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Abstract
Recently, many mathematicians have studied different kinds of the Euler, Bernoulli,
and Genocchi polynomials. In this paper, we give another definition of the
polynomials Ũ(α)

n (x). We find some theorems and identities related to polynomials
Ũ(α)
n (x) containing the central factorial numbers and Stirling numbers. We also derive

interesting relations between the polynomials Ũ(α)
n (x) and the Euler polynomials and

the Genocchi polynomials.

Keywords: polynomials Ũ(α)
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1 Introduction
The Stirling numbers of the first kind s(n,k) are defined by []

n∑
k=

s(n,k)xk = x(x – )(x – ) · · · (x – n + ). (.)

The generating function of (.) is as follows:

(
log( + x)

)k = k!
∞∑
n=k

s(n,k)
xn

n!
. (.)

From (.) and (.), we become aware of some properties of the Stirling numbers of the
first kind, s(n,k) []:

s(n,k) = s(n – ,k – ) – (n – )s(n – ,k),

with

s(n, ) =  (n ∈N),

s(n,n) = 
(
n ∈ Z

+ =N∪ 
)
,

s(n, ) = (–)n–(n – )! (n ∈N),

s(n,k) =  (k > n or k < ).
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We usually define the central factorial numbers T(n,k) by the following expansion for-
mula [, ]:

n∑
k=

T(n,k)x
(
x – 

)(
x – 

) · · · (x – (k – )
)
= xn. (.)

The generating function of (.) is as follows:

(
ex + e–x – 

)k = (k)!
∞∑
n=k

T(n,k)
xn

(n)!
. (.)

By using (.) and (.), we become aware of some properties of the central factorial num-
bers T(n,k):

T(, ) = ,

T(n, ) =  (n ∈N),

T(n, ) =  (n ∈N),

T(n,k) = T(n – ,k – ) + kT(n – ,k), with

T(n, ) =



(
n– – 

)
, T(n, ) =

n


–
n


+




(n ∈N).

The Euler numbers En and Euler polynomials En(x) are defined by

E = , En = –
[ n ]∑
k=

(
n
k

)
En–k (n≥ ),

En(x) =

n

[ n ]∑
k=

(
n
k

)
(x – )n–kEk (n≥ ),

(.)

where [x] is the greatest integer not exceeding x [, , ].
For a real or complex parameter α, the generalized Euler polynomials of degree n are

defined by the following generating functions:

∞∑
n=

E(α)
n (x)

tn

n!
=

(


et + 

)α

etx
(|t| < π ; α := 

)
. (.)

Clearly, we have E()
n (x) = En(x) [–].

The Genocchi polynomials are defined by

∞∑
n=

G(α)
n (x)

tn

n!
=

(
t

et + 

)α

etx, (.)

with the usual convention of writing Gn(x) by Gn(x). In the special case, x = , Gn() =Gn

are called the nth Genocchi numbers [, –].
In Section , we define polynomials Ũ (α)

n (x). We consider the addition theorem for these
polynomials.We also investigate some identities which are related to polynomials Ũ (α)

n (x).
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We also try to find relations between the polynomials Ũ (α)
n (x), the Stirling numbers s(n,k),

and the central factorial numbers T(n,k). In Section , we derive some special relations
of the polynomials Ũ (α)

n (x) and the Euler polynomials. We also find a link between the
polynomials Ũ (α)

n (x) and the Genocchi polynomials.

2 Some properties involving a certain family of polynomials
In this section, we define the polynomials Ũ (α)

n (x) and study several theorems of the poly-
nomials Ũ (α)

n (x). We can see some interesting properties of the polynomials Ũ (α)
n (x).

Definition . For α,x ∈C, the polynomials Ũ (α)
n (x) are defined by

∞∑
n=

Ũ (α)
n (x)

tn

n!
=

(
et

et + e–t – 

)α

etx.

Note that Ũ (α)
n () = Ũ (α)

n . That is, Ũ (α)
n are called the nth numbers. By usingDefinition .,

we have the addition theorem of the polynomials Ũ (α)
n (x).

Theorem . Let α,x, y ∈C and let n be non-negative integers. Then we get

Ũ (α)
n (x + y) =

n∑
l=

(
n
l

)
Ũ (α)

n–l(x)y
l.

Proof From Definition ., we get

∞∑
n=

Ũ (α)
n (x + y)

tn

n!
=

(
et

et + e–t – 

)α

e(x+y)t

=

( ∞∑
n=

Ũ (α)
n (x)

tn

n!

)( ∞∑
n=

yn
tn

n!

)

=
∞∑
n=

n∑
l=

(
n
l

)
Ũ (α)

n–l(x)y
l tn

n!
.

By comparing the coefficients of both sides, we complete the proof of Theorem .. �

We also find the relation of the polynomials, Ũ (α)
n (x), and the numbers, Ũ (α)

n .

Theorem . Let α,x ∈C and n be non-negative integers. Then we get

Ũ (α)
n (x) =

n∑
l=

(
n
l

)
Ũ (α)

n–lx
l.

Proof This proof is very similar to the proof of Theorem .:

∞∑
n=

Ũ (α)
n (x)

tn

n!
=

(
et

et + e–t – 

)α

ext

=

( ∞∑
n=

Ũ (α)
n

tn

n!

)( ∞∑
n=

xn
tn

n!

)
=

∞∑
n=

n∑
l=

(
n
l

)
Ũ (α)

n–lx
l tn

n!
.
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By comparing the coefficients of both sides, we complete the proof of the Theorem ..
Of course, we can get a simple proof by substituting y =  in Theorem .. �

Theorem . Let n,k ∈N∪ {} and k +  ≤ n. For α = , we have

Ũn+(x) – ( + x)Ũn(x) =
n–∑
k=

(
n
k

)((
 – n–k

)
Ũk+(x) –

(
 + n–kx – x

)
Ũk(x)

)
.

Proof From Definition ., we easily see that the following equation holds true.
Let α = . Then we get

∞∑
n=

Ũ ()
n (x)

tn

n!
=

(
et

et + e–t – 

)
etx =

∞∑
n=

Ũn(x)
tn

n!
.

Differentiating with respect to t, we find

∞∑
n=

Ũn(x)
tn–

(n – )!
=

 – et

(et + e–t – )
etx +

et

et + e–t – 
xetx.

If we multiply the above equation throughout by (et – et + ), then we have

(
et – et + 

) ∞∑
n=

Ũn(x)
tn–

(n – )!

=
et

et + e–t – 
etx

(
 – et

)
+

et

et + e–t – 
etx

(
et – et + 

)
x. (.)

Then, the left-hand side gets transformed as follows in (.):

(
et – et + 

) ∞∑
n=

Ũn(x)
tn–

(n – )!

=
∞∑
n=

( n∑
k=

(
n
k

)(
n–k – 

)
Ũk+(x) + Ũn+(x)

)
tn

n!
. (.)

And the right-hand side of (.) gets transformed in the following form:

et

et + e–t – 
etx

(
 – et

)
+

et

et + e–t – 
etx

(
et – et + 

)
x

=
∞∑
n=

(
( + x)Ũn(x) –

n∑
k=

(
n
k

)(
 + n–kx – x

)
Ũk(x)

)
tn

n!
. (.)

Comparing the coefficients of tn
n! in (.) and (.), we can represent the equation as

n∑
k=

(
n
k

)(
n–k – 

)
Ũk+(x) + Ũn+(x) = ( + x)Ũn(x) –

n∑
k=

(
n
k

)(
 + n–kx – x

)
Ũk(x).
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Rearranging, we get

Ũn+(x) – ( + x)Ũn(x) =
n–∑
k=

(
n
k

)((
 – n–k

)
Ũk+(x) –

(
 + n–kx – x

)
Ũk(x)

)
.

Thus we complete the proof. �

Remark From Theorem ., we easily see the following.
If x =  and α = , then

Ũn+ – Ũn =
n–∑
k=

(
n
k

)((
 – n–k

)
Ũk+ – Ũk

)
.

If x =  and α = , then

Ũn+() – Ũn() =
n–∑
k=

(
n
k

)((
 – n–k

)
Ũk+() – n–kŨk()

)
.

So far, we got some properties of polynomials Ũ (α)
n (x). From now on, we will investi-

gate the relation of the polynomials Ũ (α)
n (x), the Stirling numbers and the central factorial

numbers.

Theorem . Let n,k, l ∈ N∪ {} and n≥ k – l – . Then we have

Ũ (α)
n (x) =

n∑
m=

((
n
m

)
a((n–m),k)xm +

(
n

m + 

)
b((n–m)–,k)xm+

)
,

Ũ (α)
n+(x) =

n∑
m=

((
n + 
m

)
b((n–m)+,k)xm +

(
n + 
m + 

)
a((n–m),k)xm+

)
,

where

a(n,k) =
n∑
k=

[ k ]∑
l=

(
n
l

)
(–)k–l

n–l∑
j=k–l

(j)!
j!

T(n – l, j)s(j,k – l)αk ,

b(n+,k) =
n+∑
k=

[ k– ]∑
l=

(
n + 
l – 

)
(–)k–(l+)

n–l∑
j=k–(l+)

(j)!
j!

T(n – l, j)s
(
j,k – (l + )

)
αk ,

and [x] is the greatest integer not exceeding x.

Proof By using the Stirling numbers and the central factorial numbers, we express the
polynomials Ũ (α)

n (x) as follows:

∞∑
n=

Ũ (α)
n (x)

tn

n!
=

(
et

et + e–t – 

)α

etx =
(


et + e–t – 

)α

et(α+x)

=
(


 + (et + e–t – )

)α

et(α+x)
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=
∞∑
j=

(
j + α – 

j

)
(–)j

(
et + e–t – 

)jet(α+x)
=

∞∑
j=

(–)j
(

α + j – 
j

)
(j)!

∞∑
n=j

T(n, j)
tn

(n)!
et(α+x)

=
∞∑
n=

n∑
j=o

(–)j
(

α + j – 
j

)
(j)!T(n, j)

tn

(n)!
et(α+x)

=
∞∑
n=

n∑
j=

j∑
k=

(–)ks(j,k)αk (j)!
j!

T(n, j)
tn

(n)!

∞∑
n=

αn tn

n!

∞∑
n=

xn
tn

n!
.

After some calculation, we get

∞∑
n=

n∑
j=

j∑
k=

(–)ks(j,k)αk (j)!
j!

T(n, j)
tn

(n)!

∞∑
n=

αn tn

n!

=
∞∑
n=

n∑
k=

[ k ]∑
l=

(
n
l

)
(–)k–l

n–l∑
j=k–l

(j)!
j!

T(n – l, j)s(j,k – l)αk tn

(n)!

+
∞∑
n=

n+∑
k=

[ k– ]∑
l=

(
n + 
l – 

)
(–)k–(l+)

×
n–l∑

j=k–(l+)

(j)!
j!

T(n – l, j)s
(
j,k – (l + )

)
αk tn+

(n + )!
,

where [x] is the greatest integer not exceeding x.
Let

a(n,k) =
n∑
k=

[ k ]∑
l=

(
n
l

)
(–)k–l

n–l∑
j=k–l

(j)!
j!

T(n – l, j)s(j,k – l)αk ,

b(n+,k) =
n+∑
k=

[ k– ]∑
l=

(
n + 
l – 

)
(–)k–(l+)

n–l∑
j=k–(l+)

(j)!
j!

T(n – l, j)s
(
j,k – (l + )

)
αk .

Then we have

∞∑
n=

Ũ (α)
n (x)

tn

n!
=

( ∞∑
n=

a(n,k)
tn

(n)!
+

∞∑
n=

b(n+,k)
tn+

(n + )!

) ∞∑
n=

xn
tn

n!
.

From the above equation, we have to consider odd terms and even terms by using the
Cauchy product. Thus, we get generating terms by dividing the odd terms and the even
terms, respectively,

∞∑
n=

Ũ (α)
n (x)

tn

n!
=

∞∑
n=

Ũ (α)
n (x)

tn

(n)!
+

∞∑
n=

Ũ (α)
n+(x)

tn+

(n + )!
.
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The following equations represent Ũ (α)
n (x) for n even and n odd terms:

Ũ (α)
n (x) =

n∑
m=

(
n
m

)
a((n–m),k)xm +

n∑
m=

(
n

m + 

)
b((n–m)–,k)xm+

=
n∑

m=

((
n
m

)
a((n–m),k)xm +

(
n

m + 

)
b((n–m)–,k)xm+

)
,

Ũ (α)
n+(x) =

n∑
m=

(
n + 
m

)
b((n–m)+,k)xm +

n∑
m=

(
n + 
m + 

)
a((n–m),k)xm+

=
n∑

m=

((
n + 
m

)
b((n–m)+,k)xm +

(
n + 
m + 

)
a((n–m),k)xm+

)
,

where

a(n,k) =
n∑
k=

[ k ]∑
l=

(
n
l

)
(–)k–l

n–l∑
j=k–l

(j)!
j!

T(n – l, j)s(j,k – l)αk ,

b(n+,k) =
n+∑
k=

[ k– ]∑
l=

(
n + 
l – 

)
(–)k–(l+)

n–l∑
j=k–(l+)

(j)!
j!

T(n – l, j)s
(
j,k – (l + )

)
αk ,

and [x] is the greatest integer not exceeding x.
Thus, we complete the proof of Theorem .. �

From Theorem ., we find examples of the Ũ (α)
n (x) polynomials.

Example . Let n = , , , , , , , . Then we have

a(,k) = α – α,

a(,k) = α – α + α + α,

a(,k) = α – α + α + α – α – α,

· · · .

Also,

b(,k) = α,

b(,k) = α – α,

b(,k) = α – α + α + α,

· · · .

Therefore, we can express Ũ (α)
n (x) as a function of x and α explicitly. For instance,

Ũ (α)
 (x) = x + α,

Ũ (α)
 (x) = x – αx + α – α,

http://www.journalofinequalitiesandapplications.com/content/2014/1/26
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Ũ (α)
 (x) = x + αx + αx – αx + α – α,

· · · .

3 Some relations of the polynomials ˜U(α)
n (x), the Euler polynomials, and the

Genocchi polynomials
In this chapter, we find interesting relations between the polynomials Ũ (α)

n (x), the Euler
polynomials, and the Genocchi polynomials. In other words, the polynomials Ũ (α)

n (x) can
be shown in a combined form by using Euler numbers and polynomials.We also easily see
the polynomials Ũ (α)

n (x) that are represented by Genocchi numbers and polynomials.
First, we study a link between the polynomials Ũ (α)

n (x) and the Euler polynomials E(α)
n (x).

Theorem . Let α ∈C, n be a non-negative integer. Then we have

αŨ (α)
n (x) = (–)n

(
E(α)
n

(
–


x
)
+ E(α)

n

(
–


x +



α

))
.

Proof From Definition ., we have

∞∑
n=

Ũ (α)
n (x)

tn

n!
=

(
et

et + e–t – 

)α

etx

=

α

((


 + e–t

)α

etx +
(


 + e–t

)α

et(x–α)
)

=
∞∑
n=

(
(–)n

α

(
E(α)
n

(
–


x
)
+ E(α)

n

(
–


x +



α

)))
tn

n!
.

By comparing the coefficients of both sides, we have

Ũ (α)
n (x) =

(–)n

α

(
E(α)
n

(
–


x
)
+ E(α)

n

(
–


x +



α

))
.

Hence the proof of the Theorem . is complete. �

From Theorem ., we easily get the following corollary.

Corollary . Let α = . Then one has

Ũn(x) = (–)n
(
En

(
–


x
)
+ En

(
–


x +




))
= (–)n

(
En

(
–


x
)
+ (–)nEn

(
–


x +




))
.

Proof Let α =  in Definition . and Theorem ., respectively. Then we easily obtain the
proof of Corollary .. �

Theorem . Let n, v, . . . , vk , k ∈N. Then we have

Ũ (k)
n (x) =

n–l

k

n∑
l=

(n – l)!
∑

v,...,vk=
v+···+vk=n–l

(Ev (

x) + (–)vEv ) · · · (Evk (


x) + (–)vkEvk )

v! · · · vk ! xl.

http://www.journalofinequalitiesandapplications.com/content/2014/1/26
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Proof From the Definition . and the Euler numbers and polynomials, we can write the
following equation:

∞∑
n=

Ũ (k)
n (x)

tn

n!
=

(
et

et + e–t – 

)k

etx

=
(


 + e–t

+


 + et
et

)k

etx

=

k

( ∞∑
n=

(
nEn

(


x
)
+ (–)nEn

)
tn

n!

)k ∞∑
n=

xn
tn

n!
.

Here, we can represent the above right-hand side as the following equation:


k

( ∞∑
n=

(
nEn

(


x
)
+ (–)nEn

)
tn

n!

)k

=

k

∞∑
n=

∑
v,...,vk=
v+···+vk=n

n(Ev (

x) + (–)vEv ) · · · (Evk (


x) + (–)vkEvk )

v! · · · vk ! .

Therefore, we obtain

Ũ (k)
n (x) =

n–l

k

n∑
l=

(n – l)!
∑

v,...,vk=
v+···+vk=n–l

(Ev (

x) + (–)vEv ) · · · (Evk (


x) + (–)vkEvk )

v! · · · vk ! xl.

�

Secondly, we note a link between the polynomials Ũ (α)
n (x), the Genocchi numbers, G(α)

n ,
and the polynomials G(α)

n (x).

Theorem . Let k,n ∈N. Then we have

kk!
(
k + n
k

)
Ũ (k)

n (x) = (–)n
(
G(k)

k+n

(
–


x
)
+G(k)

k+n

(
–


x +



k
))

.

Proof Ũ (k)
n (x) is represented as follows:

∞∑
n=

Ũ (k)
n (x)

tn

n!
=


(t)k

(
t

 + e–t

)k

etx +


(t)k

(
t

 + e–t

)k

et(x–k)

=


(–t)k

∞∑
n=

(–)n
(
G(k)

n

(
–


x
)
+G(k)

n

(
–


x +



k
))

tn

n!

=


(–)k

∞∑
n=

(–)n
(
G(k)

n

(
–


x
)
+G(k)

n

(
–


x +



k
))

tn–k

n!
.

By comparing the coefficients of both sides in the above equation, we derive

Ũ (k)
n (x) =

(–)n

kk!
(k+n

k
)(

G(k)
k+n

(
–


x
)
+G(k)

k+n

(
–


x +



k
))

.

Thus we complete the proof of Theorem .. �
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From Theorem ., we get the following corollary.

Corollary . Let k = , n ∈N and k +  ≤ n. Then we derive

(n + )Ũn(x) = (–)n
(
Gn+

(
–


x
)
+Gn+

(
–


x +




))
= (–)n

(
Gn+

(
–


x
)
+ (–)nGn+

(
–


x +




))
.

Proof Let α = , k =  in Definition . and Theorem ., respectively. Then we easily
obtain the proof of Corollary .. �
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