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Abstract
A modified conjugate gradient method to solve unconstrained optimization
problems is proposed which satisfies the sufficient descent condition in the case of
the strong Wolfe line search, and its global convergence property is established
simply. The numerical results show that the proposed method is promising for the
given test problems.
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1 Introduction
The nonlinear conjugate gradient method is one of the best methods to solve uncon-
strained optimization problems. It comprises a class of unconstrained optimization al-
gorithms which is characterized by low memory requirements and strong local or global
convergence properties. Therefore, a modified nonlinear conjugate gradient method is
proposed and analyzed in this paper.
Consider the following unconstrained optimization problem:

min
x∈Rn

f (x), (.)

where f : Rn → R is a smooth function and its gradient is denoted by g .
The conjugate gradient methods for solving the above problem often use the following

iterative rules:

xk+ = xk + αkdk , (.)

where xk is the current iterate, the stepsize αk is a positive scalar which is generated by
some line search, and the search direction dk is defined by

dk =

{
–gk , for k = ;
–gk + βkdk–, for k ≥ ,

(.)

where gk = ∇f (xk), βk is the conjugate parameter which determines the performances of
the corresponding methods. There are many well-known parameters βk , such as

βPRP
k =

gTk (gk – gk–)
‖gk–‖

(
Polak-Ribière-Polyak (PRP) [, ]

)
,
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βLS
k = –

gTk (gk – gk–)
dT
k–gk–

(
Liu-Storey (LS) []

)
,

βHZ
k =

(
yk– – dk–

‖yk–‖
dT
k–yk–

)T gk
dT
k–yk–

(
Hager-Zhang []

)
,

where ‖ · ‖ is the Euclidean norm. Their corresponding methods are generally called PRP,
LS, and HZ conjugate gradient methods. If f is a strictly convex quadratic function, these
methods are equivalent in the case that an exact line search is used. If f is non-convex,
their behaviors may show some differences.
When the objective function is convex, Polak and Ribière [] proved that the PRP

method is globally convergent under the exact line search. But Powell [] showed that
the PRP method does not converge globally for some non-convex functions. However, in
the past few years, the PRPmethod is generally believed to be the most efficient conjugate
gradient method in practical computation. One remarkable property of the PRP method
is that it essentially performs a restart if a bad direction occurs (see []). But Powell []
constructed an example showing that the PRP method can cycle infinitely without ap-
proaching any stationary point even if an exact line search is used. This counter-example
also indicates that the PRP method has a drawback in that it may not globally be con-
vergent when the objective function is non-convex. Recently, Zhang et al. [] proposed a
descent modified PRP conjugate gradient method and proved its global convergence. The
LS method has a similar property as the PRP method. The global convergence of the LS
method with the Grippo-Lucidi line search has also been proved in []. Some researchers
have further studied the LS method (see Liu [], Liu and Du []). In addition, Hager and
Zhang [] gave another effective method, namely the CG-DESCENT method. It not only
has stable convergence, but it also shows an effective numerical experiment result. In this
method, the parameter βk is computed by βk =max{βHZ

k ,ηk}, where ηk = –
‖dk–‖min{η,‖gk–‖} ,

η > .
In the next section, a modified conjugate gradient method is proposed. In Section , we

prove the global convergence of the proposed method for non-convex functions in the
case of the strong Wolfe line search. In Section , we report some numerical results.

2 The new algorithm
Recently, some people have studied some variants of the LS method. For example, Li et al.
[] proposed a modified LS method where the parameter βk is computed by

βk = –
gTk (gk – gk–)
dT
k–gk–

– t
‖gk – gk–‖dT

k–gk
(dT

k–gk–)
,

where t > 
 is a constant. They proved the global convergence of the modified method

with the Armijo line search and Wolfe line search. Tang et al. [] proved the LS method
with the new line search. Liu et al. [] studied amodified LSmethodwhere the parameter
βk is computed by

βLS
k =

⎧⎨
⎩

gTk (gk–gk–)
ρ|gTk dk–|–gTk–dk–

if min{,ρ –  – ξ} · ‖gk‖ > |gTk gk–|,
 else,
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where ρ >  + ξ , ξ > . They proved the global convergence of the corresponding method
with theWolfe line search. In ,Wei et al. [] proposed amodified PRPmethodwhere
the parameter βk is obtained by

βk =
gTk (gk –

‖gk‖
‖gk–‖gk–)

‖gk–‖ .

They proved its global convergencewith the exact line search, the strongWolfe line search,
and the Grippo-Lucidi line search, respectively. Their work overcomes the weak conver-
gence of the PRP method. Inspired by their work, we consider a variant of LS method,
i.e.

βVLS
k =

gTk (gk – tkgk–)
–λdT

k–gk– + ( – λ)max{, gTk dk–}
, (.)

where tk = ‖gk‖
‖gk–‖ , λ ∈ (, ) and λ > σ . Obviously, the denominator of (.) is a convex

combination of –dT
k–gk– and max{, gTk dk–} which may avoid the denominator of βLS

k
tending to zero. Now, we state formally the corresponding algorithm scheme for uncon-
strained optimization problems.

Algorithm .
Step : Given an initial x ∈ Rn, ε ≥ , λ = .. Set k = .
Step : If ‖g‖ ≤ ε, then stop.
Step : Compute αk by the strong Wolfe line search ( < δ < σ < 

 ):

f (xk + αkdk) ≤ f (xk) + δαkgTk dk , (.)∣∣g(xk + αkdk)Tdk
∣∣ ≤ –σ gTk dk . (.)

Step : Let xk+ = xk + αkdk , gk+ = g(xk+), if ‖gk+‖ ≤ ε, then stop.
Step : Compute βk+ by (.), and generate dk+ by (.).
Step : Set k = k + , go to step .

In some references, the sufficient descent condition

gTk dk ≤ –c‖gk‖, c > , (.)

is always assumed to hold. Because it plays an important role in proving the global con-
vergence of conjugate gradient methods. Fortunately, in this paper, the search direction dk
satisfies the sufficient descent condition in the case of the strongWolfe line search without
any assumption.

Lemma . Let the sequences {gk} and {dk} be generated by Algorithm ., then we obtain

gTk dk ≤ –
(
 –

σ
λ

)
· ‖gk‖. (.)

Proof The conclusion can be proved by induction. Since gT d = –‖g‖, the conclusion
(.) holds for k = . Now we assume that the conclusion (.) holds for k ≥  and gk+ �= .

http://www.journalofinequalitiesandapplications.com/content/2014/1/248
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One gets from (.) that

–
gTk+dk+
‖gk+‖ =  – βVLS

k+
gTk+dk
‖gk+‖ ≥  –

∣∣βVLS
k+

∣∣ · |gTk+dk|
‖gk+‖

≥  –
‖gk+‖ + ‖gk+‖

‖gk‖ · |gTk+gk|
λ|gTk dk|

· |gTk+dk|
‖gk+‖

≥  –
‖gk+‖
λ|gTk dk|

· σ |gTk dk|
‖gk+‖ =  –

σ
λ
.

From the above inequality, the conclusion (.) holds for k + . Thus, the conclusion (.)
holds for k ∈N+. �

Remark . From (.) and the definition of βVLS
k , it is not difficult to find that

βVLS
k =

gTk (gk – tkgk–)
–λdT

k–gk– + ( – λ)max{, gTk dk–}

≥
‖gk‖ – ‖gk‖

‖gk–‖ · |gTk gk–|
–λdT

k–gk– + ( – λ)max{, gTk dk–}

≥
‖gk‖ – ‖gk‖

‖gk–‖ · ‖gTk ‖ · ‖gk–‖
–λdT

k–gk– + ( – λ)max{, gTk dk–}
= .

3 Global convergence of Algorithm 2.1
In order to prove the global convergence of Algorithm ., the following assumptions for
the objective function are often used.

Assumption (H)
(i) The level set � = {x | f (x)≤ f (x)} is bounded, where x is the starting point.
(ii) In some neighborhood V of �, the objective function f is continuously

differentiable, and its gradient is Lipschitz continuous, i.e., there exists a constant
L >  such that

∥∥g(x) – g(y)
∥∥ ≤ L‖x – y‖, for all x, y ∈ V . (.)

From Assumption (H), there exists a constant r̃ >  such that

‖gk‖ ≤ r̃, for all k.

The conclusion of the following lemma, often called the Zoutendijk condition, is usually
used to prove the global convergence properties of conjugate gradient methods. It was
originally established by Zoutendijk [].

Lemma . Suppose Assumption (H) holds. Let the sequences {gk} and {dk} be generated
by Algorithm ., then we have

∑
k≥

(gTk dk)

‖dk‖ < +∞. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/248
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Lemma . Suppose Assumption (H) holds. Let the sequences {gk} and {dk} be generated
by Algorithm ., and let there exist a constant r >  such that

‖gk‖ ≥ r, for all k ≥ . (.)

Then we have

∑
k≥

‖uk – uk–‖ < +∞, uk =
dk

‖dk‖ .

Proof This lemma can be proved in a similar way as in [], so we omit it. �

Lemma . Suppose Assumption (H) holds. Let the sequences {gk} and {dk} be generated
by Algorithm ., and let the sequence {gk} satisfy

 < r ≤ ‖gk‖ ≤ r̃, for all k ≥ . (.)

Then the conjugate parameter βVLS
k has property (∗), i.e.,

() there exists a constant b >  such that |βVLS
k | ≤ b;

() there exists a constant τ > , such that ‖xk – xk–‖ ≤ τ ⇒ |βVLS
k | ≤ 

b .

Proof It follows from (.), (.), and (.) that

∣∣βVLS
k

∣∣ = ∣∣∣∣ gTk (gk – tkgk–)
–λdT

k–gk– + ( – λ)max{, gTk dk–}
∣∣∣∣

≤ ‖gk‖(‖gk‖ + r̃
r · ‖gk–‖)

λ|dT
k–gk–|

≤ ‖gk‖(‖gk‖ + r̃
r · ‖gk–‖)

(λ – σ )‖gk–‖ ≤ r̃(r̃ + r̃
r )

(λ – σ )r

≤ r̃(r + r̃)
(λ – σ )r

= b.

Define τ = (λ–σ )r
Lr̃b . Let ‖xk – xk–‖ ≤ τ , it then follows from Assumption (H)(ii) that

∣∣βVLS
k

∣∣ = ∣∣∣∣ gTk (gk – tkgk–)
–λdT

k–gk– + ( – λ)max{, gTk dk–}
∣∣∣∣

≤ ‖gk‖(‖gk – gk–‖ + ‖gk– – tkgk–‖)
λ|dT

k–gk–|

≤ r̃(Lτ + ‖gk– – tkgk–‖)
λ|dT

k–gk–|
≤ r̃(Lτ + |‖gk‖ – ‖gk–‖|)

(λ – σ )‖gk–‖

≤ r̃(Lτ + ‖gk – gk–‖)
(λ – σ )‖gk–‖ ≤ Lτ r̃

(λ – σ )r
=


b

. �

Lemma. Suppose Assumption (H) holds.Consider anymethod of (.)-(.),where βk ≥
, and where αk satisfies the strong Wolfe line search. If βk has the property (∗), and (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/248
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and (.) hold, then there exists a constant τ > , for any 
 ∈ Z+ and k ∈ Z+, and for any
k ≥ k such that

∣∣�τ
k,


∣∣ > 



,

where �τ
k,

{i ∈ Z+ : k ≤ i ≤ k +
 – ,‖xi – xi–‖ ≥ τ }, |�τ

k,
| denotes the number of �τ
k,
.

Proof This lemma plays an important role in proving the global convergences of PRP, HS,
and LS conjugate gradient methods, and so on. It was originally proved in []. From Re-
mark . and Lemma ., it is easy to find that Algorithm . leads to the conclusion of
Lemma .. �

Theorem . Suppose Assumption (H) holds. Let the sequences {gk} and {dk} be generated
by Algorithm .. If βVLS

k has the property (∗), and (.) holds, then we obtain

lim inf
k→+∞

‖gk‖ = . (.)

Proof Using mathematical induction. Suppose that (.) does not hold, which means that
there exists r >  such that

‖gk‖ ≥ r, for all k ≥ . (.)

We also define uk = dk
‖dk‖ , then for all l,k ∈ Z+ (l ≥ k), we have

xl – xk– =
l∑

i=k

‖xi – xi–‖ · ui–

=
l∑

i=k

‖si–‖ · uk– +
l∑

i=k

‖si–‖(ui– – uk–), (.)

where si– = xi – xi–.
From Assumption (H), we know that there exists a constant ξ >  such that

‖x‖ ≤ ξ , for x ∈ V . (.)

By (.), we have

l∑
i=k

‖si–‖ · uk– = (xl – xk–) –
l∑

i=k

‖si–‖(ui– – uk–). (.)

Since (.) and (.) hold, we have

l∑
i=k

‖si–‖ ≤ ξ +
l∑

i=k

‖si–‖ · ‖ui– – uk–‖. (.)

Let τ come from Lemma ., and we define 
 = [ξ /τ ], where ξ /τ ≤ 
 < (ξ /τ ) + , and

 ∈ Z+.

http://www.journalofinequalitiesandapplications.com/content/2014/1/248
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From Lemma ., we know that there exists k such that

∑
i≥k

‖ui+ – ui‖ ≤ 



. (.)

From the Cauchy-Schwarz inequality and (.), and letting ∀i ∈ [k,k +
 – ], we have

‖ui– – uk–‖ ≤
i–∑
j=k

‖uj – uj–‖

≤ (i – k)



( i–∑
j=k

‖uj – uj–‖
) 



≤ 


 ·

(




) 

=


. (.)

From Lemma ., we know that there exists k ≥ k such that

∣∣�τ
k,


∣∣ > 



. (.)

By (.), (.), and (.), we have

ξ ≥ 


k+
–∑
i=k

‖si–‖ > τ


∣∣�τ

k,

∣∣ > τ



. (.)

From (.), we have
 < ξ /τ , which is a contradictionwith the definition of
. Therefore,

lim inf
k→+∞

‖gk‖ = .

Thus we complete the proof of Theorem .. �

4 Numerical results
In this section, we compare the performance of Algorithm . with those of the PRP+
method [] and the CG-DESCENT method [] in the number of function evaluations
and CPU time in seconds with the strong Wolfe line search. The test problems are
some large-scaled unconstrained optimization problems in [, ]. The parameters in
the line search are chosen as follows: δ = ., σ = .. If ‖gk‖∞ ≤ – is satisfied, we
will terminate the program. All codes were written in Fortran . and run on a PC
with . GHz CPU processor and  MB memory and Windows XP operation sys-
tem.
The numerical results are reported in Table . The first column ‘Problems’ represents

the problem’s name in [, ]. ‘Dim’ denotes the dimension of the test problems. The
detailed numerical results are listed in the form NF\CPU, where NF and CPU denote the
number of function evaluations and CPU time in seconds, respectively.
We say that, in particular for the ith problem, the performance of the M method was

better than the performance of M method, if the CPU time, or the number of function

http://www.journalofinequalitiesandapplications.com/content/2014/1/248
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Table 1 The numerical results of Algorithm 2.1, PRP+ method and CG-DESCENTmethod

Problems Dim Algorithm 2.1 PRP+method CG-DESCENTmethod

Extended Freudenstein & Roth 5,000 58\0.07 1,144\0.09 13,235\1.24
10,000 12\0.01 426\0.07 23\0.01

Extended Trigonometric 5,000 30\0.07 61\0.08 79\0.10
10,000 33\0.19 112\0.28 161\0.40

Extended Rosenbrock 5,000 41\0.02 67\0.02 60\0.02
10,000 34\0.03 62\0.03 57\0.01

Extended White & Holst 5,000 40\0.02 53\0.02 45\0.02
10,000 38\0.01 43\0.01 52\0.02

Extended Beale 5,000 15\0.01 26\0.02 24\0.00
10,000 15\0.01 26\0.00 24\0.01

Extended Penalty 5,000 11\0.01 51\0.00 1,979\0.17
10,000 18\0.02 36\0.02 50\0.02

Perturbed Quadratic 5,000 705\0.35 1,462\0.42 1,471\0.36
10,000 1,353\0.88 2,059\1.19 2,014\0.95

Raydan 2 5,000 9\0.00 9\0.00 9\0.00
10,000 9\0.02 9\0.02 9\0.02

Diagonal 2 5,000 432\0.44 987\0.67 699\0.45
10,000 595\1.28 1,117\1.52 1,209\1.60

Generalized Tridiagonal 1 5,000 42\0.02 2,013\0.27 53\0.01
10,000 71\0.14 578\0.15 707\0.19

Extended Tridiagonal 1 5,000 12\0.00 23\0.00 28\0.00
10,000 12\0.01 28\0.02 29\0.01

Extended Three Expo Terms 5,000 8\0.01 21\0.01 15\0.02
10,000 12\0.04 19\0.05 15\0.03

Generalized Tridiagonal 2 5,000 50\0.03 94\0.03 95\0.03
10,000 62\0.05 97\0.06 77\0.03

Diagonal 4 5,000 8\0.00 8\0.00 8\0.00
10,000 8\0.00 8\0.00 8\0.00

Diagonal 5 5,000 9\0.01 9\0.02 9\0.02
10,000 9\0.03 9\0.03 9\0.03

Extended Himmelblau 5,000 18\0.00 35\0.00 16\0.00
10,000 18\0.02 35\0.03 16\0.00

Generalized PSC1 5,000 1,886\3.20 633\0.60 17,679\14.59
10,000 729\2.61 1,271\2.39 8,364\13.94

Extended PSC1 5,000 17\0.02 13\0.01 16\0.02
10,000 17\0.03 15\0.02 16\0.03

Extended Powell 5,000 46\0.03 138\0.03 250\0.05
10,000 74\0.06 88\0.04 311\0.09

Extended Block-Diagonal BD1 5,000 55\0.02 40\0.01 33\0.01
10,000 53\0.06 47\0.05 46\0.05

Extended Maratos 5,000 71\0.03 132\0.03 103\0.02
10,000 69\0.02 96\0.03 99\0.03

Quadratic Diagonal Perturbed 5,000 793\0.22 880\0.22 2,111\0.39
10,000 1,549\0.62 1,303\0.66 2,966\1.16

Extended Wood 5,000 85\0.02 57\0.01 135\0.01
10,000 84\0.04 65\0.03 116\0.05

Extended Hiebert 5,000 176\0.04 137\0.03 120\0.03
10,000 173\0.05 137\0.05 114\0.03

QuadraticQF1 5,000 1,222\0.25 1,854\0.50 1,397\0.30
10,000 1,396\0.82 1,864\0.97 2,545\1.06

Extended Quadratic Penalty QP2 5,000 45\0.05 80\0.06 76\0.06
10,000 43\0.11 71\0.13 84\0.14

QuadraticQF2 5,000 1,167\0.40 1,620\0.44 1,613\0.36
10,000 1,430\1.14 2,625\1.45 2,941\1.31

Extended EP1 5,000 6\0.00 6\0.00 6\0.00
10,000 413\0.21 513\0.25 439\0.22

Extended Tridiagonal 2 5,000 875\0.23 2,436\0.27 857\0.11
10,000 5,139\1.17 5,857\1.29 6,569\1.47

ARWHEAD 5,000 16\0.00 16\0.00 32\0.01
10,000 11\0.00 14\0.00 11\0.00

NONDIA 5,000 15\0.00 15\0.00 17\0.00
10,000 15\0.02 16\0.00 17\0.02
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Table 1 (Continued)

Problems Dim Algorithm 2.1 PRP+method CG-DESCENTmethod

DQDRTIC 5,000 17\0.00 19\0.01 21\0.00
10,000 26\0.01 25\0.00 23\0.01

DIXMAANA 5,000 11\0.02 12\0.02 16\0.00
10,000 11\0.01 12\0.01 14\0.02

DIXMAANB 5,000 21\0.01 20\0.02 23\0.00
10,000 21\0.02 20\0.02 23\0.03

DIXMAANC 5,000 22\0.01 24\0.01 28\0.02
10,000 22\0.01 25\0.02 28\0.01

Broyden Tridiagonal 5,000 77\0.02 125\0.03 132\0.03
10,000 76\0.04 121\0.08 110\0.05

Almost Perturbed Quadratic 5,000 1,156\0.30 1,479\0.39 1,448\0.31
10,000 1,906\0.95 2,198\1.19 2,149\0.92

Tridiagonal Perturbed Quadratic 5,000 1,489\0.37 1,783\0.53 1,562\0.41
10,000 1,140\1.15 1,879\1.11 2,477\1.25

EDENSCH 5,000 325\0.04 362\0.05 2,157\0.33
10,000 1,106\0.26 1,492\0.45 1,594\0.47

VARDIM 5,000 34\0.00 46\0.02 46\0.00
10,000 47\0.02 52\0.03 52\0.03

LIARWHD 5,000 24\0.01 29\0.02 34\0.00
10,000 28\0.01 38\0.01 41\0.02

Diagonal 6 5,000 9\0.00 9\0.00 9\0.00
10,000 9\0.01 9\0.02 9\0.01

DIXMAANG 5,000 1,186\0.42 715\0.39 660\0.33
10,000 2,261\1.84 1,275\1.42 1,042\1.07

DIXMAANI 5,000 524\0.38 850\0.47 702\0.36
10,000 658\1.15 1,266\1.37 985\1.00

DIXMAANJ 5,000 770\0.35 829\0.44 770\0.38
10,000 1,823\1.19 1,108\1.14 1,108\1.09

DIXMAANK 5,000 1,510\0.52 715\0.41 812\0.41
10,000 3,658\2.03 963\1.09 1,303\1.31

ENGVAL1 5,000 5,277\0.55 7,474\0.86 6,436\0.69
10,000 7,380\1.72 7,196\1.62 21,402\4.56

COSINE 5,000 30\0.02 33\0.02 31\0.03
10,000 30\0.03 34\0.04 31\0.03

DENSCHNB 5,000 10\0.01 14\0.02 13\0.02
10,000 10\0.00 15\0.00 13\0.00

DENSCHNF 5,000 19\0.01 39\0.01 35\0.01
10,000 19\0.02 29\0.02 31\0.02

SINQUAD 5,000 515\0.51 976\0.83 566\0.47
10,000 2,011\2.61 2,116\3.59 5,989\10.08

evaluations, of the M method was smaller than the CPU time, or the number of itera-
tions of the M method, respectively. In order to estimate the whole effect, we apply the
performance profiles of Dolan andMoré [] in CPU time. FromTable , some CPU times
are zero. In order to have a comprehensive evaluation of the M andMmethods in CPU
time, we take the average value of the CPU time for each method, and denote av(M),
av(M). Then we take the CPU time of each problem plus the average value of av(M) and
av(M). According to their description, the top curve is the method that solved the most
problems in a time that was within a factor τ of the best time; see Figure  and Figure .
Using the same method, we also test on the number of function evaluations; see Figure 
and Figure .
Obviously, Algorithm . is competitive to the PRP+ method and the CG-DESCENT

method in the number of function evaluations and CPU time. Thus, it is of great impor-
tance to study Algorithm ..
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Figure 1 Performance profiles with respect to CPU time in seconds.

Figure 2 Performance profiles with respect to CPU time in seconds.

Figure 3 Performance profiles with respect to the numbers of iterations.
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Figure 4 Performance profiles with respect to the numbers of iterations.

Competing interests
The author declares that she has no competing interests.

Acknowledgements
The author wishes to express their heartfelt thanks to the anonymous referees and the editor for their detailed and
helpful suggestions for revising the manuscript.

Received: 19 March 2014 Accepted: 4 June 2014 Published: 18 Jul 2014

References
1. Polak, E, Ribière, G: Note sur la convergence de méthodes de directions conjuguées. Rev. Fr. Inform. Rech. Oper. 3(16),

35-43 (1969)
2. Polak, BT: The conjugate gradient method in extreme problems. USSR Comput. Math. Math. Phys. 9, 94-112 (1969)
3. Liu, Y, Storey, C: Efficient generalized conjugate gradient algorithms. Part 1: theory. J. Optim. Theory Appl. 69, 129-137

(1992)
4. Hager, WW, Zhang, H: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM

J. Optim. 16, 170-192 (2005)
5. Powell, MJD: Nonconvex minimization calculations and the conjugate gradient method. In: Numerical Analysis.

Lecture Notes in Mathematics, vol. 1066, pp. 122-141. Springer, Berlin (1984)
6. Hager, WW, Zhang, H: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2, 35-58 (2006)
7. Zhang, L, Zhou, W, Li, DH: A descent modified Polak-Ribière-Polyak conjugate gradient method and its global

convergence. IMA J. Numer. Anal. 26, 629-640 (2006)
8. Li, ZF, Chen, J, Deng, NY: A new conjugate gradient method and its global convergence properties. Math. Program.

78, 375-391 (1997)
9. Liu, J: Convergence properties of a class of nonlinear conjugate gradient methods. Comput. Oper. Res. 40, 2656-2661

(2013)
10. Liu, J, Du, X: Global convergence of a modified LS method. Math. Probl. Eng. 2012, Article ID 910303 (2012)
11. Li, M, Chen, Y, Qu, A-P: Global convergence of a modified Liu-Storey conjugate gradient method. U.P.B. Sci. Bull., Ser. A

74, 11-26 (2012)
12. Tang, C, Wei, Z, Li, G: A new version of the Liu-Storey conjugate gradient method. Appl. Math. Comput. 189, 302-313

(2007)
13. Liu, J, Du, X, Wang, K: Convergence of descent methods with variable parameters. Acta Math. Appl. Sin. 33, 222-230

(2010) (in Chinese)
14. Wei, Z, Yao, S, Liu, L: The convergence properties of some new conjugate gradient methods. Appl. Math. Comput.

183, 1341-1350 (2006)
15. Zoutendijk, G: Nonlinear programming, computational methods. In: Abadie, J (ed.) Integer and Nonlinear

Programming, pp. 37-86. North-Holland, Amsterdam (1970)
16. Li, ZF, Chen, J, Deng, NY: Convergence properties of conjugate gradient methods with Goldstein line searches.

J. China Agric. Univ. I(4), 15-18 (1996)
17. Dai, YH, Yuan, Y: Nonlinear Conjugate Gradient Method. Shanghai Scientific & Technical Publishers, Shanghai (2000)

(in Chinese)
18. Powell, MJD: Convergence properties of algorithms for nonlinear optimization. SIAM Rev. 28, 487-500 (1986)
19. Bongartz, I, Conn, AR, Gould, NIM, Toint, PL: CUTE: constrained and unconstrained testing environments. ACM Trans.

Math. Softw. 21, 123-160 (1995)
20. Andrei, N: An unconstrained optimization test functions collection. Adv. Model. Optim. 10, 147-161 (2008)
21. Dolan, ED, Moré, JJ: Benchmarking optimization software with performance profiles. Math. Program. 91, 201-213

(2002)

http://www.journalofinequalitiesandapplications.com/content/2014/1/248


Wu Journal of Inequalities and Applications 2014, 2014:248 Page 12 of 12
http://www.journalofinequalitiesandapplications.com/content/2014/1/248

10.1186/1029-242X-2014-248
Cite this article as:Wu: Global convergence of a modified conjugate gradient method. Journal of Inequalities and
Applications 2014, 2014:248

http://www.journalofinequalitiesandapplications.com/content/2014/1/248

	Global convergence of a modiﬁed conjugate gradient method
	Abstract
	MSC
	Keywords

	Introduction
	The new algorithm
	Global convergence of Algorithm 2.1
	Numerical results
	Competing interests
	Acknowledgements
	References


