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Abstract
By developing the classical kernel method, Delaigle and Meister provide a nice
estimation for a density function with some Fourier-oscillating noises over a Sobolev
ballWs

2(L) and over L2 risk (Delaigle and Meister in Stat. Sin. 21:1065-1092, 2011). The
current paper extends their theorem to Besov ball Bsr,q(L) and Lp risk with p,q, r ∈ [1,∞]
by using wavelet methods. We firstly show a linear wavelet estimation for densities in
Bsr,q(L) over L

p risk, motivated by the work of Delaigle and Meister. Our result reduces
to their theorem, when p = q = r = 2. Because the linear wavelet estimator is not
adaptive, a nonlinear wavelet estimator is then provided. It turns out that the
convergence rate is better than the linear one for r ≤ p. In addition, our conclusions
contain estimations for density derivatives as well.

Keywords: Besov space; density derivative; density function; Fourier-oscillating
noises; wavelet estimation

1 Introduction and preliminary
One of the fundamental deconvolution problems is to estimate a density function fX of a
random variable X, when the available data W,W, . . . ,Wn are independent and identi-
cally distributed (i.i.d.) with

Wj = Xj + δj (j = , , . . . ,n).

We assume that all Xj and δj are independent and the density function fδ of the noise δ is
known.
Let the Fourier transform f ft of f ∈ L(R) be defined by f ft(t) =

∫
R
f (x)eitx dx in this paper.

When f ftδ satisfies

∣∣f ftδ (t)∣∣ ≥ c
(
 + |t|)–α ()

with c >  and α > , there exist lots of optimal estimations for fX [–]. However, many
noise densities fδ have zeros in the Fourier transform domain, i.e., the inequality () does
not hold. For example, Sun et al. described an experiment where data on the velocity of
halo stars in theMilkyWay are collected, and where the measurement errors are assumed
to be uniformly distributed []. The classical kernelmethod provides a slower convergence
rate in that case [–]. Delaigle andMeister [] developed a newmethod for a density fδ
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with

∣∣f ftδ (t)∣∣ ≥ c
∣∣∣∣sin

(
π t
λ

)∣∣∣∣
v(
 + |t|)–α . ()

Here c,λ,α >  and v ∈ N (non-negative integer set). Such noises are called Fourier-
oscillating. Clearly, () allows f ftδ having zeros for v ≥ . When v = , () reduces to ()
(non-zero case).
Delaigle andMeister defined a kernel estimator f̂n for a density fX in a Sobolev space and

prove that with EX denoting the expectation of a random variable X,

sup
fX∈Ws

(L)
E

∫ b

a

∣∣f̂n(x) – fX(x)
∣∣ dx =O

(
n–

s
s+α+

)
()

under the assumption () (Theorem . in []). Here, Ws
(L) stands for the Sobolev ball

with the radius L. This above convergence rate attains the same one as in the non-zero
case [–, ]. In particular, it does not depend on the parameter v.
It seems that many papers deal with L estimations. However, Lp estimations ( ≤ p ≤

+∞) are important [, ]. On the other hand, Besov spaces contain many classical spaces
(e.g., L Sobolev spaces andHölder spaces) as special examples. The current paper extends
() from Ws

(L) to the Besov ball Bs
r,q(L), and from L to Lp risk estimations. In addition,

our results contain estimations for dth derivatives f (d)X of fX . The next section provides a
linear wavelet estimation for f (d)X over a Besov ball Bs

r,q(L) and over Lp risk (p,q, r ≥ ). It
turns out that our estimation reduces to (), when d = , p = r = q = . Moreover, we show
a nonlinear wavelet estimation which improves the linear one for r ≤ p in the last part.

1.1 Wavelet basis
The fundamental method to construct a wavelet basis comes from the concept of mul-
tiresolution analysis (MRA []). It is defined as a sequence of closed subspaces {Vj} of the
square integrable function space L(R) satisfying the following properties:

(i) Vj ⊂ Vj+, j ∈ Z (the integer set);
(ii) f (x) ∈ Vj if and only if f (x) ∈ Vj+ for each j ∈ Z;
(iii)

⋃
j∈ZVj = L(R) (the space

⋃
j∈ZVj is dense in L(R));

(iv) There exists ϕ(x) ∈ L(R) (scaling function) such that {ϕ(x – k)}k∈Z forms an
orthonormal basis of V = span{ϕ(x – k)}k∈Z.

With the standard notation hj,k(x) := 
j
 h(jx – k) in wavelet analysis, we can find a cor-

responding wavelet function

ψ(x) =
∑
k∈Z

(–)k+h–kϕ,k(x) with hk = 〈ϕ,ϕ,k〉

such that, for a fixed j ∈ Z, {ψj,k}k∈Z constitutes an orthonormal basis of the orthogonal
complementWj of Vj in Vj+ []. Then each f ∈ L(R) has an expansion in L(R) sense,

f =
∑
k∈Z

αj,kϕj,k +
∞∑
l=j

∑
k∈Z

βl,kψl,k ,

where αj,k = 〈f ,ϕj,k〉, βl,k = 〈f ,ψl,k〉.
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A family of important examples are Daubechies wavelets DN (x), which are compactly
supported in time domain []. They can be smooth enough with increasing supports as
N gets large, although DN do not have analytic formulas except for N = .
As usual, let Pj and Qj be the orthogonal projections from L(R) to Vj and Wj, respec-

tively,

Pjf =
∑
k∈Z

αj,kϕj,k , Qjf =
∑
k∈Z

βj,kψj,k = (Pj+ – Pj)f .

The following simple lemma is fundamental in our discussions. We use ‖f ‖p to denote
Lp(R) norm for f ∈ Lp(R), and ‖λ‖p do lp(Z) norm for λ ∈ lp(Z), where

lp(Z) :=

{
{λ = {λk},∑k∈Z |λk|p < +∞},  ≤ p < ∞;
{λ = {λk}, supk∈Z |λk| < +∞}, p =∞.

By using Proposition . in [], we have the following conclusion.

Lemma . Let h be a Daubechies scaling function or the corresponding wavelet. Then
there exists c ≥ c >  such that, for λ = {λk} ∈ lp(Z) and ≤ p≤ ∞,

cj(

 –


p )‖λ‖p ≤

∥∥∥∥∑
k∈Z

λkhj,k
∥∥∥∥
p
≤ cj(


 –


p )‖λ‖p.

1.2 Besov spaces
One of the advantages of wavelet bases is that they can characterize Besov spaces. To
introduce those spaces (see []), we need the Sobolev spaces with integer orderWn

p (R) :=
{f ∈ Lp(R), f (n) ∈ Lp(R)} and ‖f ‖Wn

p := ‖f ‖p + ‖f (n)‖p. Then Lp(R) can be considered as
W 

p (R).
For ≤ p,q ≤ ∞, s = n + α with n ∈N and α ∈ (, ], the Besov spaces are defined by

Bs
p,q(R) :=

{
f ∈Wn

p (R),
{
jαω

p(f
(n), –j)

}
j∈Z ∈ lq(Z)

}
,

with the associated norm ‖f ‖Bsp,q := ‖f ‖Wn
p + ‖{jαω

p(f (n), –j)}j∈Z‖lq , where

ω
p(f , t) := sup

|h|≤t

∥∥f (· + h) – f (· + h) + f (·)∥∥p

stands for the smoothness modulus of f . It should be pointed out that Bs
,(R) =Ws

(R).
According to Theorem . in [], the following result holds.

Lemma . Let ϕ =DN be a Daubechies scaling function with large N and ψ be the cor-
responding wavelet. If f ∈ Lp(R), ≤ p,q ≤ ∞, s > , α,k = 〈f ,ϕ,k〉, and βj,k = 〈f ,ψj,k〉, then
the following assertions are equivalent:

(i) f ∈ Bs
p,q(R);

(ii) ‖α,·‖lp + ‖{j(s+ 
 –


p )‖βj,·‖lp}j≥‖lq < +∞;

(iii) {js‖Pjf – f ‖p}j≥ ∈ lq, where Pj is the projection operator to Vj.

http://www.journalofinequalitiesandapplications.com/content/2014/1/236
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In each case,

‖f ‖Bsp,q ∼ ‖α,·‖lp +
∥∥{

j(s+

 –


p )‖βj,·‖lp

}
j≥

∥∥
lq

∼ ‖Pf ‖p +
∥∥{

js‖Pjf – f ‖p
}
j≥

∥∥
lq
.

Here and throughout,A� B denotesA≤ CB for some constantC > ;A� BmeansB� A;
we use A∼ B standing for both A� B and B� A.
Note that lp is continuously embedded into lp for p ≤ p. Then the above lemma im-

plies that

Bs
p,q(R) ⊂ Bs

p,q(R) for p ≤ p and s –

p

= s –

p

.

2 Linear wavelet estimation
We shall provide a linear wavelet estimation for a compactly supported density function
fX and its derivatives f (d)X under Fourier-oscillating noises in this section, motivated by the
work of Delaigle and Meister. It turns out that our result generalizes their theorem.
As in [], we define

p(x) =
v∑

m=

(
v
m

)
(–)v–mfX

(
x –

πm
λ

)
. ()

Then p ∈ L(R) and pft(t) = (ei π tλ – )vf ftX (t). Delaigle and Meister found that

fX(x) =
J∑

m=

ηmp
(
x –

πm
λ

)
, ()

where J and ηm depend only on v and the support length of fX .
Let ϕ =DN be the Daubechies scaling function with N large enough. Since both fX and

ϕ have compact supports, the set Kj := {k ∈ Z : 〈fX ,ϕj,k〉 �= } is finite and the cardinality
|Kj| ∼ j. Then with αj,k = 〈f (d)X ,ϕj,k〉,

Pjf (d)X =
∑
k∈Kj

αj,kϕj,k .

It is easy to see αj,k = (–)d〈fX , (ϕj,k)(d)〉. This with () and the Plancherel formula leads to

αj,k =
(–)d

π

〈 J∑
m=

ηmei
πmt

λ pft(t),
[
(ϕj,k)(d)

]ft(t)
〉
. ()

Note that pft(t) = (e
π it
λ – )v f

ft
W (t)

f ftδ (t)
and [(ϕj,k)(d)]ft(t) = –

j
 +djeik–jt[ϕ(d)]ft(–jt). Then the

identity () reduces to

αj,k =
(–)d

π

∫
–

j
 +djξ (t)

[ϕ(d)]ft(–jt)
f ftδ (t)

e–ik
–jt f ftW (t)dt ()
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where ξ (t) =
∑J

m= ηmei
πmt

λ (ei
π t
λ –)v. Since the empirical estimator for f ftW is 

n
∑n

l= eiWlt ,
it is natural to define a linear wavelet estimator

f̂ linn,d(x) =
∑
k∈Kj

α̂j,kϕj,k(x), ()

with

α̂j,k =

n

n∑
l=

(–)d

π

∫
–

j
 +djξ (t)

[ϕ(d)]ft(–jt)
f ftδ (t)

e–ik
–jteiWlt dt. ()

When v = d = , p(x) = fX(x) and ηm = δm,. Then our estimator f̂ linn,d reduces to the clas-
sical linear estimator for the case f ftδ having no zeros (see e.g., [–]).
Let ψ be the Daubechies wavelet function corresponding to the scaling function DN

and βj,k = 〈f (d),ψj,k〉. Similar to (), we define

β̂j,k =

n

n∑
l=

(–)d

π

∫
–

j
 +djξ (t)

[ψ (d)]ft(–jt)
f ftδ (t)

e–ik
–jteiWlt dt. ()

Then it can easily be seen that Eα̂j,k = αj,k , Eβ̂j,k = βj,k and Ef̂ linn,d = Pjf (d)X .
For a < b, L > , we consider the subset of Bs

p,q(R),

Bs
p,q(a,b,L) :=

{
f ∈ Bs

p,q(R) : ‖f ‖Bsp,q ≤ L, f (x)≥ ,
∫
R

f (x)dx = , supp f ⊂ [a,b]
}

in this paper.

Lemma . Let ϕ = DN (N large enough), ψ be the corresponding wavelet and f ftδ satisfy
(). If fX ∈ Bs+d

r,q (a,b,L), r,q ∈ [, +∞], s > 
r and j ≤ n, then, for p ∈ [, +∞),

E|α̂j,k – αj,k|p � n–
p
 jp(α+d), E|β̂j,k – βj,k|p � n–

p
 jp(α+d).

Proof One shows only the first inequality; the second one is similar. Define

Zl,k :=
(–)d

π

∫
–

j
 +djξ (t)

[ϕ(d)]ft(–jt)
f ftδ (t)

e–ik
–jteiWlt dt.

Then α̂j,k = 
n
∑n

l=Zl,k and

α̂j,k – αj,k =

n

n∑
l=

(Zl,k – EZl,k) :=

n

n∑
l=

Yl,k . ()

Clearly, EYl,k = . One estimates |Yl,k| and E|Yl,k| in order to use the Rosenthal in-
equality: By the assumption (), |Zl,k| �

∫
–

j
 +dj|ei π tλ – |v |[ϕ(d)]ft (–jt)|

|f ftδ (t)| dt �
∫
–

j
 +dj( +

|t|)α|[ϕ(d)]ft(–jt)|dt = ∫


j
 +dj( + |jt|)α|[ϕ(d)]ft(t)|dt � j(α+d+ 

 )
∫
( + |t|)α|[ϕ(d)]ft(t)|dt.

Because ϕ =DN , the last integration is finite for large N . Hence,

|Yl,k| ≤ |Zl,k|� j(α+d+

 ). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/236
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Since fX ∈ Bs+d
r,q (R) ⊂ Bs+d– 

r∞,q (R) (s > 
r ), ‖fX‖∞ < +∞ and ‖fW‖∞ = ‖fX ∗ fδ‖∞ ≤ ‖fX‖∞ ×

‖fδ‖ < +∞. This with the Parseval identity shows

EZ
l,k =

∫ ∣∣∣∣ (–)dπ

∫
–

j
 +djξ (t)

[ϕ(d)]ft(–jt)
f ftδ (t)

e–ik
–jteity dt

∣∣∣∣


fW (y)dy

� ‖fW‖∞
∫ ∣∣∣∣– j

 +djξ (t)
[ϕ(d)]ft(–jt)

f ftδ (t)
e–ik

–jt
∣∣∣∣


dt.

Furthermore, one obtains EZ
l,k �

∫ |– j
 +dj( + |t|)α[ϕ(d)]ft(–jt)| dt � j(α+d) thanks

to (). Hence,

EY 
l,k = E|Zl,k – EZl,k| ≤ EZ

l,k � j(α+d). ()

According to () and the Rosenthal inequality,

E|α̂j,k – αj,k|p �
{
n–p(

∑n
l= E|Yl,k|) p , p ∈ [, ),

n–p
∑n

l= E|Yl,k|p + n–p(
∑n

l= E|Yl,k|) p , p ∈ [, +∞).

Combining this with (), one obtains E|α̂j,k – αj,k|p � n–
p
 jp(α+d) for  ≤ p < , which is

the desired conclusion. When p ≥ ,

E|Yl,k|p � ‖Yl,k‖p–∞ E|Yl,k| � j(α+d+

 )(p–)j(α+d) = j(

p
 –+αp+dp)

due to () and (). Moreover, E|α̂j,k –αj,k|p � n–pj(
p
 –+αp+dp) + n–

p
 jp(α+d). Since j ≤ n,

n–pj(
p
 –+αp+dp) = n–

p


(
j

n

) p
 –

jp(α+d) ≤ n–
p
 jp(α+d).

Finally, E|α̂j,k – αj,k|p � n–
p
 jp(α+d). This completes the proof of the first part of Lem-

ma .. �

Now, we are in a position to state our first theorem.

Theorem . Let f̂ linn,d be defined by ()-(), r,q ∈ [, +∞], p ∈ [, +∞) and s > 
r . Then with

s′ := s – ( r –

p )+ and x+ =max{,x},

sup
fX∈Bs+dr,q (a,b,L)

E
∥∥f̂ linn,d – f (d)X

∥∥p
p � n–

s′p
s′+α+d+ .

Proof It is easy to see that ‖f̂ linn,d – f (d)X ‖p � ‖f̂ linn,d – f (d)X ‖r for r ≥ p, because Lr([a,b]) is con-
tinuously embedded into Lp([a,b]). Moreover, E‖f̂ linn,d – f (d)X ‖pp � E‖f̂ linn,d – f (d)X ‖pr ≤ (E‖f̂ linn,d –
f (d)X ‖rr)

p
r thanks to Jensen’s inequality.

When r ≤ p, s′ – 
p = s – 

r and Bs+d
r,q (a,b,L)⊂ Bs′+d

p,q (a,b,L). Then

sup
fX∈Bs+dr,q (a,b,L)

E
∥∥f̂ linn,d – f (d)X

∥∥p
p ≤ sup

fX∈Bs′+dp,q (a,b,L)
E
∥∥f̂ linn,d – f (d)X

∥∥p
p.

http://www.journalofinequalitiesandapplications.com/content/2014/1/236


Guo and Liu Journal of Inequalities and Applications 2014, 2014:236 Page 7 of 15
http://www.journalofinequalitiesandapplications.com/content/2014/1/236

Therefore, it suffices to prove the theorem, for r = p,

sup
fX∈Bs+dp,q (a,b,L)

E
∥∥f̂ linn,d – f (d)X

∥∥p
p � n–

sp
s+α+d+ . ()

If fX ∈ Bs+d
p,q (R), then f (d)X ∈ Bs

p,q(R) and

∥∥Pjf (d)X – f (d)X
∥∥p
p � –jsp ()

due to Lemma .. On the other hand, f̂ linn,d – Pjf (d)X =
∑

k∈Kj
(α̂j,k – αj,k)ϕj,k and

E
∥∥f̂ linn,d – Pjf (d)X

∥∥p
p � j(

p
 –)

∑
k∈Kj

E|α̂j,k – αj,k|p � j
p
 sup
k∈Kj

E|α̂j,k – αj,k|p

because of Lemma . and |Kj| ∼ j. This with Lemma . leads to E‖f̂ linn,d – Pjf (d)X ‖pp �
( jn )

p
 jp(α+d). Combining this with (), one obtains

E
∥∥f̂ linn,d – f (d)X

∥∥p
p � E

∥∥f̂ linn,d – Pjf (d)X
∥∥p
p +

∥∥Pjf (d)X – f (d)X
∥∥p
p �

(
j

n

) p

jp(α+d) + –jsp.

Take j ∼ n


s+α+d+ . Then the inequality () follows, and the proof of Theorem . is
finished. �

Remark . If p = q = r =  and d = , then s′ = s, Bs+d
r,q (a,b,L) =Ws

(a,b,L), Theorem .
reduces to Theorem . in [].

Remark . From the choice j ∼ n


s+α+d+ in the proof of Theorem ., we find that our
estimator is not adaptive, because it depends on the parameter s of Bs

r,q(R). In order to
avoid that shortcoming, we study a nonlinear estimation in the next part.

3 Nonlinear estimation
This section is devoted to an adaptive nonlinear estimation, which also improves the con-
vergence rate of the linear one in some cases. The idea of proof comes from []. Choose
r > s,

j ∼ n


r+α+d+ and j ∼ n


α+d+ . ()

Let α̂j,k and β̂j,k be defined by () and (), respectively, and

β̃j,k =

{
β̂j,k , |β̂j,k| > Tj(α+d)

√
j/n,

, otherwise,

where the constant T will be determined in the proof of Theorem .. Then we define a
nonlinear wavelet estimator

f̂ nonn,d (x) :=
∑
k∈Kj

α̂j,kϕj,k(x) +
j∑
j=j

∑
k∈Ij

β̃j,kψj,k(x),

http://www.journalofinequalitiesandapplications.com/content/2014/1/236
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where Kj := {k ∈ Z : 〈fX ,ϕj,k〉 �= }, and Ij := {k ∈ Z : 〈fX ,ψj,k〉 �= }. Clearly, the cardinality
|Ij| ∼ j since both fX and ψ have compact supports.

Lemma . If jj ≤ n, then there exists c >  such that, for each T ≥ T > ,

P
{
|β̂j,k – βj,k| > T


j(α+d)

√
j/n

}
� –cTj.

Proof By the definitions of βj,k and β̂j,k , β̂j,k –βj,k = 
n
∑n

l=(Zl,k –EZl,k) := 
n
∑n

l= Yl,k , where

Zl,k :=
(–)d

π

∫
–

j
 +dj

J∑
m=

ηmeit
πm

λ
(
e
π it
λ – 

)v [ψ (d)]ft(–jt)
f ftδ (t)

e–i
–jkteiWlt dt.

Then EYl,k =  and with λ = T
 

j(α+d)
√

j
n ,

P
{
|β̂j,k – βj,k| > T


j(α+d)

√
j
n

}
≤  exp

(
–

nλ

(EY 
l,k + ‖Yl,k‖∞λ/)

)
()

thanks to the classical Bernstein inequality in []. On the other hand, EY 
l,k +‖Yl,k‖∞λ/�

j(α+d) + (α+d+ 
 )j T

 
j(α+d)

√
j
n ≤ CTj(α+d) because of (), (), and jj ≤ n. Hence,

nλ

(EY
l,k+‖Yl,k‖∞λ/) ≥ n T


j
n 

j(α+d)

CTj(α+d)
= T

C j, and () reduces to

P
{
|β̂j,k – βj,k| > T


j(α+d)

√
j/n

}
� e–

T
C j = –cTj

with c = 
C log e. This completes the proof of Lemma .. �

Theorem . Under the assumptions of Theorem ., there exist θ >  and T >  such
that, for T ≥ T,

sup
fX∈Bs+dr,q (a,b,L)

E
∥∥f̂ nonn,d – f (d)X

∥∥p
p

�

⎧⎨
⎩
(lnn)θn–

sp
s+α+d+ , r ∈ ( (α+d+)ps+α+d+ ,p];

(lnn)θn–
s′p

(s–/r)+α+d+ , r ∈ [, (α+d+)p
s+α+d+ ].

()

Proof Similar to [], one defines

μ :=min

{
s

s + α + d + 
,

s′

(s – /r) + α + d + 

}
,

and

ω := –sr +
(

α + d +



)
(p – r). ()
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It is easy to check that ω <  holds if and only if r > (α+d+)p
s+α+d+ , and μ = s

s+α+d+ as well
as ω ≥  if and only if r ≤ (α+d+)p

s+α+d+ , and μ = s′
(s–/r)+α+d+ . Then the conclusion of The-

orem . can be rewritten as

sup
fX∈Bs+dr,q (a,b,L)

E
∥∥f̂ nonn,d – f (d)X

∥∥p
p � (lnn)θn–μp. ()

Choose j(s, r,q) and j(s, r,q) such that

j(s,r,q) � n
–μ

α+d+ and j(s,r,q) � n
μ

s′ .

Then it can easily be shown by () that j � j(s,r,q) � j(s,r,q) � j . Clearly,

∥∥f̂ nonn,d – f (d)X
∥∥p
p �

∥∥Pj
(
f̂ nonn,d – f (d)X

)∥∥p
p +

∥∥Dj,j
(
f̂ nonn,d – f (d)X

)∥∥p
p +

∥∥Pj f
(d)
X – f (d)X

∥∥p
p, ()

where

Dj,j f =
j∑
j=j

∑
k∈Z

βj,kψj,k .

By the assumption r ≤ p, s′ := s – ( r –

p ) = s – 

r +

p and Bs+d

r,q (a,b,L) is continuously
embedded into Bs′+d

p,q (a,b,L). Since fX ∈ Bs′+d
p,q (R), f (d)X ∈ Bs′

p,q(R) and ‖Pj f
(d)
X – f (d)X ‖pp � –js′p

thanks to Lemma .. This with j(s,r,q) � j and the definition of μ leads to

∥∥Pj f
(d)
X – f (d)X

∥∥p
p � –j(s,r,p)s

′p � n–μp. ()

Note that Pj (f̂ nonn,d – f (d)X ) =
∑

k∈Kj
(α̂j,k –αj,k)ϕj,k . Then E‖Pj (f̂ nonn,d – f (d)X )‖pp � j(

p
 –) ×∑

k∈Kj
E|α̂j,k –αj,k|p � j

p
 n–

p
 jp(α+d) due to Lemma ., |Kj | ∼ j and Lemma .. By

j � j(s,r,q) and the choice j(s,r,q) � n
–μ

α+d+ ,

E
∥∥Pj

(
f̂ nonn,d – f (d)X

)∥∥p
p �

(
j(s,r,q)

n

)p/

j(s,r,q)p(α+d) � n–μp. ()

According to ()-(), it is sufficient to prove E‖Dj,j (f̂ nonn,d – f (d)X )‖pp � (lnn)θn–μp: Define

B̂j :=
{
k : |β̂j,k| > Tj(α+d)

√
j/n

}
, Ŝj = B̂c

j ;

Bj :=
{
k : |βj,k| > T


j(α+d)

√
j/n

}
, Sj = Bc

j ;

B′
j :=

{
k : |βj,k| > Tj(α+d)

√
j/n

}
, S′

j = B′c
j .

Then Dj,j (f̂ nonn,d – f (d)X ) =
∑j

j=j
∑

k∈Ij (β̂j,k – βj,k)[I{k ∈ B̂j ∩ Sj} + I{k ∈ B̂j ∩ Bj}]ψj,k –∑j
j=j

∑
k∈Ij βj,k[I{k ∈ Ŝj ∩ S′

j} + I{k ∈ Ŝj ∩ B′
j}]ψj,k = ebs + esb + ebb + ess, where

ebs :=
j∑
j=j

∑
k∈Ij

(β̂j,k – βj,k)I{k ∈ B̂j ∩ Sj}ψj,k , esb :=
j∑
j=j

∑
k∈Ij

βj,kI
{
k ∈ Ŝj ∩ B′

j
}
ψj,k ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/236
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ebb :=
j∑
j=j

∑
k∈Ij

(β̂j,k – βj,k)I{k ∈ B̂j ∩ Bj}ψj,k , ess :=
j∑
j=j

∑
k∈Ij

βj,kI
{
k ∈ Ŝj ∩ S′

j
}
ψj,k .

In order to conclude Theorem ., one needs only to show that

E‖ebs‖pp + E‖esb‖pp + E‖ebb‖pp + E‖ess‖pp � (lnn)θn–μp. ()

By (), j – j ∼ lnn and ‖∑j
j=j gj‖

p
p � (j – j +)p–

∑j
j=j ‖gj‖pp � (lnn)p–

∑j
j=j ‖gj‖pp. This

with Lemma . shows that, for f̂ (x) =
∑j

j=j
∑

k∈Ij f̂j,kψj,k(x), there exists θ >  such that

E‖f̂ ‖pp � (lnn)θ sup
j≤j≤j

j(
p
 –)

∑
k∈Ij

E|f̂j,k|p. ()

To estimate E‖ebs‖pp, one takes f̂j,k := (β̂j,k – βj,k)I{k ∈ B̂j ∩ Sj}. Then, for each k ∈ B̂j ∩ Sj,

|β̂j,k – βj,k| ≥ |β̂j,k| – |βj,k| > T
 

j(α+d)
√

j
n and B̂j ∩ Sj ⊂ D̂j := {k : |β̂j,k – βj,k| > T

 
j(α+d)

√
j
n }.

This with the Hölder inequality shows

E|f̂j,k|p ≤ E|β̂j,k – βj,k|pI{k ∈ D̂j} ≤ (
E|β̂j,k – βj,k|p

) 

(
EI{k ∈ D̂j}

) 
 .

Clearly, EI{k ∈ D̂j} = P{|β̂j,k – βj,k| > T
 

j(α+d)
√

j
n }. Furthermore, using |Ij| � j, Lemma .,

and Lemma ., one obtains
∑

k∈Ij E|f̂j,k|p � jn–
p
 jp(α+d)–

cT
 j. Moreover, by (),

E‖ebs‖pp � (lnn)θ sup
j≤j≤j

n–
p
 j(

p
 +αp+dp– cT

 ).

Choose T ≥ p+αp+dp
c

. Then p
 + αp + dp – cT

 ≤ , and supj≤j≤j n
– p
 j(

p
 +αp+dp– cT

 ) �
n–

p
 j(

p
 +αp+dp– cT

 ) � n–
p
 j

p
 jp(α+d). Similar to (), one has

E‖ebs‖pp � (lnn)θn–μp. ()

In the proof of (), one needs to choose T ≥ c– (p + αp + dp).
Now, one considers E‖esb‖pp: For k ∈ Ŝj ∩ B′

j, |β̂j,k – βj,k| ≥ |βj,k| – |β̂j,k| > Tj(α+d)
√

j
n and

Ŝj ∩ B′
j ⊂ D̂j := {k : |β̂j,k – βj,k| > T

 
j(α+d)

√
j
n }. By Lemma ., EI{k ∈ Ŝj ∩ B′

j} ≤ EI{k ∈
D̂j} � –cTj. Since f (d)X ∈ Bs

r,q(R) ⊂ Bs′
p,q(R), ‖βj,·‖p := ‖〈f (d)X ,ψj,·〉‖p � ‖f (d)X ‖Bs′p,q–j(s

′+/–/p)

and

∑
k∈Ij

|βj,k|pEI
{
k ∈ Ŝj ∩ B′

j
}
� ‖βj,·‖pp–cTj �

∥∥f (d)X
∥∥p
Bs′p,q

–j(s
′p+ p

 –+cT).

Moreover, it follows from the definition of esb and () that

E‖esb‖pp � (lnn)θ sup
j≤j≤j

–j(s
′p+cT) ≤ (lnn)θ–j(s

′p+cT).

By (), one can choose T ≥ j–j
cj

s′p (independent of n) so that js′p ≤ j(s′p+ cT). Hence,
this above inequality reduces to E‖esb‖pp � (lnn)θ–js′p. Similar arguments to () lead

http://www.journalofinequalitiesandapplications.com/content/2014/1/236
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to

E‖esb‖pp � (lnn)θn–μp. ()

In this above proof, one needs to choose T ≥ (cj)–(j – j)s′p.
For E‖ebb‖pp � (lnn)θn–μp, one uses |Ij|� j, (), and Lemma . to find

I := E

∥∥∥∥∥
j(s,r,q)∑
j=j

∑
k∈Ij

(β̂j,k – βj,k)I{k ∈ B̂j ∩ Bj}ψj,k

∥∥∥∥∥
p

p

� (lnn)θ sup
j≤j≤j(s,r,q)

n–
p
 jp(α+d+


 ).

Recall that j ≤ j(s, r,q). Then I � (lnn)θ (n–j(s,r,q))
p
 j(s,r,q)p(α+d), which reduces to I �

(lnn)θn–μp by similar arguments of (). It remains to show

II := E

∥∥∥∥∥
j∑

j=j(s,r,q)

∑
k∈Ij

(β̂j,k – βj,k)I{k ∈ B̂j ∩ Bj}ψj,k

∥∥∥∥∥
p

p

� (lnn)θn–μp. ()

By Lemma . and the definition of Bj,
∑

k∈Ij E|(β̂j,k –βj,k)I{k ∈ B̂j ∩Bj}|p � ∑
k∈Ij E|β̂j,k –

βj,k|pI{k ∈ Bj} � n–
p
 jp(α+d)

∑
k∈Bj |βj,kT––j(α+d)

√
nj–|r . According to Lemma .,

‖βj,·‖rr � ‖f (d)X ‖rBsr,q–j(sr+r/–). Hence,

∑
k∈Ij

E
∣∣(β̂j,k – βj,k)I{k ∈ B̂j ∩ Bj}

∣∣p � n–
p–r
 (lnn)θ–j(sr+

r
 ––αp–dp+αr+dr).

Combining this above inequality with (), one obtains

II� (lnn)θn–
p–r
 sup

j(s,r,q)≤j≤j
jω := An,

where ω := –sr + (α + d + 
 )(p – r) = –sr – r

 +
p
 + αp + dp – αr – dr as defined in ().

When ω ≤ , An � (lnn)θn–
p–r
 j(s,r,q)ω . By the choice j(s,r,q) ∼ n

–μ
α+d+ ,

An � (lnn)θn–
p–r
 n

–μ
α+d+ [–sr+(α+d+/)(p–r)] = (lnn)θn–μpnr(μ–

–μ
α+d+ s).

Since μ = s
s+α+d+ for ω ≤ , μ– –μ

α+d+ s =  and An � (lnn)θn–μp. Then one obtains the
desired inequality ().
When ω > , r < (α+d+)p

s+α+d+ and μ = s′
(s–/r)+α+d+ . Take

p =
αp + dp + p – 

(s – 
r ) + α + d + 

.

Then p–p
 = μp and r < p in that case.With f̂j,k = (β̂j,k –βj,k)I{k ∈ B̂j ∩Bj}, one knows from

Lemma . and the definition of Bj that

∑
k∈Ij

E|f̂j,k|p ≤ n–
p
 jp(α+d)

∑
k∈Bj

∣∣∣∣βj,k

T
–j(α+d)

√n
j

∣∣∣∣
p
� (lnn)θn–

p–p
 j(p–p)(α+d)‖βj,·‖pp .
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Since r < p, ‖βj,·‖p ≤ ‖βj,·‖r . This with () leads to

E‖ebb‖pp � (lnn)θn–
p–p
 sup

j≤j≤j

[
j(

p–+αp+dp
p

)–j(α+d)‖βj,·‖r
]p .

Note that j
p–+αp+dp

p –j(α+d) = j(s– 
r +


 ) due to the definition of p, as well as f (d)X ∈

Bs
r,q(a,b,L) implies j(s– 

r +

 )‖βj,·‖r � ‖f (d)X ‖Bsr,q . Then

E‖ebb‖pp � (lnn)θn–
p–p
 = (lnn)θn–μp. ()

Finally, one estimates E‖ess‖pp: Define f̂j,k := βj,kI{k ∈ Ŝj ∩ S′
j}. Then

∑
k∈Ij

|f̂j,k|p ≤
∑
k∈S′

j

|βj,k|p–r|βj,k|r ≤
(
Tj(α+d)

√
j
n

)p–r

–j(s+

 –


r )r

∥∥f (d)X
∥∥r
Bsr,q

due to r ≤ p and the definition of S′
j . Using () and ω := –sr + (α + d + 

 )(p – r) in (),
one obtains

E‖ess‖pp = E

∥∥∥∥∥
j∑
j=j

∑
k∈Ij

f̂j,kψj,k

∥∥∥∥∥
p

p

=

{
(lnn)θjωn–

p–r
 , ω ≤ ,

(lnn)θjωn–
p–r
 , ω > .

()

When ω ≤ , E‖∑j
j=j(s,r,q)

∑
k∈Ij βj,kI{k ∈ Ŝj ∩ S′

j}ψj,k‖pp � (lnn)θn–
p–r
 j(s,r,q)ω . Recall that

ω ≤  holds if and only if μ = s
s+α+d+ and 

j(s,r,q) ∼ n
–μ

α+d+ . Then it can be checked that
j(s,r,q)ωn–

p–r
 = n–μp. Hence,

E

∥∥∥∥∥
j∑

j=j(s,r,q)

∑
k∈Ij

βj,kI
{
k ∈ Ŝj ∩ S′

j
}
ψj,k

∥∥∥∥∥
p

p

� (lnn)θn–μp. ()

On the other hand, Lemma . tells that

E

∥∥∥∥∥
j(s,r,q)∑
j=j

∑
k∈Ŝj∩S′

j

βj,kψj,k

∥∥∥∥∥
p

p

�
j(s,r,q)∑
j=j

j(
p
 –)

∑
k∈Ŝj∩S′

j

E|βj,k|p.

Since k ∈ S′
j , |βj,k| ≤ Tj(α+d)

√
j
n and

∑
k∈Ŝj∩S′

j
|βj,k|p � ∑

k∈Ij 
jp(α+d)(lnn)θn–

p
 � (lnn)θ ×

n–
p
 jjp(α+d). Moreover,

E

∥∥∥∥∥
j(s,r,q)∑
j=j

∑
k∈Ij

βj,kI
{
k ∈ Ŝj ∩ S′

j
}
ψj,k

∥∥∥∥∥
p

p

� (lnn)θn–
p
 sup
j≤j≤j(s,r,q)

j(
p
 –)jjp(α+d)

� (lnn)θn–
p
 j(s,r,q)(α+d+


 )p � (lnn)θn–μp, ()
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where the last inequality comes from the choice j(s,r,q) ∼ n
–μ

α+d+ . Combining this with
(), one has, for ω ≤ ,

E‖ess‖pp � (lnn)θn–μp. ()

It remains to show E‖ess‖pp � n–μp for ω > . By Lemma .,

∥∥∥∥∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p
∼ j(


 –


p )

(∑
k∈Ij

∣∣βj,kI{k ∈ Ŝj ∩ Sj}
∣∣p)/p

≤ j(

 –


p )‖βj,·‖lp .

This with Lemma . shows that

[ j∑
j=j(s,r,q)

(
js

′
∥∥∥∥∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p

)q
]/q

≤
[ j∑
j=j(s,r,q)

(
j(s

′+ 
 –


p )‖βj,·‖lp

)q]/q

≤ ∥∥f (d)X
∥∥
Bs′p,q . ()

When q = ,

j∑
j=j(s,r,q)

∥∥∥∥∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p

�
j∑

j=j(s,r,q)

js
′
∥∥∥∥∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p
–j(s,r,q)s

′ � –j(s,p,q)s
′
.

When q = +∞,

j∑
j=j(s,r,q)

∥∥∥∥∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p

�
j∑

j=j(s,r,q)

–js
′∥∥f (d)X

∥∥
Bs′p,q � (lnn)θ–j(s,p,q)s

′
.

For  < q < +∞, by the Hölder inequality,

j∑
j=j(s,r,q)

∥∥∥∥∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p

�
[ j∑
j=j(s,r,q)

–js′q′
] 

q′
[ j∑
j=j(s,r,q)

(
js′

∥∥∥∥∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p

)q
] 

q

� –j(s,r,q)s
′
.
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Using () and the choice j(s,r,q) ∼ n
μ

s′ , one obtains

E
∥∥∥∥

j∑
j=j(s,r,q)

∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p

p
� (lnn)θn–μp.

On the other hand,

E
∥∥∥∥
j(s,r,q)∑
j=j

∑
k∈Ij

βj,kI{k ∈ Ŝj ∩ Sj}ψj,k

∥∥∥∥
p

p
� (lnn)θj(s,r,q)ωn–

p–r


thanks to (). According to the choice of j(s,r,q) ∼ n
μ

s′ and

μ =
s – /r + /p

(s – /r) + α + d + 
=

s′

(s – /r) + α + d + 

for ω > , one finds j(s,r,q)ωn–
p–r
 � n–μp by direct computations. Hence, E‖ess‖pp � n–μp

in each case, which is (). Now, () follows from (), (), (), and (). The proof is
done. �

Remark . Wefind easily fromTheorem . and Theorem . that the nonlinear wavelet
estimator converges faster than the linear one for r ≤ p.Moreover, the nonlinear estimator
is adaptive, while the linear one is not.

Remark . This paper studies wavelet estimations of a density and its derivatives with
Fourier-oscillating noises. The remaining problems include the optimality of the above
estimations, numerical experiments as well as the corresponding regression problems.
We shall investigate those problems in the future.
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