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1 Introduction
Recently complex approximation operators have been studied intensively. For this ap-
proach, we refer to the book of Gal [], where he considers approximation proper-
ties of several complex operators such as Bernstein, q-Bernstein, Favard-Szasz-Mirakjan,
Baskakov and some others. Also we refer to the useful book of Aral, Gupta and Agarwal
[] who consider many applications of q-calculus in approximation theory. Now, for the
construction of the new operators, we give some notations on q-analysis [, ].
Let q > . The q-integer [n] and the q-factorial [n]! are defined by

[n] := [n]q =

{
–qn
–q , q �= ,
n, q = 

for n ∈N

and

[n]! :=

{
[]q[]q · · · [n]q, n = , , . . . ,
, n = 

for n ∈N and []! = ,

respectively. For integers n≥ r ≥ , the q-binomial coefficient is defined as

[
n
r

]
q

=
[n]q!

[r]q![n – r]q!
.

The q-derivative of f (z) is denoted by Dqf (z) and defined as

Dqf (z) :=
f (qz) – f (z)
(q – )z

, z �= , Dqf () = f ′(),
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also

D
qf := f , Dn

qf :=Dq
(
Dn–

q f
)
, n = , , . . .

q-Pochhammer formula is given by

(x,q) = ,

(x,q)n =
n–∏
k=

(
 – qkx

)

with x ∈R, n ∈N∪{∞}. The q-derivative of the product and the quotient of two functions
f and g are

Dq
(
f (z)g(z)

)
= f (z)Dq

(
g(z)

)
+ g(qz)Dq

(
f (z)

)
and

Dq

(
f (z)
g(z)

)
=
g(z)Dq(f (z)) – f (z)Dq(g(z))

g(z)g(qz)
,

respectively (see in []). Moreover, we have

[x,x, . . . ,xm; f · g] =
m∑
i=

[x,x, . . . ,xi; f ][xi,xi+, . . . ,xm; g], (.)

where [x,x, . . . ,xm; f ] denotes the divided difference of the function f on the knots
x,x, . . . ,xm (see [] also []).
In [], Aral and Gupta constructed the q-Baskakov operator as

Zq
n(f )(x) =

∞∑
k=

[
n + k – 

k

]
q

k(k–)
 zk(–x,q)–n+kf

(
[k]

qk–[n]

)
, n ∈N,

where x≥ , q >  and f is a real-valued continuous function on [,∞). The authors stud-
ied the rate of convergence in a polynomial weighted norm and gave a theorem related
to monotonic convergence of the sequence of operators with respect to n. Not only they
proved a kind of monotonicity by means of q-derivative but also they expressed the oper-
ator in terms of divided differences as follows:

Wn,q(f )(x) =
∞∑
j=

[n + j – ]!
[n – ]!

q
–j(j–)



[
,


[n]

,
[]
q[n]

, . . . ,
[j]

qj–[n]
; f

]
xj

[n]j
(.)

n ∈N, similar to the case of classical Baskakov operators in the sense of Lupaş in []. That
is to say, Zq

n(f )(x) =Wn,q(f )(x) for x ≥  and q > , so they proved that

[
,


[n]

,
[]
q[n]

, . . . ,
[j]

qj–[n]
; f

]
=
qj(j–)∇ j

qf ()
[j]!

[n]j =
f (j)(ζ )
j!

, ζ ∈
(
,

[j]
qj–[n]

)
, (.)
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where ∇r
q stands for q-divided differences given by ∇

q f (xj),

∇r+
q f (xj) = qr∇r

qf (xj+) –∇r
qf (xj)

for r ∈N∪ {}.
A different type of the q-Baskakov operator was also given by Aral and Gupta in [].

In [] Finta and Gupta studied the q-Baskakov operator Zq
n(f )(x) for  < q < . Using the

second-order Ditzian-Totik modulus of smoothness, they gave direct estimates. They also
introduced the limit q-Baskakov operator.
In [] Gupta and Radu introduced a q-analogue of Baskakov-Kantorovich operators

and studied weighted statistical approximation properties of them for  < q < . They also
obtained some direct estimations for error with the help of weighted modulus of smooth-
ness. Moreover, Durrmeyer-type modifications of q-Baskakov operators were studied in
[] and []. In [], Söylemez, Tunca and Aral defined a complex form of q-Baskakov
operators by

Wn,q(f )(z) =
∞∑
j=

[n + j – ]!
[n – ]!

q
–j(j–)



[
,


[n]

,
[]
q[n]

, . . . ,
[j]

qj–[n]
; f

]
zj

[n]j
(.)

for q > , f : DR ∪ [R,∞) → C, replacing x by z in the operator Wn,q(f )(x) given by (.).
They obtained a quantitative estimate for simultaneous approximation, Voronovskaja-
type result and degree of simultaneous approximation in compact disks.
In recent years, a Stancu-type generalization of the operators has been studied. Büyü-

kyazıcı andAtakut considered a Stancu-type generalization of the real Baskakov operators
in []. Also in [], q-Baskakov-Beta-Stancu operators were introduced. In [] Gupta-
Verma studied the Stancu-type generalization of complex Favard-Szasz-Mirakjan oper-
ators and established some approximation results in the complex domain. In [] Gal,
Gupta, Verma and Agrawal introduced complex Baskakov-Stancu operators and studied
Voronovskaja-type results with quantitative estimates for these operators attached to an-
alytic functions on compact disks.
Now we define a new type of the complex q-Baskakov-Stancu operator

W α,β
n,q (f )(z) =

∞∑
j=

[n + j – ]!
[n – ]!

q
–j(j–)



×
[

[α]
[n] + [β]

,
[α] + []
[n] + [β]

, . . . ,
qj–[α] + [j]
qj–([n] + [β])

; f
]

zj

([n] + [β])j
, (.)

where  ≤ α ≤ β ; for j = , we take [n][n + ] · · · [n + j – ] = . We suppose that f is an-
alytic on the disk |z| < R, R >  and has exponential growth in the compact disk with all
derivatives bounded in [,∞) by the same constant.
Note that taking α = β = , W α,β

n,q (f )(z) reduces to the complex q-Baskakov operator
Wn,q(f )(z) given in (.).
In this work, for such f and q > , we study some approximation properties of the com-

plex q-Baskakov-Stancu operator which is defined by forward differences.
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2 Auxiliary results
In this section, we give some results which we shall use in the proof of theorems.

Lemma  Let us define ek(z) = zk , Tα,β
n,k (z) :=W α,β

n,q (ek)(z), and N
 denotes the set of all non-

negative integers. Then, for all n,k ∈N
, ≤ α ≤ β and z ∈C, we have the following recur-

rence formula:

Tα,β
n,k+(z) =

qz( + z
q )

[n] + [β]
DqTα,β

n,k

(
z
q

)
+

[n]z + [α]
([n] + [β])

Tα,β
n,k (z). (.)

Hence

Tα,β
n, (z) =

[n]z + [α]
[n] + [β]

, Tα,β
n, (z) =

z( + z
q )

[n] + [β]
[n]

[n] + [β]
+

(
[n]z + [α]
[n] + [β]

)

for all z ∈ C.

Proof Now we can write

Tα,β
n,k (z) =

∞∑
j=

[n][n + ] · · · [n + j – ]
([n] + [β])j

q
–j(j–)



×
[

[α]
([n] + [β])

, . . . ,
qj–[α] + [j]
qj–([n] + [β])

; ek
]
zj. (.)

Using relation (.) and taking f = ek , g = e and xj = qj–[α]+[j]
qj–([n]+[β]) , we obtain

[
[α]

[n] + [β]
, . . . ,

qj–[α] + [j]
qj–([n] + [β])

; ek+
]

=
qj–[α] + [j]
qj–([n] + [β])

[
[α]

[n] + [β]
, . . . ,

qj–[α] + [j]
qj–([n] + [β])

; ek
]

+
[

[α]
[n] + [β]

, . . . ,
qj–[α] + [j – ]
qj–([n] + [β])

; ek
]
, (.)

using this in Tα,β
n,k+(z) we reach

Tα,β
n,k+(z) =

qz( + z
q )

[n] + [β]
DqTα,β

n,k

(
z
q

)
+
[n]z + [α]
[n] + [β]

Tα,β
n,k (z). �

Lemma  Let α and β satisfy  ≤ α ≤ β .Denoting ej(z) = zj and W ,
n,q (ej) by Wn,q(ej) given

in (.), for all n,k ∈ N
, we have the following recursive relation for the images of mono-

mials ek under Wα,β
n,q in terms of Wn,q(ej), j = , , . . . ,k:

Tα,β
n,k (z) =

k∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
Wn,q(ej, z). (.)
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Proof Wecan usemathematical inductionwith respect to k. For k = , equality (.) holds.
Let it be true for k =m, namely

Tα,β
n,m(z) =

m∑
j=

(
m
j

)
[n]j[α]m–j

([n] + [β])m
Wn,q(ej, z).

Using (.), we have

Tα,β
n,m+(z) =

qz( + z
q )

[n] + [β]

m∑
j=

(
m
j

)
[n]j[α]m–j

([n] + [β])m
DqWn,q

(
ej,

z
q

)

+
[n]z + [α]
[n] + [β]

m∑
j=

(
m
j

)
[n]j[α]m–j

([n] + [β])m
Wn,q(ej, z)

=
m∑
j=

(
m
j

)
[n]j+[α]m–j

([n] + [β])m+

×
[qz( + z

q )
[n]

DqWn,q

(
ej,

z
q

)
+
[n]z + [α]

[n]
Wn,q(ej, z)

]
.

Taking into account the recurrence relation for the complex q-Baskakov operator in
Lemma  in [], we get

Wn,q(ej+, z) =
qz( + z

q )
[n]

DqWn,q

(
ej,

z
q

)
+ zWn,q(ej, z),

which implies

Tα,β
n,m+(z) =

m∑
j=

(
m
j

)
[n]j+[α]m–j

([n] + [β])m+

[
Wn,q(ej+, z) +

[α]
[n]

Wn,q(ej, z)
]

=
m∑
j=

(
m
j – 

)
[n]j[α]m–j+

([n] + [β])m+Wn,q(ej, z)

+
m∑
j=

(
m
j

)
[n]j[α]m–j+

([n] + [β])m+Wn,q(ej, z)

=
m+∑
j=

(
m + 
j

)
[n]j[α]m–j+

([n] + [β])m+Wn,q(ej, z),

which proves the lemma. �

3 Approximation by a complex q-Baskakov-Stancu operator
In this section, we give quantitative estimates concerning approximation with the follow-
ing theorem.

Theorem  For  < R < ∞, let

f :DR ∪ [R,∞)→C

http://www.journalofinequalitiesandapplications.com/content/2014/1/249
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be a function with all its derivatives bounded in [,∞) by the same positive constant, ana-
lytic in DR, namely f (z) =

∑∞
k= ckzk for all z ∈ DR and suppose that there exist M >  and

A ∈ ( R , ), with the property |ck| ≤ MAk

k! for all k = , , . . . (which implies |f (z)| ≤ MeA|z| for
all z ∈DR).
Let  ≤ α ≤ β , q >  and  ≤ r < 

A be arbitrary but fixed. Then, for all |z| ≤ r and n ∈ N,
we have

∣∣Wα,β
n,q (f )(z) – f (z)

∣∣
≤ M,r(f )

[n] + [β]
+

[β]
[n] + [β]

M,r(f ) +
[α]

[n] + [β]
M,r(f )

=Mr,α,β (f )

with

M,r(f ) = 
∞∑
k=

|ck|(k + )!(k – )rk <∞,

M,r(f ) =
∞∑
k=

|ck|krk < ∞, M,r(f ) =
∞∑
k=

|ck|krk– <∞.

Proof Using (.), one can obtain

Tα,β
n,k (z) – zk =

qz( + z
q )

[n] + [β]
Dq

(
Tα,β
n,k–

(
z
q

))
+
[n]z + [α]
[n] + [β]

(
Tα,β
n,k–(z) – zk–

)

+
[n]z + [α]
[n] + [β]

zk– – zk

=
z( + z

q )
[n] + [β]

qDq

(
Tα,β
n,k–

(
z
q

))
+
[n]z + [α]
[n] + [β]

(
Tα,β
n,k–(z) – zk–

)

+
(

[n]
[n] + [β]

– 
)
zk +

[α]
[n] + [β]

zk–.

Moreover, we have

qDq

(
Tα,β
n,k–

(
z
q

))
=

∣∣Dq
(
Tα,β
n,k–(w)

)∣∣
w= z

q
. (.)

Now from (.) and the Bernstein inequality (see []), we have

qDq

(
Tα,β
n,k–

(
z
q

))
=

∣∣Dq
(
Tα,β
n,k–(z)

)∣∣ ≤ ∣∣T ′α,β
n,k–(z)

∣∣ ≤ k – 
r

∥∥Tα,β
n,k–

∥∥
r ,

where ‖ · ‖r is the standardmaximum norm overDr = {z ∈C : |z| ≤ r}. Passing to modulus
for all |z| ≤ r and n ∈N, we have that

∣∣Tα,β
n,k (z) – zk

∣∣ ≤ r( + r)
[n] + [β]

(
k – 
r

)∥∥Tα,β
n,k–

∥∥
r +

[n]r + [α]
[n] + [β]

∣∣Tα,β
n,k–(z) – zk–

∣∣
+

(
[n]

[n] + [β]
– 

)
rk +

[α]
[n] + [β]

rk–. (.)
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In order to get an estimate for ‖Tα,β
n,k–‖r in (.), we use the following fact:

Tα,β
n,k (z) =

k∑
j=

[n][n + ] · · · [n + j – ]
([n] + [β])j

q
–j(j–)



[
[α]

[n] + [β]
, . . . ,

qj–[α] + [j]
qj–([n] + [β])

; ek
]
zj

for k ∈N. Taking into account Lemma  in [] for q > , |z| ≤ r, r ≥  and (.), we have

∥∥Tα,β
n,k (z)

∥∥
r ≤ rj

k∑
j=

[n][n + ] · · · [n + j – ]
[n]j

q
–j(j–)



×
[

[α]
[n] + [β]

, . . . ,
qj–[α] + [j]
qj–([n] + [β])

; ek
]

≤
k∑
j=

j!
kk –  · · · k – j + 

j!
rk–j · rj

= rk
k∑
j=

kk –  · · · k – j +  ≤ rk(k + )!. (.)

Now, considering (.) in (.), for all |z| ≤ r, r ≥ , with q >  and  ≤ α ≤ β ,

∣∣Tα,β
n,k (z) – zk

∣∣
≤ r( + r)

[n] + [β]
rk–(k + )! +

[n]r + [α]
[n] + [β]

∣∣Tα,β
n,k–(z) – zk–

∣∣
+

(
[n]

[n] + [β]
– 

)
rk +

[α]
[n] + [β]

rk–

≤ [n]r + [α]
[n] + [β]

∣∣Tα,β
n,k–(z) – zk–

∣∣ + r( + r)
[n] + [β]

rk–(k + )!

+
[β]

[n] + [β]
rk +

[α]
[n] + [β]

rk–

≤ r
∣∣Tα,β

n,k–(z) – zk–
∣∣ + rk

[n] + [β]
(k + )!

+
[β]

[n] + [β]
rk +

[α]
[n] + [β]

rk–. (.)

Using the above inequalities beginning from k = , , . . . and using the mathematical in-
duction with respect to k, we arrive at

∣∣Tα,β
n,k (z) – zk

∣∣
≤ rk

[n] + [β]

k∑
j=

(j + )! +
[β]

[n] + [β]
krk +

[α]
[n] + [β]

krk–

≤ rk

[n] + [β]
(k + )!(k – ) +

[β]
[n] + [β]

krk +
[α]

[n] + [β]
krk–. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/249
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Also we obtain the following: for k =  it is not difficult to see that

∣∣Tα,β
n, (z) – z

∣∣ = ∣∣∣∣ [α] – [β]z
[n] + [β]

∣∣∣∣ ≤ [α] + [β]r
[n] + [β]

.

Now, taking into account the proof of Theorem  in [], we can write, for q > , |z| ≤ r,
r ≥ , that

W α,β
n,q (f )(z) =

∞∑
k=

ckTα,β
n,k (z),

which implies

∣∣Wα,β
n,q (f )(z) – f (z)

∣∣
≤

∞∑
k=

|ck|
∣∣Tα,β

n,k (z) – zk
∣∣

≤ 
[n] + [β]

∞∑
k=

|ck|(k + )!(k – )rk +
[β]

[n] + [β]

∞∑
k=

|ck|krk

+
[α]

[n] + [β]

∞∑
k=

|ck|krk–

=
M,r(f )
[n] + [β]

+
[β]

[n] + [β]
M,r(f ) +

[α]
[n] + [β]

M,r(f ).

Here from the analyticity of f we have M,r(f ) < ∞ and M,r(f ) < ∞. Also from the hy-
potheses of the theorem, one can get

M,r(f ) = 
∞∑
k=

|ck|(k + )!(k – )rk ≤ M
∞∑
k=

(k + )(k – )(rA)k

for all |z| ≤ r, ≤ r ≤ 
A , n ∈ N. �

Theorem  Let  ≤ α ≤ β , ≤ r ≤ 
A and q > .Under the hypotheses of Theorem , for all

|z| ≤ r and n ∈N, the following Voronovskaja-type result

∣∣∣∣Wα,β
n,q (f )(z) – f (z) –

[α] – [β]z
[n] + [β]

f ′(z) –
z

[n]

(
 +

z
q

)
f ′′(z)

∣∣∣∣
≤ K,r(f )

[n]
+

∑
j=Kj,r(f )

([n] + [β])

holds with

K,r(f ) = 
∞∑
k=

|ck|(k – )(k – )k!rk < ∞,

K,r(f ) = [α]
∞∑
k=

|ck| (k – )k!


rk– < ∞,

http://www.journalofinequalitiesandapplications.com/content/2014/1/249
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K,r(f ) = [α]
∞∑
k=

|ck|kk!rk– < ∞,

K,r(f ) =
(
[β]


+ [β]

) ∞∑
k=

|ck|k(k + )!rk < ∞,

K,r(f ) = [α][β]
∞∑
k=

|ck|k(k – )rk– < ∞,

K,r(f ) = [β]
∞∑
k=

|ck|k(k – )rk < ∞.

Proof For all z ∈ DR, let us consider

W α,β
n,q (f )(z) – f (z) –

[α] – [β]z
[n] + [β]

f ′(z) –
z

[n]

(
 +

z
q

)
f ′′(z)

=Wn,q(f )(z) – f (z) –
z

[n]

(
 +

z
q

)
f ′′(z)

+W α,β
n,q (f )(z) –Wn,q(f )(z) –

[α] – [β]z
[n] + [β]

f ′(z).

Using the fact that f (z) =
∑∞

k= ckzk , we get

W α,β
n,q (f )(z) – f (z) –

[α] – [β]z
[n] + [β]

f ′(z) –
z

[n]

(
 +

z
q

)
f ′′(z)

=
∞∑
k=

ck
(
Wn,q(ek ; z) – zk –

z
[n]

(
 +

z
q

)
k(k – )zk–

)

+
∞∑
k=

ck
(
Tα,β
n,k (z) –Wn,q(ek ; z) –

[α] – [β]z
[n] + [β]

kzk–
)
.

From Theorem  in [], we have
∣∣∣∣Wn,q(f )(z) – f (z) –

z
[n]

(
 +

z
q

)
f ′′(z)

∣∣∣∣
≤ 

[n]

∞∑
k=

|ck|(k – )(k – )k!rk .

Furthermore, in order to estimate the second sum, using Lemma , we obtain

Tα,β
n,k (z) –Wn,q(ek ; z) –

[α] – [β]z
[n] + [β]

kzk–

=
k∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
Wn,q(ej; z) –Wn,q(ek ; z) –

[α] – [β]z
[n] + [β]

kzk–

=
k–∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
Wn,q(ej; z)

+
(

[n]k

([n] + [β])k
– 

)
Wn,q(ek ; z) –

[α] – [β]z
[n] + [β]

kzk–.

http://www.journalofinequalitiesandapplications.com/content/2014/1/249


Özden and Arı Journal of Inequalities and Applications 2014, 2014:249 Page 10 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/249

Also it is clear that

 –
[n]k

([n] + [β])k
=

k–∑
j=

(
k
j

)
[n]j[β]k–j

([n] + [β])k
≤

k–∑
j=

(
 –

[n]
[n] + [β]

)
=

k[β]
[n] + [β]

, (.)

which implies

Tα,β
n,k (z) –Wn,q(ek ; z) –

[α] – [β]z
[n] + [β]

kzk–

=
k–∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
Wn,q(ej; z) +

k[n]k–[α]
([n] + [β])k

Wn,q(ek–; z)

–
k–∑
j=

(
k
j

)
[n]j[β]k–j

([n] + [β])k
Wn,q(ek ; z) –

[α] – [β]z
[n] + [β]

kzk–

=
k–∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
Wn,q(ej; z) +

k[n]k–[α]
([n] + [β])k

(
Wn,q(ek–; z) – zk–

)

–
k–∑
j=

(
k
j

)
[n]j[β]k–j

([n] + [β])k
Wn,q(ek ; z) –

k[n]k–[β]
([n] + [β])k

(
Wn,q(ek ; z) – zk

)

+
(

[n]k–

([n] + [β])k–
– 

)
k[α]

[n] + [β]
zk–

+
(
 –

[n]k–

([n] + [β])k–

)
k[β]

[n] + [β]
zk . (.)

Now from (.) we obtain
∣∣∣∣∣
k–∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
Wn,q(ej; z)

∣∣∣∣∣
≤

k–∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
∣∣Wn,q(ej; z)

∣∣

=
k–∑
j=

k(k – )
(k – j)(k – j – )

(
k – 
j

)
[n]j[α]k–j

([n] + [β])k
∣∣Wn,q(ej; z)

∣∣

≤ k(k – )


[α]

([n] + [β])
rk–(k – )!

k–∑
j=

(
k – 
j

)
[n]j[α]k––j

([n] + [β])k–

≤ k(k – )


[α]

([n] + [β])
rk–(k – )!. (.)

Also, we need to prove the following inequality:

k–∑
j=

(
k – 
j

)
[n]j[α]k––j

([n] + [β])k–
=

k–∑
j=

(
k – 
j

)
[n]j

([n] + [β])j
[α]k––j

([n] + [β])k––j

=
(
[n] + [α]
[n] + [β]

)k–

≤ . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/249
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Moreover, taking α = β =  in Theorem , we have

∣∣Wn,q(ek ; z) – zk
∣∣ ≤ 

[n]
rk(k + )!(k – ). (.)

Writing (.), (.), (.) and (.) in (.), we have

∣∣∣∣Tα,β
n,k (z) –Wn,q(ek ; z) –

[α] – [β]z
[n] + [β]

kzk–
∣∣∣∣

≤
∣∣∣∣∣
k–∑
j=

(
k
j

)
[n]j[α]k–j

([n] + [β])k
Wn,q(ej; z)

∣∣∣∣∣ + k[n]k–[α]
([n] + [β])k

∣∣Wn,q(ek–; z) – zk–
∣∣

+

∣∣∣∣∣
k–∑
j=

(
k
j

)
[n]j[β]k–j

([n] + [β])k
Wn,q(ek ; z)

∣∣∣∣∣ + k[n]k–[β]
([n] + [β])k

∣∣Wn,q(ek ; z) – zk
∣∣

+
∣∣∣∣ [n]k–

([n] + [β])k–
– 

∣∣∣∣ k[α]
[n] + [β]

|z|k– +
∣∣∣∣ – [n]k–

([n] + [β])k–

∣∣∣∣ k[β]
[n] + [β]

|z|k

≤ (k – )k!


[α]

([n] + [β])
rk– +

k[n]k–[α]
([n] + [β])k


[n]

rk–k!(k – )

+ rk(k + )!
k–∑
j=

(
k
j

)
[n]j[β]k–j

([n] + [β])k

+
k[n]k–[β]
([n] + [β])k


[n]

rk(k + )!(k – ) +
k(k – )[α][β]
([n] + [β])

rk– +
k(k – )[β]

([n] + [β])
rk

≤ (k – )k!


[α]

([n] + [β])
rk– + 

k[α]
([n] + [β])

rk–k! +
k[β](k + )!
([n] + [β])

rk

+ 
k(k + )![β]
([n] + [β])

rk +
k(k – )[α][β]
([n] + [β])

rk– +
k(k – )[β]

([n] + [β])
rk

≤ (k – )k!


[α]

([n] + [β])
rk– + 

k[α]
([n] + [β])

rk–k!

+
(
[β]


+ [β]

)
k(k + )!
([n] + [β])

rk

+
k(k – )[α][β]
([n] + [β])

rk– +
k(k – )[β]

([n] + [β])
rk .

Thus the proof is completed. �

Now, let us give a lower estimate for the exact degree in approximation byW α,β
n,q .

Theorem  Suppose that q >  and suppose that the hypotheses on f and on the constants
R, M, A in the statement of Theorem  hold, and let  ≤ r < R,  ≤ α ≤ β . If f is not a
polynomial of degree ≤ , then the lower estimate

∥∥Wα,β
n,q (f ) – f

∥∥
r ≥ Cα,β

r (f )
[n]

holds for all n, where the constant Cα,β
r (f ) depends on f , α, β , q and r.
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Proof For all |z| ≤ r and n ∈N, we get

W α,β
n,q (f )(z) – f (z)

=

[n]

{
[n]

[n] + [β]
(
[α] – [β]z

)
f ′(z) +

z


(
 +

z
q

)
f ′′(z)

+

[n]

[n]
(
Wα,β

n,q (f )(z) – f (z) –
[α] – [β]z
[n] + [β]

f ′(z) –
z

[n]

(
 +

z
q

)
f ′′(z)

)}

=

[n]

{(
[α] – [β]z

)
f ′(z) +

z


(
 +

z
q

)
f ′′(z)

+

[n]

[n]
(
Wα,β

n,q (f )(z) – f (z) –
[α] – [β]z
[n] + [β]

f ′(z)
)

+

[n]

[n]
(
–

z
[n]

(
 +

z
q

)
f ′′(z) –

[β]([α] – [β]z)
[n]([n] + [β])

f ′(z)
)}

.

We set Ek,n(z) by

Ek,n(z) :=W α,β
n,q (f )(z) – f (z) –

[α] – [β]z
[n] + [β]

f ′(z)

–
z

[n]

(
 +

z
q

)
f ′′(z) –

[β]([α] – [β]z)
[n]([n] + [β])

f ′(z). (.)

Passing to the norm and using the inequality

‖F +G‖r ≥ ∣∣‖F‖r – ‖G‖r
∣∣ ≥ ‖F‖r – ‖G‖r ,

we get

∥∥Wα,β
n,q (f ) – f

∥∥
r ≥ 

[n]

∥∥∥∥(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

∥∥∥∥
r
–


[n]

[n]‖Ek,n‖r .

Since f is not a polynomial of degree ≤  in DR, we have

∥∥∥∥(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

∥∥∥∥
r
> .

It can also be seen in [, pp.-]. Now, from Theorem  it follows that

[n]‖Ek,n‖r ≤ [n]
∥∥∥∥W α,β

n,q (f ) – f –
(
[α] – [β]e
[n] + [β]

)
f ′ –

e
[n]

(
 +

e
q

)
f ′′

∥∥∥∥
r

+
∥∥[β]([α] – [β]e

)
f ′∥∥

r

≤
∑
j=

Mj,r(f ) + [β]
(
[α] + [β]r

)∥∥f ′∥∥
r .
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Since 
[n] →  as n → ∞, for q > , there exists an n depending on f , r, α, β and q such

that for all n≥ n,


[n]

∥∥∥∥(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

∥∥∥∥
r
–


[n]

[n]‖Ek,n‖r

≥ 


∥∥∥∥(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

∥∥∥∥
r
,

which implies

∥∥W α,β
n,q (f ) – f

∥∥
r ≥ 

[n]

∥∥∥∥(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

∥∥∥∥
r

for all n ≥ n. Now, for n ∈ {, . . . ,n – }, we have

∥∥Wα,β
n,q (f ) – f

∥∥
r ≥ Ar(f )

[n]

with

Ar(f ) = [n]
∥∥W α,β

n,q (f ) – f
∥∥
r > ,

which finally implies

∥∥W α,β
n,q (f ) – f

∥∥
r ≥ Cα,β

r (f )
[n]

for all n ≥ n with

Cα,β
r (f ) =min

{
Ar,(f ), . . . ,Ar,n–(f ),




∥∥∥∥(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

∥∥∥∥
r

}
.

This proves the theorem. �

Combining now Theorem  with Theorem , we immediately get the following equiva-
lence result.

Remark  Suppose that q > ,  ≤ α ≤ β and that the hypotheses on f and on the con-
stants R, M, A in the statement of Theorem  hold, and let  ≤ r < 

A be fixed. If f is not a
polynomial of degree ≤ , then we have the following equivalence:

∥∥Wα,β
n,q (f ) – f

∥∥
r ∼ 

[n]

for all n, where the constants in the equivalence depend on f , α, β , q and r.

Concerning the approximation by the derivatives of complex q-Baskakov-Stancu oper-
ators, we can state the following theorem.
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Theorem  Suppose that q >  and that the hypotheses on f and on the constants R,M, A
in the statement of Theorem  hold, and let  ≤ α ≤ β , ≤ r < r < 

A and p ∈N be fixed. If
f is not a polynomial of degree ≤ p – , then we have the following equivalence:

∥∥[
Wα,β

n,q (f )
](p) – f (p)

∥∥
r ∼ 

[n]

for all n,where the constants in the equivalence depend on f (that is, onM, A), r, rq and p.

Proof Denote by � the circle of radius r with  ≤ r < r < 
A centered at . Since |z| ≤ r

and γ ∈ �, we have |γ – z| ≥ r – r and from Cauchy’s formulas and Theorem  we obtain,
for all |z| ≤ r and n ∈N, that

∣∣[Wα,β
n,q (f , z)

](p) – f (p)(z)
∣∣ ≤ p!

π

∣∣∣∣
∫

�

W α,β
n,q f (γ ) – f (γ )
(γ – z)p+

dγ

∣∣∣∣
≤ Mr,α,β (f )

[n]
p!
π

πr
(r – r)p+

=
Mr,α,β (f )

[n]
p!r

(r – r)p+
,

which proves one of the inequalities in the equivalence.
Now we need to prove the lower estimate. From Cauchy’s formula we get

[
Wα,β

n,q (f , z)
](p) – f (p)(z) =

p!
π i

∫
�

W α,β
n,q f (γ ) – f (γ )
(γ – z)p+

dγ .

Furthermore, using (.) one can have

Wα,β
n,q f (γ ) – f (γ )

=

[n]

{(
[α] – [β]γ

)
f ′(γ ) +

γ



(
 +

γ

q

)
f ′′(γ ) + [n]Ek,n(γ )

}

for all γ ∈ � and n ∈N. Applications of Cauchy’s formula imply

[
Wα,β

n,q (f , z)
](p) – f (p)(z)

=
{


[n]

p!
π i

∫
�

([α] – [β]γ )f ′(γ ) + γ

 ( +
γ

q )f
′′(γ )

(γ – z)p+
dγ

+

[n]

p!
π i

∫
�

[n]Ek,n(γ )
(γ – z)p+

dγ

}

=

[n]

{[(
[α] – [β]γ

)
f ′(γ ) +

z


(
 +

z
q

)
f ′′(z)

](p)

+
p!
π i

∫
�

[n]Ek,n(γ )
(γ – z)p+

dγ

}
.

Now passing to the norm ‖ · ‖r we obtain

∥∥[
Wα,β

n,q (f )
](p) – f (p)

∥∥
r ≥ 

[n]

{∥∥∥∥
[(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

](p)∥∥∥∥
r

–

[n]

∥∥∥∥ p!
π

∫
�

[n]Ek,n(γ )
(γ – z)p+

dγ

∥∥∥∥
r

}
,
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and from Theorem  we have∥∥∥∥ p!
π

∫
�

[n]Ek,n(γ )
(γ – z)p+

dγ

∥∥∥∥
r
≤ p!

π
πr

(r – r)p+
[n]‖Ek,n‖r

≤ K,r (f ) + [n]
∑

j=Kj,r (f )
([n] + [β])

+ [β]
(
[α] + [β]r

)∥∥f ′∥∥
r
.

Since f is not a polynomial of degree ≤  in DR, we have

∥∥∥∥
[(
[α] – [β]e

)
f ′ +

e


(
 +

e
q

)
f ′′

](p)∥∥∥∥
r
> 

(see [, pp.-]). The rest of the proof is obtained similarly to that of Theorem . �

Remark  Note that if we take α = β = , then Theorems , ,  and  reduce to the results
in [].
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