∣∣∣∣ λ

)
–

λ – 
λ

Hm+n

(
x
∣∣∣∣ λ

)
.

(.)

In particular, the case n =  in (.) gives that for non-negative integer n,

λHn

(
x
∣∣∣∣ λ

)
+Hn(x|λ) = (λ + )

n∑
k=

(
n
k

)
Hn–k

(

λ

)
Hk(x|λ), (.)

which was discovered by Kim [] applying a nice method called the Frobenius-Euler basis
{H(x|λ), . . . ,Hn(x|λ)} for Pn consisting of the Frobenius-Euler polynomials with Pn being
the space of polynomials of degree less than or equal to n.
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Theorem . Let m, n be non-negative integers. Then, for λ �= ,

Bm+(x)Hn(y|λ) =
m+∑
k=

(
m + 
k

)
Bm+–k(x – y)Hn+k(y|λ)

–
λ

λ – 
(m + )

n∑
k=

(
n
k

)
Hn–k(y – x|λ)Hm+k(x|λ)

+ (m + )
m∑
k=

(
m
k

)
(x – y)m–kHn+k(y|λ). (.)

Proof By setting λ =  and substituting λ for μ in (.), we have


eu – 

· 
λev – 

=
(

eu

eu – 
+


λev – 

)


λeu+v – 
. (.)

Multiplying (λ – )uexu+yv on both sides of (.) leads to

uexu

eu – 
· (λ – )eyv

λev – 
=
ue(+x–y)u

eu – 
· (λ – )ey(u+v)

λeu+v – 

+
u

λ – 
· (λ – )e(y–x)v

λev – 
· (λ – )ex(u+v)

λeu+v – 
. (.)

Hence, by applying (.), (.) and (.) to (.), we obtain

∞∑
m=

∞∑
n=

Bm(x)Hn

(
y
∣∣∣∣ λ

)
um

m!
· v

n

n!

=

( ∞∑
m=

Bm( + x – y)
um

m!

)( ∞∑
m=

∞∑
n=

Hm+n

(
y
∣∣∣∣ λ

)
um

m!
· v

n

n!

)

+
u

λ – 

( ∞∑
n=

Hn

(
y – x

∣∣∣∣ λ
)
vn

n!

)( ∞∑
m=

∞∑
n=

Hm+n

(
x
∣∣∣∣ λ

)
um

m!
· v

n

n!

)
, (.)

which together with the Cauchy product yields

∞∑
m=

∞∑
n=

Bm(x)Hn

(
y
∣∣∣∣ λ

)
um

m!
· v

n

n!

=
∞∑
m=

∞∑
n=

[ m∑
k=

(
m
k

)
Bm–k( + x – y)Hn+k

(
y
∣∣∣∣ λ

)]
um

m!
· v

n

n!

+


λ – 

∞∑
m=

∞∑
n=

[ n∑
k=

(
n
k

)
Hn–k

(
y – x

∣∣∣∣ λ
)
Hm+k

(
x
∣∣∣∣ λ

)]
um+

m!
· v

n

n!
. (.)
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Since B(x) =  (see, e.g., []), so by substituting λ for /λ and comparing the coefficients
of um+vn/(m + )! · n! in (.) we get

Bm+(x)Hn(y|λ) =
m+∑
k=

(
m + 
k

)
Bm+–k( + x – y)Hn+k(y|λ)

–
λ

λ – 
(m + )

n∑
k=

(
n
k

)
Hn–k(y – x|λ)Hm+k(x|λ). (.)

Thus, by applying the difference equation of the classical Bernoulli polynomials Bn(x+)–
Bn(x) = nxn– for non-negative integer n (see, e.g., []) to (.), the desired result follows
immediately. �

It is obvious that the case x = y in Theorem . gives formula (.).

Theorem . Let m, n be non-negative integers. Then, for λ �= , ,

Hm

(
x
∣∣∣∣ λ

)
Hn(y|λ) =

(

λ
– 

) m∑
k=

(
m
k

)
Hm–k

(
x – y

∣∣∣∣ λ
)
Bn+k+(y)
n + k + 

+ (λ – )
n∑

k=

(
n
k

)
Hn–k(y – x|λ)Bm+k+(x)

m + k + 

–
(λ – )

λ

m∑
k=

(
m
k

)
(x – y)m–k Bn+k+(y)

n + k + 

+ (–)m(λ – )
m! · n!

(m + n + )!
Hm+n+(y – x|λ). (.)

Proof By substituting /λ for μ in (.), we discover

(λ – )exu

λeu – 
· (


λ
– )eyv


λ
ev – 

= λ

(

λ
– 

)
(λ – )e(+x–y)u

λeu – 

(
ey(u+v)

eu+v – 
–


u + v

)

+ (λ – )
( 
λ
– )e(y–x)v

λ
ev – 

(
ex(u+v)

eu+v – 
–


u + v

)

+
 – λ

u + v

(
(λ – )e(+x–y)u

λeu – 
–
( 
λ
– )e(y–x)v

λ
ev – 

)
. (.)

Notice that from (.) and the Taylor theorem we have

ex(u+v)

eu+v – 
–


u + v

=
∞∑
n=

∂n

∂un

(
exu

eu – 
–

u

)
vn

n!

=
∞∑
m=

∞∑
n=

Bm+n+(x)
m + n + 

· u
m

m!
· v

n

n!
. (.)
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On the other hand, if we apply um =
∑m

n=
(m
n
)
(u + v)n(–v)m–n to (.), then we get

(λ – )e(+x–y)u

λeu – 
=

∞∑
n=

∞∑
m=n

Hm( + x – y| 
λ
)

m!

(
m
n

)
(u + v)n(–v)m–n

=
∞∑
n=

∞∑
m=n+

Hm( + x – y| 
λ
)

m!

(
m

n + 

)
(u + v)n+(–v)m–(n+)

+
∞∑
m=

Hm

(
 + x – y

∣∣∣∣ λ
)
(–v)m

m!
. (.)

Since the Frobenius-Euler polynomials satisfy the symmetric distribution Hn( – x| 
λ
) =

(–)nHn(x|λ) for non-negative integer n (see, e.g., []), so by (.) we can rewrite (.) as


u + v

(
(λ – )e(+x–y)u

λeu – 
–
( 
λ
– )e(y–x)v

λ
ev – 

)

=
∞∑
n=

∞∑
m=n+

(–)n+Hm(y – x|λ)
m!

(
m

n + 

)
(u + v)nvm–(n+)

=
∞∑
n=

∞∑
m=n+

(–)n+Hm(y – x|λ)
m!

(
m

n + 

) n∑
k=

(
n
k

)
ukvm–(k+)

=
∞∑
k=

∞∑
n=k

∞∑
m=n+

(–)n+Hm(y – x|λ)
m!

(
m

n + 

)(
n
k

)
ukvm–(k+)

=
∞∑
k=

∞∑
m=k+

(–)k+Hm(y – x|λ)
m!

ukvm–(k+)

=
∞∑
k=

∞∑
m=

(–)k+k! ·m! ·Hk+m+(y – x|λ)
(k +m + )!

· u
k

k!
· v

m

m!

=
∞∑
m=

∞∑
n=

(–)m+m! · n! ·Hm+n+(y – x|λ)
(m + n + )!

· u
m

m!
· v

n

n!
. (.)

Hence, applying (.), (.) and (.) to (.) and then comparing the coefficients of
umvn/m! · n! gives

Hm

(
x
∣∣∣∣ λ

)
Hn(y|λ) = ( – λ)

m∑
k=

(
m
k

)
Hm–k

(
 + x – y

∣∣∣∣ λ
)
Bn+k+(y)
n + k + 

+ (λ – )
n∑

k=

(
n
k

)
Hn–k(y – x|λ)Bm+k+(x)

m + k + 

+ (–)m(λ – )
m! · n!

(m + n + )!
Hm+n+(y – x|λ), (.)

which together with (.) yields the desired result. �

It becomes obvious that setting x = y and then substituting m for n and n form in The-
orem . gives formula (.).

http://www.journalofinequalitiesandapplications.com/content/2014/1/261
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Theorem . Let n be a non-negative integer. Then, for λ �= , μ �= , λμ �= ,

n∑
k=

Hk(x|λ)Hn–k(y|μ) = λ(μ – )
λμ – 

n∑
k=

(
n + 
k + 

)
Hk(x – y|λ)Hn–k(y|λμ)

+
μ(λ – )
λμ – 

n∑
k=

(
n + 
k + 

)
Hk(y – x|μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 

n∑
k=

(
n + 
k + 

)
(x – y)kHn–k(y|λμ). (.)

Proof It is easy to see that (.) can be rewritten as

Hm(x|λ)Hn(y|μ) = λ(μ – )
λμ – 

m∑
k=

(
m
k

)
Hk(x – y|λ)Hm+n–k(y|λμ)

+
μ(λ – )
λμ – 

n∑
k=

(
n
k

)
Hk(y – x|μ)Hm+n–k(x|λμ)

–
(λ – )(μ – )

λμ – 

m∑
k=

(
m
k

)
(x – y)kHm+n–k(y|λμ). (.)

Hence, by substituting l form and n– l for n with  ≤ l ≤ n and then making the summa-
tion operation

∑n
l= in (.), we have

n∑
l=

Hl(x|λ)Hn–l(y|μ) = λ(μ – )
λμ – 

n∑
l=

l∑
k=

(
l
k

)
Hk(x – y|λ)Hn–k(y|λμ)

+
μ(λ – )
λμ – 

n∑
l=

l∑
k=

(
l
k

)
Hk(y – x|μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 

n∑
l=

l∑
k=

(
l
k

)
(x – y)kHn–k(y|λμ). (.)

If we change the order of summations on the right-hand side of (.), then we obtain

n∑
l=

Hl(x|λ)Hn–l(y|μ) = λ(μ – )
λμ – 

n∑
k=

n∑
l=k

(
l
k

)
Hk(x – y|λ)Hn–k(y|λμ)

+
μ(λ – )
λμ – 

n∑
k=

n∑
l=k

(
l
k

)
Hk(y – x|μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 

n∑
k=

n∑
l=k

(
l
k

)
(x – y)kHn–k(y|λμ). (.)

Notice that for non-negative integers m, n (see, e.g., [, Lemma .]),

n∑
k=m

(
k
m

)
=

(
n + 
m + 

)
. (.)

Thus, the desired result follows by applying (.) to (.). �
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We next discuss some special cases of Theorem .. By setting x = y in Theorem ., we
obtain that for a non-negative integer n,

n∑
k=

Hk(x|λ)Hn–k(x|μ) = λ(μ – )
λμ – 

n∑
k=

(
n + 
k + 

)
Hk(λ)Hn–k(x|λμ)

+
μ(λ – )
λμ – 

n∑
k=

(
n + 
k + 

)
Hk(μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 
(n + )Hn(x|λμ). (.)

Taking λ = μ in (.) we have

n∑
k=

Hk(x|λ)Hn–k(x|λ) = λ
λ + 

n∑
k=

(
n + 
k + 

)
Hk(λ)Hn–k

(
x|λ)

–
λ – 
λ + 

(n + )Hn
(
x|λ), (.)

which is equivalent to

n∑
k=

Hk(x|λ)Hn–k(x|λ) = λ
λ + 

n∑
k=

(
n + 
k

)
Hn–k(λ)Hk

(
x|λ)

–
λ – 
λ + 

(n + )Hn
(
x|λ). (.)

It is interesting to point out that formula (.) is analogous to the following sum relation
on the classical Bernoulli polynomials:

n∑
k=

Bk(x)Bn–k(x) –


n + 

n–∑
k=

(
n + 
k

)
Bn–kBk(x) = (n + )Bn(x), (.)

which was obtained by Kim et al. [] using a nice method called the Bernoulli basis
{B(x), . . . ,Bn(x)} for Pn consisting of the Bernoulli polynomials with Pn being the space of
polynomials of degree less than or equal to n. For an equivalent version of (.), see [,
Theorem ] for details.

Theorem . Let n≥  be a positive integer. Then, for λ �= , μ �= , λμ �= ,

n–∑
k=

Hk(x|λ)Hn–k(y|μ)
k(n – k)

=

n

n–∑
k=

(
n
k

)
(Hn– –Hk–)

{
λ(μ – )
λμ – 

Hk(x – y|λ)Hn–k(y|λμ)

+
μ(λ – )
λμ – 

Hk(y – x|μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 
(x – y)kHn–k(y|λμ)

}
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+ Hn–

(
λ(μ – )
λμ – 

· Hn(y|λμ)
n

+
μ(λ – )
λμ – 

· Hn(x|λμ)
n

–
(λ – )(μ – )

λμ – 
· Hn(y|λμ)

n

)
. (.)

Proof Letm, n be positive integers. Then, by multiplying /mn on both sides of (.) and
then substituting l form and n– l for nwith ≤ l ≤ n–, in light ofmaking the summation
operation

∑n–
l= , we get

n–∑
l=

Hl(x|λ)Hn–l(y|μ)
l(n – l)

=
λ(μ – )
λμ – 

n–∑
l=


l(n – l)

l∑
k=

(
l
k

)
Hk(x – y|λ)Hn–k(y|λμ)

+
μ(λ – )
λμ – 

n–∑
l=


l(n – l)

l∑
k=

(
l
k

)
Hk(y – x|μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 

n–∑
l=


l(n – l)

l∑
k=

(
l
k

)
(x – y)kHn–k(y|λμ). (.)

Observe that for positive integers m, n,


mn

=


m + n

(

m

+

n

)
. (.)

Hence, by applying (.) to (.), we obtain

n–∑
l=

Hl(x|λ)Hn–l(y|μ)
l(n – l)

=
λ(μ – )
λμ – 

· 
n

n–∑
l=

(

l
+


n – l

) l∑
k=

(
l
k

)
Hk(x – y|λ)Hn–k(y|λμ)

+
μ(λ – )
λμ – 

· 
n

n–∑
l=

(

l
+


n – l

) l∑
k=

(
l
k

)
Hk(y – x|μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 
· 
n

n–∑
l=

(

l
+


n – l

) l∑
k=

(
l
k

)
(x – y)kHn–k(y|λμ)

+ Hn–

(
λ(μ – )
λμ – 

· Hn(y|λμ)
n

+
μ(λ – )
λμ – 

· Hn(x|λμ)
n

–
(λ – )(μ – )

λμ – 
· Hn(y|λμ)

n

)
. (.)
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Changing the order of summations on the right-hand side of (.), we obtain

n–∑
l=

Hl(x|λ)Hn–l(y|μ)
l(n – l)

=
λ(μ – )
λμ – 

· 
n

n–∑
k=

n–∑
l=k

(
l
k

)(

l
+


n – l

)
Hk(x – y|λ)Hn–k(y|λμ)

+
μ(λ – )
λμ – 

· 
n

n–∑
k=

n–∑
l=k

(
l
k

)(

l
+


n – l

)
Hk(y – x|μ)Hn–k(x|λμ)

–
(λ – )(μ – )

λμ – 
· 
n

n–∑
k=

n–∑
l=k

(
l
k

)(

l
+


n – l

)
(x – y)kHn–k(y|λμ)

+ Hn–

(
λ(μ – )
λμ – 

· Hn(y|λμ)
n

+
μ(λ – )
λμ – 

· Hn(x|λμ)
n

–
(λ – )(μ – )

λμ – 
· Hn(y|λμ)

n

)
. (.)

Note that for non-negative integersm, n (see, e.g., [, Lemma .]),

n∑
k=m

(
k
m

)

k
=


m

n∑
k=m

(
k – 
m – 

)
=


m

(
n
m

)
, (.)

and

n∑
k=m

(
k
m

)


n +  – k
= (Hn+ –Hm)

(
n + 
m

)
. (.)

By combining (.) and (.), we have

n∑
k=m

(
k
m

)(

k
+


n +  – k

)
=


m

(
n
m

)
+ (Hn+ –Hm)

(
n + 
m

)

= (Hn –Hm–)
(
n + 
m

)
. (.)

Thus, the desired result follows by applying (.) to (.). �

Obviously the case x = y and λ = μ in Theorem . gives that for positive integer n ≥ 
and λ �=±,

n–∑
k=

Hk(x|λ)Hn–k(x|λ)
k(n – k)

=
λ

λ + 
· 
n

n–∑
k=

(
n
k

)
(Hn– –Hk–)Hk(λ)Hn–k

(
x|λ)

+ Hn–
Hn(x|λ)

n
, (.)

which is analogous to the sum relation on the classical Euler polynomials stated in [,
Theorem ]. From the above, one can also use Theorems . and . to establish some
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similar sum relations to Theorems . and .. We leave the details to the interested read-
ers for an exercise.
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