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Abstract
The aim of this study is to prove the global existence in time of solutions for
reaction-diffusion systems. We make use of the appropriate techniques which are
based on invariant regions and Lyapunov functional methods. We consider a full
matrix of diffusion coefficients and we show the global existence of the solutions.
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1 Introduction
We aremainly interested in the global existence in time of solutions to a reaction-diffusion
system of the form

∂u
∂t

– a�u – b�v =� – f (u, v) – σu in ],+∞[×�, (.)

∂v
∂t

– c�u – d�v = f (u, v) – σv in ],+∞[×� (.)

with the following boundary conditions:

∂u
∂η

=
∂v
∂η

=  in ],+∞[×∂� (.)

and the initial data

u(,x) = u, v(,x) = v in �, (.)

where � is an open bounded domain in R
n with boundary ∂� of class C, ∂

∂η
denotes

the outward normal derivative on ∂�, � denotes the Laplacian operator with respect to
the x variable, a, b, c, d, σ are positive constants satisfying the condition (b + c) < ad,
which reflects the parabolicity of the system and implies at the same time that the matrix
of diffusion is positive definite, � ≥ . The eigenvalues λ and λ (λ < λ) of the matrix
are positive. We assume that

λ < a < d < λ < a + c,
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and the initial data are assumed to be in the following region:

	 =
{
(u, v) ∈R

 such that
a – λ

c
v ≤ u ≤ a – λ

c
v

}
. (.)

For more details, one may consult [].
The function f is a nonnegative continuously differentiable function on 	 such that

f
(
a – λ

c
η,η

)
=  and f

(
a – λ

c
η,η

)
≥ �

( + a–λ
c )

for all η ≥ . (.)

In addition we suppose that

(ξ ,η) ∈ 	 �⇒  ≤ f (ξ ,η) ≤ ϕ(ξ )( + η)β , (.)

where β ≥  and ϕ is a nonnegative function of class C(R) such that

lim
ξ→–∞

ϕ(ξ )
ξ

= . (.)

Melkemi et al. [] established the existence of global solutions (eventually uniformly
bounded in time) using a novel approach that involved the use of a Lyapunov function
for system (.)-(.) when c = b = . Along the same lines, Rebai [] has proved the global
existence of solutions for system (.)-(.), in the case b = , c >  (triangularmatrix). The
present investigation is a continuation of results obtained in []. Here, we follow the same
reasoning as in [], in the study of system (.)-(.), when b > , c > , that is, for a model
that involves a general full matrix.
The componentsu(t,x) and v(t,x) represent either chemical concentrations or biological

population densities and system (.)-(.) is a mathematical model describing various
chemical and biological phenomena (see, e.g., Cussler []).

Remark  If a < d, then we have λ < a < d < λ.We note that the condition of parabolicity
implies that det(A) = ad – bc > , where A is the matrix of diffusion.

2 Local existence and invariant regions
Throughout the text we shall denote by ‖ ‖p the norm in Lp(�), and by ‖ ‖∞ the norm in
L∞(�) or C(�).
For any initial data in C(�) or Lp(�), p ∈ ], +∞[, local existence and uniqueness of so-

lutions to the initial value problem (.)-(.) follow from the basic existence theory for
abstract semilinear differential equations (see Henry [] and Pazy []). The solutions are
classical on ];T∗[, where T∗ denotes the eventual blowing-up time in L∞(�).
Furthermore, if T∗ < +∞, then

lim
t↑T∗

(∥∥u(t)∥∥∞ +
∥∥v(t)∥∥∞

)
= +∞.

Therefore, if there exists a positive constant C such that

∥∥u(t)∥∥∞ +
∥∥v(t)∥∥∞ ≤ C, ∀t ∈ ]

,T∗[,
then T∗ = +∞.
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Multiplying (.) first through by – a–λ
c and adding (.) and then by a–λ

c and subtracting
(.), we get

∂w
∂t

– λ�w =� –
(
 +

a – λ

c

)
F(w, z) – σw in

]
,T∗[ × �, (.)

∂z
∂t

– λ�z = –� +
(
 +

a – λ

c

)
F(w, z) – σ z in

]
,T∗[ × �, (.)

with the boundary conditions

∂w
∂η

=
∂z
∂η

=  in
]
,T∗[ × ∂�, (.)

and the initial data

w(,x) = w(x), z(,x) = z(x) in �, (.)

where

w(t,x) = u(t,x) –
a – λ

c
v(t,x),

z(t,x) = –u(t,x) +
a – λ

c
v(t,x)

(.)

for any (t,x) in ],T∗[×� and

F(w, z) = f (u, v) for all (u, v) in 	. (.)

To prove that 	 is an invariant region for system (.)-(.) it suffices to prove that the
region

	 =
{
(w, z) ∈R

 such that w ≥ , z ≥ 
}

is invariant for system (.)-(.).
Now, to prove that the region 	 is invariant for system (.)-(.), it suffices to show

that (�–(+ a–λ
c )F(, z)) ≥  for z ≥ , and (–�+(+ a–λ

c )F(w, ))≥ , forw≥ , see [].
From (.), its clear that the region 	 is invariant for system (.)-(.) and from (.)

we have

v(t,x) =
c

λ – λ

(
w(t,x) + z(t,x)

)
,

u(t,x) =
a – λ

λ – λ
w(t,x) +

a – λ

λ – λ
z(t,x).

(.)

Remark  We note that if (ξ ,η) ∈ 	, then ξ ∈ R and η ≥ .

3 Existence of global solutions
A simple application of the comparison theorem [, Theorem .] to system (.)-(.)
implies that for any initial conditions w ≥  and z ≥ , we have

 ≤ w(t,x)≤max

(
‖w‖∞,

�

σ

)
= K . (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/24
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To prove the global existence of the solutions of problem (.)-(.), one needs to prove
it for problem (.)-(.). As regards this subject, it is well known that it suffices to derive
a uniform estimate of ‖–� + ( + a–λ

c )F(w, z) – σ z‖p for some p > n
 , i.e.

∥∥∥∥–� +
(
 +

a – λ

c

)
F(w, z) – σ z

∥∥∥∥
p
≤ C,

where C is a nonnegative constant independent of t.
From the assumptions (.) and (.), we are led to establish the uniform boundedness

of the ‖z‖p on ],T∗[ in order to get that of ‖z‖∞ on ],T∗[.
For p≥ , we put

α =
(λ – λ)

λλ
, α(p) =

pα + 
p – 

, Mp = K +
�

σα(p)
. (.)

We firstly introduce the following lemmas, which are useful in our main results.

Lemma  Let (w, z) be a solution of (.)-(.). Then

d
dt

∫
�

wdx +
(
 +

a – λ

c

)∫
�

F(w, z)dx + σ

∫
�

wdx =�|�|. (.)

Proof We integrate both sides of (.), satisfied by w, which is positive and then we obtain

d
dt

∫
�

wdx =�|�| –
(
 +

a – λ

c

)∫
�

F(w, z)dx – σ

∫
�

wdx. �

Lemma  Assume that p≥  and let

Gq(t) =
∫

�

[
qw + exp

(
–

p – 
pα + 

ln
(
α(p)(Mp –w)

))
zp

]
dt, (.)

where (w, z) is the solution of (.)-(.) on ],T∗[. Then under the assumptions (.)-(.)
there exist two positive constants q >  and s >  such that

d
dt

Gq(t)≤ –(p – )σGq + s. (.)

Proof The proof is similar to that in Melkemi et al. [].
Let

h(w) = –
p – 
pα + 

ln
(
α(p)(Mp –w)

)
, (.)

then

Gq(t) = q
∫

�

wdx +N(t), (.)

where

N(t) =
∫

�

eh(w)zp dx. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/24
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Differentiating N(t) with respect to t and using the Green formula one obtains

d
dt

N =H + S, (.)

where

H = –λ

∫
�

((
h′(w)

) + h′′(w)
)
eh(w)zp(∇w) dx

– p(λ + λ)
∫

�

h′(w)eh(w)zp–∇w∇z dx

– λ

∫
�

p(p – )eh(w)zp–(∇z) dx (.)

and

S = �

∫
�

h′(w)eh(w)zp dx

+
∫

�

[
pzp–

(
 +

a – λ

c

)
F(w, z) –

(
 +

a – λ

c

)
h′(w)zpF(w, z)

]
eh(w) dx

– σ

∫
�

h′(w)weh(w)zp dx – pσ
∫

�

eh(w)zp dx – p�
∫

�

eh(w)zp– dx. (.)

We observe that H is given by

H = –
∫

�

Qeh(w) dx,

where

Q = λ
((
h′(w)

) + h′′(w)
)
zp(∇w) + p(λ + λ)h′(w)zp–∇w∇z

+ λp(p – )zp–(∇z) (.)

is a quadratic form with respect to ∇w and ∇z, which is nonnegative if

(
p(λ + λ)h′(w)zp–

) – λλp(p – )
((
h′(w)

) + h′′(w)
)
zp– ≤ , (.)

and we have chosen h(w) such that

h′(w) =


α(p)(Mp –w)
, h′′(w) =

α(p)
[α(p)(Mp –w)]

. (.)

It is easy to see that the left-hand side of (.) can be written as

λλpzp–
{
p
[
α


(α(p)(Mp –w))

–
α(p)

(α(p)(Mp –w))

]

+
 + α(p)

(α(p)(Mp –w))

}
= , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/24
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since

pα – pα(p) +  + α(p) = ,

the inequality (.) holds, Q ≥ , and consequently

H = –
∫

�

Qeh(w) dx ≤ , (.)

and the second term S can be estimated as

S ≤
∫

�

(
�h′(w) – σp

)
eh(w)zp dx

+
∫

�

[
pzp–

(
 +

a – λ

c

)
F(w, z) – h′(w)zp

(
 +

a – λ

c

)
F(w, z)

]
eh(w) dx

≤ –(p – )σ
∫

�

eh(w)zp dx

+
∫

�

[(
 +

a – λ

c

)
pzp–F(w, z) –

(
 +

a – λ

c

)
h′(w)zpF(w, z)

]
eh(w) dx, (.)

since

h′(w) =


α(p)(Mp –w)
≤ 

α(p)(Mp –K )
=

σ

�
. (.)

On the other hand

–h′(w) =
–

α(p)(Mp –w)
≤ –

α(p)Mp
,

h(w) ≤ –
α(p)

ln
�

σ
.

(.)

Taking into account the fact that z ≥ , and using (.), we observe that

p
(
 +

a – λ

c

)
zp–F(w, z) –

(
 +

a – λ

c

)
h′(w)zpF(w, z)

≤
(
p
(
 +

a – λ

c

)
zp– –


α(p)Mp

(
 +

a – λ

c

)
zp

)
F(w, z).

Then for η = p( + a–λ
c )( 

(+ a–λ
c )

+ )α(p)Mp > , and for  ≤ ξ ≤ K , η ≥ η, we have

(
p
(
 +

a – λ

c

)
ηp– –


α(p)Mp

(
 +

a – λ

c

)
ηp

)
F(ξ ,η)

=
[p( + a–λ

c )
η

–
( + a–λ

c )
α(p)Mp

]
ηpF(ξ ,η) ≤ .

On the other hand, we deduce that the function

(ξ ,η)→ p
(
 +

a – λ

c

)
ηp– –


α(p)Mp

(
 +

a – λ

c

)
ηp

http://www.journalofinequalitiesandapplications.com/content/2014/1/24
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is bounded on the compact interval [,η]; then there exists c >  such that

p
(
 +

a – λ

c

)
zp–F(w, z) –

(
 +

a – λ

c

)
h′(w)zpF(w, z) ≤ cF(w, z). (.)

From (.) and (.), we deduce immediately the following inequality:

S ≤ –(p – )σN + c
∫

�

F(w, z)eh(w) dx ≤ –(p – )σN + ce
–

α(p) ln
�
σ

∫
�

F(w, z)dx,

and putting

q =
c

( + a–λ
c )

e
–

α(p) ln
�
σ , (.)

by (.), we have

S ≤ –(p – )σN + q�|�| – q
d
dt

∫
�

w(t,x)dx, (.)

and from (.), it follows that

S ≤ –(p – )σGq + q
(
(p – )σK +�

)|�| – q
d
dt

∫
�

w(t,x)dx, (.)

and from (.) and (.), we conclude that

d
dt

Gq ≤ –(p – )σGq + s, (.)

where

s = q
(
(p – )σK +�

)|�|. (.)
�

Now we can establish the global existence and uniform boundedness of the solutions of
(.)-(.).

Theorem  Under the assumptions (.) and (.), the solutions of (.)-(.) are global
and uniformly bounded on [, +∞[×�.

Proof Multiplying the inequality (.) by e(p–)σ t and then integrating, we deduce that
there exists a positive constant C >  independent of t, such that

Gq(t) ≤ C. (.)

From (.), we observe that

eh(w) ≥ e
–

α(p) lnα(p)Mp , (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/24
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and it follows, for all p≥ , that

∫
�

zp dx≤ e


α(p) ln(Kα(p)+�
σ )Gq(t) ≤ C(p), (.)

where

C(p) = Ce


α(p) ln(Kα(p)+�
σ ), (.)

and as we select p > n
 we can proceed to bound ‖–� + ( + a–λ

c )F(w, z) – σ z‖p.
Let

A = max
ξ≤ξ≤K

ϕ(ξ ), (.)

where

K =
a – λ

λ – λ
K ,

and ξ is such that

ξ ≤ ξ �⇒ ϕ(ξ ) < |ξ |, (.)

using (.), we deduce

F(w, z) = f (u, v) ≤ ϕ(u)( + v)β ,

which implies

∫
�

Fp(w, z)dx ≤
∫

�

(
ϕ(u)

)p( + v)βp dx

=
∫
u≤ξ

(
ϕ(u)

)p( + v)βp dx +
∫

ξ≤u

(
ϕ(u)

)p( + v)βp dx

≤
∫
u≤ξ

|u|p( + v)βp dx +Ap
∫

ξ≤u
( + v)βp dx.

From (.), we have

|u|p =
∣∣∣∣ a – λ

λ – λ
w(t,x) +

a – λ

λ – λ
z(t,x)

∣∣∣∣
p

≤
(

a – λ

λ – λ
w(t,x) +

λ – a
λ – λ

z(t,x)
)p

≤
(

λ – a
λ – λ

)p(
w(t,x) + z(t,x)

)p,

then

∫
�

Fp(w, z)dx ≤
∫
u≤ξ

(
λ – a
λ – λ

)p

(w + z)p
(
 +

c
λ – λ

(w + z)
)βp

dx

+Ap
∫

ξ≤u

(
 +

c
λ – λ

(w + z)
)βp

dx

http://www.journalofinequalitiesandapplications.com/content/2014/1/24
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≤max

(
Ap,

(
λ – a
λ – λ

)p)(∫
u≤ξ

(w + z)p
(
 +

c
λ – λ

(w + z)
)βp

dx

+
∫

ξ≤u

(
 +

c
λ – λ

(w + z)
)βp

dx
)

≤max

(
Ap,

(
λ – a
λ – λ

)p)(∫
�

(w + z)p
(
 +

c
λ – λ

(w + z)
)βp

dx

+
∫

�

(
 +

c
λ – λ

(w + z)
)βp

dx
)
,

∫
�

(w + z)p
(
 +

c
λ – λ

(w + z)
)βp

dx

≤ βp–
(∫

�

(w + z)p +
(

c
λ – λ

)βp

(w + z)(β+)p dx
)

≤ (β+)p–
(
KP|�| +C(p)

)
+ (β+)p–

(
c

λ – λ

)βp(
K (β+)p|�| +C

(
(β + )p

))

= C(β ,p,K ,�),
∫

�

(
 +

c
λ – λ

(w + z)
)βp

dx

≤ βp–
(

|�| +
(

c
λ – λ

)βp

× βp–(Kβp|�| +C(βp)
))

= C(β ,p,K ,�).

Consequently
∫

�

Fp(w, z)dx ≤ C(A,β ,p,K ,�).

Finally
∥∥∥∥–� +

a – λ

c
F(w, z) – σ z

∥∥∥∥
p
=

∥∥∥∥a – λ

c
F(w, z) – (σ z +�)

∥∥∥∥
p

≤ a – λ

c
∥∥F(w, z)∥∥p + σ‖z‖p +�|�|

≤ a – λ

c
p
√
C(A,β ,p,K ) + σ p

√
C(p) +�|�|

= C(A,β ,p,K ,�,σ ). (.)

Using the regularity results for the solutions of the parabolic equations in [], we con-
clude that the solutions of problem (.)-(.) are uniformly bounded on [,+∞[×�. �

By (.), it is easy to see that the solutions of problem (.)-(.) are also uniformly
bounded on [,+∞[×�.

Remark  Because  ≤ w(t,x) ≤ K and z(t,x) ≥ , we deduce that

–∞ ≤ u(t,x)≤ a – λ

λ – λ
K = K.

http://www.journalofinequalitiesandapplications.com/content/2014/1/24
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Remark  We note that a–λ
λ–λ

<  and λ–a
λ–λ

≥ a–λ
λ–λ

, because λ + λ = a + d and d > a.

We conclude by noting that the study of the global existence of strongly coupled systems
has been a major development, and several articles are devoted to this subject. In our
opinion, many other systems with non-constant diffusion matrix which are in the actual
scope of the results previously given, should be taken in consideration and studied with
more interest.
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