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Abstract
Let (Xn) be a sequence of i.i.d., positive, square integrable random variables with
E(X1) =μ > 0, Var(X1) = σ 2. Denote by Sn,k =

∑n
i=1 Xi – Xk and by γ = σ /μ the

coefficient of variation. Our goal is to show the unbounded, measurable functions g,
which satisfy the almost sure central limit theorem, i.e.,

lim
N→∞

1
logN

N∑
n=1

1
n
g
(( ∏n

k=1 Sn,k
(n – 1)nμn

) 1
γ

√
n
)
=

∫ ∞

0
g(x)dF(x) a.s.,

where F(·) is the distribution function of the random variable eN andN is a standard
normal random variable.
MSC: Primary 60F15; secondary 60F05
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1 Introduction
The almost sure central limit theorem (ASCLT) has been first introduced independently
by Schatte [] and Brosamler []. Since then,many studies have been done to prove theAS-
CLT in different situations, for example, in the case of function-typed almost sure central
limit theorem (FASCLT) (see Berkes et al. [], Ibragimov and Lifshits []). The purpose of
this paper is to investigate the FASCLT for the product of some partial sums.
Let (Xn) be a sequence of i.i.d. random variables and define the partial sum Sn =

∑n
k=Xk

for n ≥ . In a recent paper of Rempala and Wesolowski [], it is showed under the as-
sumption E(X) < ∞ and X >  that

(∏n
k= Sk
n!μn

) 
γ
√
n d→ e

√
N , ()

where N is a standard normal random variable, μ = E(X) and γ = σ /μ with σ  = var(X).
For further results in this field, we refer to Qi [], Lu and Qi [] and Rempala and
Wesolowski [].
Recently Gonchigdanzan and Rempala [] obtained the almost sure limit theorem re-

lated to () as follows.
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Theorem A Let (Xn) be a sequence of i.i.d., positive random variables with E(X) = μ > 
and Var(X) = σ . Denote by γ = σ /μ the coefficient of variation. Then, for any real x,

lim
N→∞


logN

N∑
n=


n
I
((∏n

k= Sk
n!μn

) 
γ
√
n ≤ x

)
=G(x) a.s., ()

where G(x) is the distribution function of e
√
N ,N is a standard normal random variable.

Some extensions on the above result can be found in Ye and Wu [] and the reference
therein.

A similar result on the product of partial sums was provided by Miao [], which stated
the following.

Theorem B Let (Xn) be a sequence of i.i.d., positive, square integrable random variables
with E(X) = μ >  and Var(X) = σ . Denote by Sn,k =

∑n
i=Xi –Xk and γ = σ /μ the coeffi-

cient of variation. Then

( ∏n
k= Sn,k

(n – )nμn

) 
γ
√
n d→ eN , ()

and for any real x,

lim
N→∞


logN

N∑
n=


n
I
(( ∏n

k= Sn,k
(n – )nμn

) 
γ
√
n ≤ x

)
= F(x) a.s., ()

where F(·) is the distribution function of the random variable eN and N is a standard
normal random variable.

The purpose of this paper is to investigate the validity of () for some class of unbounded
measurable functions g .
Throughout this article, (Xn) is a sequence of i.i.d. positive, square integrable random

variables with E(X) = μ >  andVar(X) = σ . We denote by Sn,k =
∑n

i=Xi –Xk and by γ =
σ /μ the coefficient of variation. Furthermore,N is the standard normal random variable,
� is the standard normal distribution function, φ is its density function and a � b stands
for lim supn→∞ |an/bn| < ∞.

2 Main result
We state our main result as follows.

Theorem  Let g(x) be a real-valued, almost everywhere continuous function on R such
that |g(ex)φ(x)| ≤ c( + |x|)–α with some c >  and α > . Then, for any real x,

lim
N→∞


logN

N∑
n=


n
g
(( ∏n

k= Sn,k
(n – )nμn

) 
γ
√
n
)
=

∫ ∞


g(x)dF(x) a.s., ()

where F(·) is the distribution function of the random variable eN .

Let f (x) = g(ex). By a simple calculation, we can get the following result.
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Remark  Let f (x) be a real-valued, almost everywhere continuous function on R such
that |f (x)φ(x)| ≤ c( + |x|)–α with some c >  and α > . Then () is equivalent to

lim
N→∞


logN

N∑
n=


n
f

(


γ
√
n

n∑
k=

log
Sn,k

(n – )μ

)
=

∫ ∞

–∞
f (x)φ(x)dx a.s. ()

Remark  Lu et al. [] proved the function-typed almost sure central limit theorem for
a type of random function, which can include U-statistics, Von-Mises statistics, linear
processes and some other types of statistics, but their results cannot imply Theorem .

3 Auxiliary results
In this section, we state and prove several auxiliary results, which will be useful in the
proof of Theorem .
Let S̃n =

∑n
i=

Xi–μ

σ
and Ui = 

γ
√
i

∑i
k= log

Si,k
(i–)μ . Observe that for |x| <  we have

log( + x) = x +
θ


x,

where θ ∈ (–, ). Thus

Ui =


γ
√
i

i∑
k=

log
Si,k

(i – )μ

=


γ
√
i

i∑
k=

(
Si,k

(i – )μ
– 

)
+


γ
√
i

i∑
k=

θk



(
Si,k

(i – )μ
– 

)

=
√
i

i∑
k=

(∑
j 	=k,j≤i(Xj –μ)
(i – )σ

)
+


γ
√
i

i∑
k=

θk



(
Si,k

(i – )μ
– 

)

=
√
i

i∑
k=

Xk –μ

σ
+


γ
√
i

i∑
k=

θk



(
Si,k

(i – )μ
– 

)

=:
√
i
S̃i + Ri. ()

By the law of iterated logarithm, we have for k → ∞

max
≤k≤i

∣∣∣∣ Si,k
(i – )μ

– 
∣∣∣∣ =O

(
(log log i/i)/

)
a.s.

Therefore,

|Ri| =
∣∣∣∣∣ 
γ
√
i

i∑
k=

θk



(
Si,k

(i – )μ
– 

)
∣∣∣∣∣ � √

i

i∑
k=

(
Si,k

(i – )μ
– 

)

� log log i
i/

a.s. ()

Obviously,

E|Ri| = E

∣∣∣∣∣ 
γ
√
i

i∑
k=

θk



(
Si,k

(i – )μ
– 

)
∣∣∣∣∣

� √
i

i∑
k=

E
(

Si,k
(i – )μ

– 
)

� √
i

i∑
k=


i – 

� 
i/

. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/243


Chen et al. Journal of Inequalities and Applications 2014, 2014:243 Page 4 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/243

Our proof mainly relies on decomposition (). Properties () and () will be extensively
used in the following parts of this section.

Lemma  Let X and Y be random variables.Wewrite F(x) = P(X < x),G(x) = P(X +Y < x).
Then

F(x – ε) – P
(|Y | ≥ ε

) ≤ G(x) ≤ F(x + ε) + P
(|Y | ≥ ε

)
for every ε >  and x.

Proof It is Lemma . of Petrov []. �

Lemma  Let (Xn) be a sequence of i.i.d. random variables. Let Sn =
∑

k≤n Xk , Fs denote
the distribution function obtained from F by symmetrization, and choose L >  so large that∫
|x|≤L x

 dFs ≥ . Then, for any n≥ , λ > ,

sup
a

P
(
a≤ Sn√

n
≤ a + λ

)
≤ Aλ

with some absolute constant A, provided λ
√
n≥ L.

Proof It can be obtained from Berkes et al. []. �

Lemma  Assume that () is true for all indicator functions of intervals and for a fixed
a.e. continuous function f (x) = f(x). Then () is also true for all a.e. continuous functions
f such that |f (x)| ≤ |f(x)|, x ∈ R, and,moreover, the exceptional set of probability  can be
chosen universally for all such f .

Proof See Berkes et al. []. �

In view of Lemma  and Remark , in order to prove Theorem , it suffices to prove ()
for the case when f (x)φ(x) = (+ |x|)–α , α > . Thus, in the following part, we put f (x)φ(x) =
( + |x|)–α , α >  and

ξk =
k+∑

i=k+


i
f (Ui),

ξ ∗
k =

k+∑
i=k+


i
f (Ui)I

{
f (Ui) ≤ k

(logk)β

}
,

where  < β < 
 (α – ).

Lemma  Under the conditions of Theorem , we have P(ξk 	= ξ ∗
k i.o.) = .

Proof Let f – denote an inverse function of f in some interval, and let α, β satisfy  < β <

 (α – ). It is easy to check that

{
ξk 	= ξ ∗

k
} ⊆ {|Ui| ≥ f –

(
k/(logk)β

)
for some k < i ≤ k+

}
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and

f
((
 logk + (α – β) log logk

)/) =
k

(logk)β

√
π (logk)α/

{ + ( logk + (α – β) log logk)/}α

≤ k
(logk)β

. ()

Note that the function f is even and strictly increasing for x ≥ x. We have

f –
(
k/(logk)β

) ≥ (
 logk + (α – β) log logk

)/. ()

Observing that k < i ≤ k+ implies k ≥ 
 log i, in view of () we get

P
(
ξk 	= ξ ∗

k i.o.
) ≤ P

(|Ui| ≥
(
 log log i + (α – β) log log log i –O()

)/ i.o.)
= P

(∣∣∣∣ S̃i√
i
+ Ri

∣∣∣∣ ≥ (
 log log i + (α – β) log log log i –O()

)/ i.o.)

≤ P
(∣∣∣∣ S̃i√

i

∣∣∣∣ ≥ (
 log log i + (α – β) log log log i –O()

)/ i.o.)
= ,

where in the last step we use the assumption α – β >  and a version of the Kolmogorov-
Erdös-Feller-Petrovski test (see Feller [], Theorem ). This completes the proof of
Lemma . �

Let ak = f –(k/(logk)β ) and let Gi and Fi denote, respectively, the distribution function
of Ui and S̃i√

i
. Set

σ 
i =

∫ √
i

–
√
i
x dFi(x) –

(∫ √
i

–
√
i
x dFi(x)

)

,

ηi = sup
x

∣∣∣∣Gi(x) –�

(
x
σi

)∣∣∣∣,
εi = sup

x

∣∣∣∣Fi(x) –�

(
x
σi

)∣∣∣∣.
Clearly, σi ≤ , limi→∞ σi = .

Lemma  Under the conditions of Theorem , we have

∑
k≤N

E
(
ξ ∗
k
) � N

(logN)β
.

Proof Observe now that the relation

∣∣∣∣∫ a

–a
ψ(x)d

(
G(x) –G(x)

)∣∣∣∣ ≤ sup
–a≤x≤a

∣∣ψ(x)
∣∣ · sup

–a≤x≤a

∣∣G(x) –G(x)
∣∣ ()
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is valid for any bounded, measurable functions ψ and distribution functions G, G. Let,
as previously, ak = f –(k/(logk)β ). Thus, for any k < i ≤ k+, we obtain that

Ef (Ui)I
{
f (Ui) ≤ k

(logk)β

}
=

∫
|x|≤ak

f (x)dGi(x)

≤
∫

|x|≤ak
f (x)d�

(
x
σi

)
+ ηi

k

(logk)β

�
∫

|x|≤ak
f (x)d�(x) + ηi

k

(logk)β
,

where in the last step, we have used the fact that σi ≤ , limi→∞ σi = . Hence, by the
Cauchy-Schwarz inequality, we have

E
(
ξ ∗
k
) � E

[( k+∑
i=k+

(

i

)
)/( k+∑

i=k+

f (Ui)I
{
f (Ui) ≤ k

(logk)β

})/]

�
( k+∑
i=k+


i

)( k+∑
i=k+

(∫
|x|≤ak

f (x)d�(x) + ηi
k

(logk)β

))

� 
k

(
k

∫
|x|≤ak

f (x)d�(x) +
k

(logk)β

k+∑
i=k+

ηi

)

�
∫

|x|≤ak

ex/

( + |x|)α dx +
k

(logk)β

k+∑
i=k+

ηi

i
. ()

Note that∫ t



ex/

( + |x|)α dx =
∫ t/


+

∫ t

t/
� tet

/ +


tα+

∫ t

t/
xex

/ dx� et/

tα+
,

and thus by () and (), we have

∫
|x|≤ak

ex/

( + |x|)α dx� ea

k /

aα+k
� f (ak)


aα+
k

� k
(logk)β+(α+)/

. ()

Now we estimate ηi. By Lemma , we have that for some ε > ,

ηi = sup
x

∣∣∣∣Gi(x) –�

(
x
σi

)∣∣∣∣
≤ sup

x

∣∣Gi(x) – Fi(x)
∣∣ + sup

x

∣∣∣∣Fi(x) –�

(
x
σi

)∣∣∣∣
= sup

x

∣∣∣∣P(Ui ≤ x) – P
(
S̃i√
i
≤ x

)∣∣∣∣ + εi

= sup
x

∣∣∣∣P((
S̃i√
i
+ Ri

)
≤ x

)
– P

(
S̃i√
i
≤ x

)∣∣∣∣ + εi

≤ P
(|Ri| ≥ ε

)
+ sup

x

{
P
(
S̃i√
i
≤ x + ε

)
– P

(
S̃i√
i
≤ x

)}
+ εi.
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The Markov inequality and () imply that

P
(|Ri| ≥ ε

) ≤ E|Ri|
ε

� 
i/ε

.

In addition, Lemma  yields

sup
x

{
P
(
S̃i√
i
≤ x + ε

)
– P

(
S̃i√
i
≤ x

)}
� ε.

Setting ε = i–/, we have

ηi � 
i/

+

i/

+ εi.

Using Theorem  of Friedman et al. [], we get

∞∑
i=

εi

i
<∞.

Hence,

∞∑
i=

ηi

i
�

∞∑
i=


i/ + εi

i
<∞, ()

which, coupled with (), () and the fact 
 (α + ) > β , yields

∑
k≤N

E
(
ξ ∗
k
) �

∑
k≤N

k
(logk)β+(α+)/

+
∑
k≤N

k

(logk)β

k+∑
i=k+

ηi

i

� N

(logN)β
,

which completes the proof. �

Lemma  Let ξ ∗
k =

∑k+
i=k+


i f (Ui)I{f (Ui) ≤ k

(logk)β }, ξ ∗
l =

∑l+
i=l+


i f (Ui)I{f (Ui) ≤ l

(log l)β }.
Under the conditions of Theorem , we have for l ≥ l

∣∣cov(ξ ∗
k , ξ

∗
l
)∣∣ � kl

(logk)β (log l)β
–(l–k–)/.

Proof We first show the following result, for any ≤ i ≤ j
 and real x, y,

∣∣P(Ui ≤ x,Uj ≤ y) – P(Ui ≤ x)P(Uj ≤ y)
∣∣ �

(
i
j

)/

. ()

Letting ρ = i
j , the Chebyshev inequality yields

P
(∣∣∣∣ S̃i√

j

∣∣∣∣ ≥ ρ/
)

≤ 
j
ρ–/E|̃Si| = ρ/. ()
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Using the Markov inequality and (), we have

P
(|Rj| ≥ ρ/) ≤ E|Rj|

ρ/ � 
j/ρ/ =


j/i/

≤ ρ/. ()

It follows from Lemma , Lemma , (), () and the positivity and independence of (Xn)
that

P(Ui ≤ x,Uj ≤ y)

= P
(
Ui ≤ x,

S̃j√
j
+ Rj ≤ y

)

= P
(
Ui ≤ x,

S̃i√
j
+

√
 – ρ

S̃j – S̃i√
j – i

+ Rj ≤ y
)

≥ P
(
Ui ≤ x,

√
 – ρ

S̃j – S̃i√
j – i

≤ y
)

– P
(
y – ρ/ ≤ √

 – ρ
S̃j – S̃i√
j – i

≤ y
)
– P

(∣∣∣∣ S̃i√
j

∣∣∣∣ ≥ ρ/
)
– P

(|Rj| ≥ ρ/)
≥ P

(
Ui ≤ x,

√
 – ρ

S̃j – S̃i√
j – i

≤ y
)
–

(
A +O() + 

)
ρ/

= P(Ui ≤ x)P
(√

 – ρ
S̃j – S̃i√
j – i

≤ y
)
–

(
A +O() + 

)
ρ/. ()

We can obtain an analogous upper estimate for the first probability in () by the same
way. Thus

P(Ui ≤ x,Uj ≤ y) = P(Ui ≤ x)P
(√

 – ρ
S̃j – S̃i√
j – i

≤ y
)
– θ

(
A +O() + 

)
ρ/,

where |θ | ≤ . A similar argument yields

P(Ui ≤ x)P(Uj ≤ y) = P(Ui ≤ x)P
(√

 – ρ
S̃j – S̃i√
j – i

≤ y
)
– θ ′(A +O() + 

)
ρ/,

where |θ ′| ≤ , and () follows. Letting Gi,j(x, y) denote the joint distribution function of
Ui and Uj, in view of (), (), we get for l ≥ l

∣∣∣∣cov(f (Ui)I
{
f (Ui)≤ k

(logk)β

}
, f (Uj)I

{
f (Uj) ≤ l

(log l)β

})∣∣∣∣
=

∣∣∣∣∫|x|≤ak

∫
|y|≤al

f (x)f (y)d
(
Gi,j(x, y) –Gi(x)Gj(y)

)∣∣∣∣
� kl

(logk)β (log l)β
–(l–k–)/,
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where the last relation follows from the facts that: f is strictly increasing for x ≥ x, f (ai) =
i

(log i)β and k < i ≤ k+, l < j ≤ l+. Thus

∣∣cov(ξ ∗
k , ξ

∗
l
)∣∣ � kl

(logk)β (log l)β
–(l–k–)/. �

Lemma  Under the conditions of Theorem , letting ζk = ξ ∗
k – Eξ ∗

k , we have

E(ζ + · · · + ζN ) =O
(

N

(logN)β–

)
, N → ∞.

Proof By Lemma , we have∣∣∣∣∣ ∑
≤k≤l≤N

l–k> logN

E(ζkζl)

∣∣∣∣∣ � N

(logN)β
N– logN = o().

On the other hand, letting ‖ · ‖ denote the L norm, Lemma  and the Cauchy-Schwarz
inequality imply∣∣∣∣∣ ∑

≤k≤l≤N
l–k≤ logN

E(ζkζl)

∣∣∣∣∣ ≤
∑

≤k≤l≤N
l–k≤ logN

‖ζk‖‖ζl‖

≤
∑

≤k≤l≤N
l–k≤ logN

∥∥ξ ∗
k
∥∥∥∥ξ ∗

l
∥∥

=
∑

≤j≤ logN

N–j∑
k=

∥∥ξ ∗
k
∥∥∥∥ξ ∗

k+j
∥∥

≤
( N∑

k=

∥∥ξ ∗
k
∥∥

)/( N∑
l=

∥∥ξ ∗
l
∥∥

)/

 logN

= O
(

N

(logN)β–

)
,

and Lemma  is proved. �

4 Proof of themain result
We only prove the property in (), since, in view of Remark , it is sufficient for the proof
of Theorem .

Proof of Theorem  By Lemma  we have

E
(

ζ + · · · + ζN

N

)

=O
(
(logN)–β

)
,

and thus setting Nk = [exp(kλ)] with (β – )– < λ < , we get

∞∑
k=

E
(

ζ + · · · + ζNk

Nk

)

< ∞,
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and therefore

lim
k→∞

ζ + · · · + ζNk

Nk
=  a.s. ()

Observe now that for k < i ≤ k+ we have

Ef (Ui)I
{
f (Ui) ≤ k

(logk)β

}
=

∫
|x|≤ak

f (x)dGi(x)

=
∫

|x|≤ak
f (x)d�

(
x
σi

)
+

∫
|x|≤ak

f (x)d
(
Gi(x) –�

(
x
σi

))
.

Putm =
∫ ∞
–∞ f (x)d�(x). Since σi ≤ , limi→∞ σi =  and ak → ∞ as k → ∞, we have

lim
k→∞

sup
k<i≤k+

∣∣∣∣∫|x|≤ak
f (x)d�

(
x
σi

)
–m

∣∣∣∣ = ,

and thus, using (), we get

∣∣∣∣Ef (Ui)I
{
f (Ui) ≤ k

(logk)β

}
–m

∣∣∣∣ ≤ kηi
(logk)β

+ ok().

Thus we have

Eξ ∗
k =m

k+∑
i=k+


i
+ ϑk

k
(logk)β

k+∑
i=k+

ηi

i
+ ok(), |ϑk| ≤ .

Consequently, using the relation
∑

i≤L /i = logL +O() and (), we conclude

∣∣∣∣E(ξ ∗
 + · · · + ξ ∗

N )
logN+ –m

∣∣∣∣ � 
N

∑
k≤N

k
(logk)β

k+∑
i=k+

ηi

i
+ oN ()

= O
(
(logN)–β

)
+ oN () = oN (),

and thus () gives

lim
k→∞

ξ ∗
 + · · · + ξ ∗

Nk

logNk+
=m a.s.

By Lemma  this implies

lim
k→∞

ξ + · · · + ξNk

logNk+
=m a.s. ()

The relation λ <  implies limk→∞ Nk+/Nk = , and thus () and the positivity of ξk yield

lim
N→∞

ξ + · · · + ξN

logN+ =m a.s., ()
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i.e., () holds for the subsequence {N+}. Now, for each N ≥ , there exists n, depending
on N , such that n+ ≤ N ≤ n+. Then

ξ + ξ + · · · + ξn

logn+
≤

∑N
i=


i f (Ui)

logN
logN
logn+

≤ ξ + ξ + · · · + ξn+

logn+
logn+

logn+
()

by the positivity of each term of (ξk). Noting that (n + ) log ∼ logN ∼ (n + ) log as
N → ∞, we get () by () and (). �
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