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Abstract

By developing the classical kernel method, Delaigle and Meister provide a nice
estimation for a density function with some Fourier-oscillating noises over a Sobolev
ball W5(L) and over L? risk (Delaigle and Meister in Stat. Sin. 21:1065-1092, 2011). The
current paper extends their theorem to Besov ball Bf’q(L) and [P risk with p,g,r € [1,00]
by using wavelet methods. We firstly show a linear wavelet estimation for densities in
Bi’q(L) over [P risk, motivated by the work of Delaigle and Meister. Our result reduces
to their theorem, when p = g = r = 2. Because the linear wavelet estimator is not
adaptive, a nonlinear wavelet estimator is then provided. It turns out that the
convergence rate is better than the linear one for r < p. In addition, our conclusions
contain estimations for density derivatives as well.

Keywords: Besov space; density derivative; density function; Fourier-oscillating
noises; wavelet estimation

1 Introduction and preliminary

One of the fundamental deconvolution problems is to estimate a density function fx of a
random variable X, when the available data W}, W5, ..., W,, are independent and identi-
cally distributed (i.i.d.) with

Wi=X;+8 (=12,...,n).

We assume that all X; and §; are independent and the density function f; of the noise § is
known.

Let the Fourier transform f* of f € L(R) be defined by f/(¢) = f]R f(x)e™ dx in this paper.
When fsﬂ satisfies

O] = e+ 1) (1)

with ¢ > 0 and « > 0, there exist lots of optimal estimations for fx [1-6]. However, many
noise densities f; have zeros in the Fourier transform domain, i.e., the inequality (1) does
not hold. For example, Sun et al. described an experiment where data on the velocity of
halo stars in the Milky Way are collected, and where the measurement errors are assumed
to be uniformly distributed [7]. The classical kernel method provides a slower convergence
rate in that case [8—10]. Delaigle and Meister [11] developed a new method for a density f;
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Here ¢, > 0 and v € N (non-negative integer set). Such noises are called Fourier-

oscillating. Clearly, (2) allows faﬁ having zeros for v > 1. When v = 0, (2) reduces to (1)
(non-zero case).

Delaigle and Meister defined a kernel estimator f,, for a density fx in a Sobolev space and
prove that with EX denoting the expectation of a random variable X,

b 2s
sup £ [ 109~ futw)] dx = 0 o) )

fxeWs(L)

under the assumption (2) (Theorem 4.1 in [11]). Here, W3(L) stands for the Sobolev ball
with the radius L. This above convergence rate attains the same one as in the non-zero
case [1-4, 6]. In particular, it does not depend on the parameter v.

It seems that many papers deal with L2 estimations. However, L? estimations (1 < p <
+00) are important [5, 12]. On the other hand, Besov spaces contain many classical spaces
(e.g., L? Sobolev spaces and Hélder spaces) as special examples. The current paper extends
(3) from W3 (L) to the Besov ball Bi,q(L), and from L? to L7 risk estimations. In addition,
our results contain estimations for dth derivatives f)((d) of fx. The next section provides a
linear wavelet estimation for f)((d) over a Besov ball Biq(L) and over L7 risk (p,q,r > 1). It
turns out that our estimation reduces to (3), when d = 0, p = r = g = 2. Moreover, we show
a nonlinear wavelet estimation which improves the linear one for r < p in the last part.

1.1 Wavelet basis
The fundamental method to construct a wavelet basis comes from the concept of mul-
tiresolution analysis (MRA [13]). It is defined as a sequence of closed subspaces {V;} of the
square integrable function space L2(R) satisfying the following properties:
(i) V; C Vju1,j € Z (the integer set);

(ii) f(x) € V;if and only if f(2x) € V},; for each j € Z;

(iii) Ujez Vj = L*(R) (the space ;. V; is dense in L*(R));

(iv) There exists ¢(x) € L2(R) (scaling function) such that {¢(x — k)}xcz forms an

orthonormal basis of Vj = span{p(x — k)}xez.
With the standard notation /;(x) := 2§h(2fx — k) in wavelet analysis, we can find a cor-
responding wavelet function

Y @) =Y (- igex)  with e = (9, 01e)
keZ

such that, for a fixed j € Z, {{;x}kez constitutes an orthonormal basis of the orthogonal
complement W; of V} in Vj,; [13]. Then each f € L%(R) has an expansion in L(R) sense,

= gt Y > Bt

kel I=j kel

where a;« = (£, k), Bix = (f» Vi)


http://www.journalofinequalitiesandapplications.com/content/2014/1/236

Guo and Liu Journal of Inequalities and Applications 2014, 2014:236
http://www.journalofinequalitiesandapplications.com/content/2014/1/236

A family of important examples are Daubechies wavelets Dyx(x), which are compactly
supported in time domain [14]. They can be smooth enough with increasing supports as
N gets large, although D,y do not have analytic formulas except for N = 1.

As usual, let P; and Q; be the orthogonal projections from L*(R) to V; and W}, respec-
tively,

Pf =) g Qf =) Buwix =P -P)Y.

keZ keZ

The following simple lemma is fundamental in our discussions. We use ||f]|, to denote
I?(R) norm for f € L?(R), and ||A]|, do [,(Z) norm for A € [,(Z), where

1,(Z) := (A= {Mh D ogez MlP < +00}, 1< p<o0;
i {A = {Ax}, supgey |Ak| < +00}, p=o00.

By using Proposition 8.3 in [15], we have the following conclusion.

Lemma 1.1 Let i be a Daubechies scaling function or the corresponding wavelet. Then
there exists ¢y > ¢ > 0 such that, for A = {A} € [,(Z) and 1 < p < oo,

1 1 21 1
a2, < < 227Dl

p

> hihi

keZ

1.2 Besov spaces
One of the advantages of wavelet bases is that they can characterize Besov spaces. To
introduce those spaces (see [15]), we need the Sobolev spaces with integer order W:(R) =
{f € L’(R),f" e [P(R)} and |[f||W£x = |fll, + I[f(")llp. Then L?(R) can be considered as
W; (R).

Forl1<p,q<o00,s=n+a withn € Nand « € (0,1], the Besov spaces are defined by

B, (R):={f € W) (R), {2°w2(f",27)} _, € L,(D)},

je€L
with the associated norm ||f 5, = I[f llwy + ||{2/°‘w;(f(”>,2‘7)}/€Z||1q, where

a);(f, t):= Iitl\lg”f( +2h) =2f(-+h) +f(-) ”p
stands for the smoothness modulus of f. It should be pointed out that B ,(R) = W3(R).
According to Theorem 9.6 in [15], the following result holds.

Lemma 1.2 Let ¢ = Doy be a Daubechies scaling function with large N and ' be the cor-
responding wavelet. If f € I?(R),1 < p,q < 00,5 >0, agx = {f, o), and Bjx = {f, ¥jx), then
the following assertions are equivalent:

0 f B ®;

(ii) lleto, g, + 427221181, 11, Ym0 ly, < +00;

(iii) {275||Pif —fllp}j=0 € lg, where P; is the projection operator to V.

=
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In each case,

Wl ~ oy, + {2 22185, o, ~ I1Paf N + | {25125 £} o,

Here and throughout, A < Bdenotes A < CB for some constant C > 0; A 2> Bmeans B < A;
we use A ~ B standing for both A < Band B < A.

Note that /,, is continuously embedded into /,, for p; < p,. Then the above lemma im-

plies that
Bl (R)c B2 (R) forp; <p;ands — 1 =5y — 1 .
12} 12y n 7

2 Linear wavelet estimation
We shall provide a linear wavelet estimation for a compactly supported density function
fx and its derivatives f)((d) under Fourier-oscillating noises in this section, motivated by the
work of Delaigle and Meister. It turns out that our result generalizes their theorem.

As in [11], we define

p) =30 () s (x-250). @

m=0

Then p € L(R) and p/(t) = (e"% - 1)"f)f(t(t). Delaigle and Meister found that

J
£ =Y mp(x- 7). ©
m=0

where J and 17, depend only on v and the support length of fx.

Let ¢ = Dyy be the Daubechies scaling function with N large enough. Since both fx and
¢ have compact supports, the set Kj := {k € Z: {fx, ¢;x) # 0} is finite and the cardinality
K;| ~ 2. Then with a;x = (i, ¢j),

(@)
PR = e

keK;

It is easy to see o = (-D%(fx, (<,0/,1<)(d)). This with (5) and the Plancherel formula leads to

(-1)¢
oig =
ik 2

J
<Z nmei
m=0

=), [<<p,,k><d>]f’<t>>. (6)

. t : .
Note that p(¢) = (€2 — )9 and (@) VYD) = 22+ dek> Tt [ }(27¢). Then the

Aw

identity (6) reduces to

(_l)d _lidi [fﬂ(d)]ﬁ(z_jt) _ik2 Tt oft
k= [ 2727E(t)——F——¢" (¢)dt (7)
Qi T / fﬁl(t) w
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ant

—1)*. Since the empirical estimator for 2 is Ly e,

where £(t) = Zm o Ime'
it is natural to define a linear wavelet estimator

hn :E:: Qi kP, k (8)
keK;
with
1 @27t Sy
&j,k _ Z Z /2——+d/§( (ﬂ ]ﬁ;() ) —ik2 /telWlt dt. 9)
=1

l’” " reduces to the clas-

When v =d =0, p(x) = fx(x) and n,, = ,,0. Then our estimator
sical linear estimator for the case ﬁ;f having no zeros (see e.g., [2—5]).
Let ¢ be the Daubechies wavelet function corresponding to the scaling function D,y

and Bix = (f'9, ;). Similar to (9), we define

A ( 1) _ +d] ]ﬁ(2 }t) —ik27¢ lWltd
B - f T e L (10)

Then it can easily be seen that Eq;jx = oz, E/.‘?j,k =pixand E rf’s = Pf .
For a < b, L > 0, we consider the subset of B;, q(R),

B, (@b, L):= {f € B, (R): 55, < Lf(x) >0, f f@)dx=1,suppf C [a,] }

b =
in this paper.

Lemma 2.1 Let ¢ = Doy (N large enough), W be the corresponding wavelet and faﬂ satisfy
(2). Iffx € Bifqd(a, b,L),r,q €[l,+00],s> % and 2 < n, then, for p € [1,+00),

A _P i 5 _r
ElGj = gl S 227D, E| By = Bl S mmr 2,

Proof One shows only the first inequality; the second one is similar. Define

d , -
Zig = (;i/z—%ﬂiig( @Y (271) oik2 It Wit gy,
T

Ao
Then &y = % Y 51 Zix and

n

. 1 1
Y > (Zij—EZy) = - > Yir. (11)

I=1 I=1

Clearly, EY;x = 0. One estimates |Y;x| and E|Y), «|? in order to use the Rosenthal in-
L2t

equality: By the assumption (2), |Z;x] < f2*2*d1| v |Vwﬂ7(;”| dat < f2’2*d/(1 +
t

. 8
D1 DV TE) e = [ 2591 + 12E) [P DV @) de S 2D [+ (£ [ DY () de.
Because ¢ = D,y;, the last integration is finite for large N. Hence,

Yixl < 202 S 20D, (12)
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. s+d—
SlncefX € Bs+d(R) CBooq (R) (s > 1) ”fX”oo < 400 and "fW”oo = HfX *ﬁ?”oo = "fX”oo

/5 ]l1 < +00. This with the Parseval identity shows

W —lk2 /t ltydt
f/t

o PTET

N ”fW||oo/’2_7+d}§(t) fg() t) eik27t

Furthermore, one obtains Ele,k <[ |2_%+dj(1 + |t [0 DV QT2 dt < 2@+ thanks
to (2). Hence,

-1)4 J i
i [ f i

2

dt.

EY} = E|Zjy - EZj|* < EZ}, <25, (13)
According to (11) and the Rosenthal inequality,

. (L EYl)S, cl12)

Elajx — ajil’ S - i (p P P
Z[ 1E|Ylk| +n? Z[ 1E|Ylk| )2; Pe[2;+00).

Combining this with (13), one obtains E|&jx — ojxl? < n-aPlerd) for 1 < p <2, which is

the desired conclusion. When p > 2,

E| Ylklp 5 ” Ylk”ng| Ylk|2 5 2j(a+d+%)(p—2)22j(a+d) — 2j(§—l+ap+dp)
due to (12) and (13). Moreover, E|@;x — oj P < nipoili-lrap+dp) | b ojp(e+d) Since 2 < p,

j\ 21
nlfpzj(%’—lmmdp) _ ,,,J% (2_> ojpla+d) <n —’7’2 (a+d)

n

Finally, E|djx — ajxl? S w5 2ire+d)  This completes the proof of the first part of Lem-
ma 2.1. O

Now, we are in a position to state our first theorem.

Theorem 2.1 Letfl‘” be defined by (8)-(9), r,q € [1,+00], p € [1, +00) and s > % Then with

§i=5— (——1—7) and x, = max{0,x},

sup E| plin fX ||17 < n 2 +2a+2d+1
SxeBsabl)

Proof 1t is easy to see that ||f, l’” fx lp S nl‘s fx )||, for r >p, because L ([a b]) is con-
tinuously embedded into Lp([a, b]). Moreover, E||f, l’” fx || l’” fx ||p <(E |[fl”’
(d)r\2 P
fx lI7)r thanks to ]ensens mequahty
Whenr<p,s -+ =s-- and B“d(a,b L)C B, +d(a,b L). Then

swp  Efii -y =  sw ElG-A)
fxeBif(abL) fxeByiab,L)
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Therefore, it suffices to prove the theorem, for r = p,

A7 sp
sup  Elfyty £}, < o (14)
fxeBgfabL)

If fy € By4(R), then £ € B;, (R) and
|2A7 =R < 27 (15)
due to Lemma 1.2. On the other hand, Ayffg - Plf)((d) = Zkek, (6jx — )k and

i d)|p 'E—l A P N
E|fl - AP0 S 25 Eldge - ol <25 sup Eldge — el
keK; kek;

because of Lemma 1.1 and |Kj| ~ 2. This with Lemma 2.1 leads to E| Ayffg - Plf)gd)nﬁ <
(%)[’27 2P@+d)  Combining this with (15), one obtains

. P
A A 2\Z . .
Ef £, S Ela =PRI + 1BA AN < (—) i) | 9,

Take 2 ~ nzwa=a71. Then the inequality (14) follows, and the proof of Theorem 2.1 is
finished. O

Remark 2.1 If p=g=r=2and d =0, then s =35, Bijf(a, b,L) = Wi(a,b,L), Theorem 2.1
reduces to Theorem 4.1 in [11].

. 1
Remark 2.2 From the choice 2 ~ n2+2+24+1 in the proof of Theorem 2.1, we find that our
estimator is not adaptive, because it depends on the parameter s of B; ,(R). In order to
avoid that shortcoming, we study a nonlinear estimation in the next part.

3 Nonlinear estimation
This section is devoted to an adaptive nonlinear estimation, which also improves the con-
vergence rate of the linear one in some cases. The idea of proof comes from [12]. Choose

ro > S,
20 ~ p T and P ~ T, (16)
Let @ and ﬁ/,k be defined by (9) and (10), respectively, and

. B 1Bkl > TV Jjfn,
-

0, otherwise,

where the constant T will be determined in the proof of Theorem 3.1. Then we define a
nonlinear wavelet estimator
Il

f;’;y’(x) = Z &jo,k‘Pjo,k(x) + Z Z Bj,k‘/fj,k(x)»

kEKio Jj=jo kel;
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where Kj; := {k € Z: {fx, gjox) # 0}, and I; := {k € Z: {fx, ¥;x) # 0}. Clearly, the cardinality
|Ij| ~ 2/ since both fx and ¥ have compact supports.

Lemma 3.1 IfjY < u, then there exists cy > 0 such that, for each T > Ty > 0,
3 T jwsd) [ —eoT
P{1Bjx — Bjxl > 52’ Vil <270,
Proof By the definitions of 8 and ﬁj,k, ,3,-,;( —Bjk = % Z?A(Zl,k —EZ;3) = % Z;‘zl Y, where

d o _ —
Zig:= ﬂ / 2—%+diznmeit2”7m (8¥ l)v [W ]tft(z Jt) o2 ke Wit gy
2 =0 AL

n

)»2
_ Lojerar [71] < gexp( - ‘ 17
{Iﬂ,k ,31k|> P e 2(EYZ + 1 Yikllooh/3) 1)

thanks to the classical Bernstein inequality in [15]. On the other hand, E lek +1Yiklloor/3 S
2Ylard) Z(Q*d*l)1127(“+d)\/g < CT2%@*) because of (12), (13), and j2/ < n. Hence,

T2 ]22/(ot+d)
Crra SC], and (17) reduces to

Then EYjy = 0 and with A = 22/ \/7,

ni2
2(EY; k+HY1k||ooA/3) - 2CT22/

o T . . )
P{ |Bik — Bjxkl > 52’(“"”\/1'/11} < 2e7sc) = 90T
with ¢o = % log, e. This completes the proof of Lemma 2.1. 0

Theorem 3.1 Under the assumptions of Theorem 2.1, there exist 6 > 0 and Ty > 0 such
that, for T > Ty,

wp  Ef -0

fxeBifabl)

R T rs] (2a+2d+l)p 7.
(In )™ 5222, re (2s+201+2d+1’ ]
Inn)? 72(s—1/r)s+/127a+24+1 1, a+2d+l)p (18)
(Inn)’n v rell el

Proof Similar to [12], one defines

. S s
= min ) )
K {25+2a+2d+1 2(S—l/r)+2a+2d+1}

and

w:=—sr+(oe+d+%>(p—r). (19)
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It is easy to check that w < 0 holds if and only if > %, and p = 555 as well
as w > 0 ifand only if r < %, and pu = m Then the conclusion of The-

orem 3.1 can be rewritten as

sup EH/‘”"” fx Hp<(lnn ntP, (20)
fxeBifabl)

Choose jo(s, 7, g) and ji(s, 7, q) such that

o (s,7,q) 21 1(8,7,q) 4
D08 A yra2dsi  and 2V« pd

Then it can easily be shown by (16) that 20 < 20679 < 9a6na) < 911 Clearly,

Vst =£010 < 1B (s A + 1D B = AL + 1P - £O18, 1)

where

j1
Digif =YY BixWik-
jojo keZ
1

. " 1 _ 1,1 d . .
By the assumption r < p, s':=s - (; — 1—7) =s—;+5 and B} (a,b,L) is continuously

. ’ . / d / d (d
embedded into B;*¥(a, b, L). Since fy € B;;{ (R), £ € By, (R) and ||P £ ~ (715 < 27057
thanks to Lemma 1.2. This with 21¢"9 < 2/1 and the definition of x leads to

4 Sy < -
|Pur? =10, < 2776 S e, (22)
(d
Note that P, (f79" - £) = ZkeK &gk — @jo 1) @jo k- Then E|| P, (77 — fL)|[ < 205D

ZkeK/O E|dyox - oz,olk|p < 2o 72101’(‘“" due to Lemma 1.1, |K; ,0| ~ 210 and Lemma 2.1. By

. . . 1-2p
20 < /o) and the choice 20679 « y2a2di

2jo(s,r.q)

/2
E” (fnon _ )gd)) HP < ( )p gjo(srg)pla-+d) <nhp, (23)

n
According to (21)-(23), it is sufficient to prove E|| D}, ;, ”"” fx ) < (Inn)? w#: Define
Bj:={k:|Bxl > T\ [jin},  § =B
B;:= {k: 1Bkl > §2/(“*d)/ﬂ7}, Sj=Bj;

Bj:={k:|Bixl >2T2“*/jin}, S =Bf.
Then Do, (77 = £ = e Zkel(ﬁ,k - Btk € By N S} + Itk € B; N B} lYjx —

”0 Zke] ,3,/( I{keS ﬁS’}+1{keS ﬁB}]lﬁ,k—ebs+esh+ebh+ess, where

)il j1
= Z Z(B/'k - Bk e E;’ NS}k esp 1= Z Z Bixl{k € Sj N B]’-}Wj,k,

j=jo kel; j=jo kelj

Page 9 of 15
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1 J1
=Y > (Bx- Bk e BBk  ewi=) Y Bul{k €SN Sk
j=jo kel J=jo kelj

In order to conclude Theorem 3.1, one needs only to show that
Ellesslls + Elless 15 + Elles 15 + Ellegs |l < (Inn)’n 2. (24)

By (16),1—jo ~ Inmand | L1, 15 < G o 117! L, gl S (nmp Yo g 5. This
with Lemma 1.1 shows that, forf x) = ] o defklﬁ;k x), there exists 6 > 0 such that

EIfIZ < (nn)’ sup 2503 E|f P, (25)
Josisih kel;
To estimate E||eys]|, one takesf“;< = (B,k Btk e E N S;}. Then, for each k € B ns;,

B = Biad = 1Byl = 1Bl > 220 [T and B0 S, € Dy o= (h: 1By — Brad > L2 f}
This with the Holder inequality shows

. . . . 1 1
Elfixl? < E\Bjx — BixlP1tk € D}y < (EBjx — Biu|*)* (EItk € Dj}) 2.

Clearly, El{k € ﬁj} = P{|,3Aj,k - Bkl > §2f(”‘*d)\/ilj}. Furthermore, using |[;] < 2/, Lemma 2.1,

A, . . coT .
and Lemma 3.1, one obtains Zkeg EffixlP S22 n~32P@+d)2-"i Moreover, by (25),

ol
Ellebs||p<(lnn) sup # 221(z+‘¥17+d17—f)'
JoSi=h
p+2ap+2dp p B CO_ B vaprdp-9T) <
Choose T' > ====. Then 5 + ap + dp <0, and sup; _;_; 505 <

nh 270(%”“1’*”11’"#) < n i 2j0’ gjore+d) Similar to (23), one has
Elless|l2 S (nm)n. (26)

In the proof of (26), one needs to choose Ty > ¢;!(p + 2ap + 2dp).
Now, one considers E||eg||: For k € S NB;, |/§j,k - Bkl = 1Bkl — |,3],k| > T+ f and
5n B C D;:={k: |,3,k - Bl > T2 \/;}. By Lemma 3.1, EI{k € §; N B) < El{k €

Dy} £ 2707, Since £ € B, (R) C By (R, 16 llp = I 3 lp < 157 N gy 2762219
and

DB EI(k € §0 B} S 1 152707 S A1, 27 E oD,
kel

Moreover, it follows from the definition of ey and (25) that
Elles|? < (Inn)’ sup 2767+0T) < (1n ) 270 PreoT),
josi=ih
By (16), one can choose T > Ms’p (independent of n) so that j1s'p < jo(s'p + ¢ T). Hence,

this above inequality reduces to Elley |5 < (Inn)’277, Similar arguments to (22) lead
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Ellea|l? < (inn)nr. (27)

In this above proof, one needs to choose Ty > (cojo) (1 — jo)s'p.
For E|lep Iy < (Inn)?n~"7, one uses I}l <2, (25), and Lemma 2.1 to find

jo(s,r.q) P
1=E| 3 S (Bu-Boltk e BnBlyje| <(nm  sup  pEoerdry),
J=jo kel » Jo<i<jo(s:r.q)

Recall that jo < jo(s,7,q). Then I < (Inn)? (n~12/0(n0)5 gjolsrapa+d) \which reduces to I <

(Inn)? v~ by similar arguments of (23). It remains to show

p
< (Inn)’n . (28)

Jil
Z Z(/éj,k — Btk € B;NB}Yx

j=jo(s.r.q) kel

II:=E

p

By Lemma 2.1 and the definition of B;, Zke]i E|(/§}-,k - Bk e B; NB}P < Zkel; E|/§/,k -
BixlPItk € B} < 5 e D ke B; 128,k T‘IZ"'(‘“‘”\/FIV. According to Lemma 1.2,
1811 < Ilfx IIB 2/6r+r2-1) Hence,

ZE‘(B\}',/( _ ﬂj,k)l{k c éi mBj}’P 5 }’Z_!% (]n n)éz—j(sn——l ap— dp+ar+dr)
kelj

Combining this above inequality with (25), one obtains

1< (In n)enJ% sup  2°:=A,,
jo(s:ra)<j<ih

where w:= —sr+ (@ + d + %)(p—r)=—sr—%+1§+ap+dp—ar—drasdeﬁnedin(19).

. ) 1-2
When w <0,4, < (In n)en’pT olsr9® By the choice 20679 ~ N Zar2d ,

A, < (ln n)e - 2 n2a+2d+1[ sr+(a+d+1/2)(p-r)] _ (111 n)ﬁn—upnr(u—ﬁ:—zzgﬂs)'

forw <0, p — 124 0and A, < (Inn)?#n 2. Then one obtains the

Since p = Yar2d+1°

2s+2as+2d+l
desired inequality (28).

When w > 0, r<mand/¢=

2s+20+2d+1 Take

!
S—
2(s=1/r)+20+2d+1"

20p +2dp +p -2
2(s——)+2a+2d+1

b1 =

Then &2 pl = up and r < p; in that case. \Xh’chf;< = (ﬁ,,k Bix)itk e B N B;}, one knows from
Lemma 2.1 and the definition of B; that

Zﬂ}k —;a+d \/7‘ <(11’11’l)9 _;2](1, —p1)(cc+d) "/3 |

ZEVHP < 221pa+d)z

kelj keB;
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Since r < p1, B llp; < lIB;.Il»- This with (25) leads to

_p-r1 1(p 2+2ap+2dp _ )
Ellewly S (Inm)’n2" sup [27 20 o) g, ]

jo<j=h

. p—2+2ap+2dp i
Note that 2 21 2@ _ 2/6-3+3) due to the definition of p1, as well as fx €

. . i(s—141
B;,(a,b,L) implies 27+ 2|8, ||, < I 5;,- Then
Ellessl? S (nm)fn™ 7" = (tnn)’n . (29)

Finally, one estimates E ||ess||§: Define f,;k = Bil{k € 3, N S;}. Then

Bs

ZIfk'p < Z'ﬂ]k'p r|ﬂ1k| < (2T2]Ol+d \/7) 2 ]S+7——)V”f‘(d

kel keS’

due to r < p and the definition of S]/.. Using (25) and w := —sr + (¢ + d + %)(p —r) in (19),

one obtains

Elles|l? = E

Z Zf’k 1/f;,

j=jo kel;

(30)

. p-r
nn)?2°y7T, w<0,

i _pr
nn)l2°y7, w>0.

When w < 0, E|| Z’l

iotsra) oker, Btk € 0 Sy < (1nn)9 =3 jolsra)», Recall that

o < 0holdsifand onlyif u = and 20614) ~ n2a+2d+1 . Then it can be checked that

i _pr
2J06rd® =" = =P Hence,

s
25+200+2d+1

1 P
> Budlke§nS | < (nm)fntr. (31)
Jj=jo(srq) kel P

On the other hand, Lemma 1.1 tells that

10 514) 4 Jo(s,r,q)
. E—l
E[ > > ﬁ,,kz/f,, S D20 Y EIBl
J=o - ke§ins; J=lo ke§;ns;

Since k € S}, | Bix| < 2T2/’<a+d>\f§ and Yy ns Bil? S Xiey 27+ (i)’ n% < (Inn)’ x

1_7 . .
n~22/2re+d) Moreover,

105”1

E| > > Budlke§; ms}w,k

Jj=jo ke}]

<(In n)en_g sup 2j(§_1)2/2j”(“+d)
jo<i<jo(s,r.q)

< (Inn) n-3 Qiosraesds o < (1n )0 o, (32)
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. 1-2
where the last inequality comes from the choice 209 ~ n T, Combining this with

(31), one has, for w <0,
el S Unm)" n 7.
Eleslly < (nm)'n " (33)

It remains to show E||ess||p < n ™ for w > 0. By Lemma 1.1,

> Budik e mS}w,k

kel

1/p
~ 3P (Z|ﬂ,,k1{k esn S,»}Ip)

kel

(-1
<2y ||,3j,~||1,,-

This with Lemma 1.2 shows that

P Iz

> Btk € §0 Sk

)T

71(8,7,9) keI
1 lq
+1 l d
f[ > (@, nzp)} < AN, (34)
Jj=i1(5:1.q)

When g =1,

!

2

> Budlkes mS}w,k

J=hlsrq) " kel
< Z 2 Zﬂ;kﬂkeS NS 2 hera)s < grlspa)s
Jisrq) kel;
When g = +o0,

!
> HZﬂ,kl{keS mS}w,k

j=i(sr.q)" kel;

1
< Y 2FA e S (o

j=(s.r.q)
For 1 < g < +00, by the Holder inequality,

1
> HZﬂ,kI{keS msw,k

j=h(srq) " kel

(E-TlEe

=j1(s,7.q) =j1(sr.q

> Btk € 80 Shx

kelj

)]

< 2—1’1(syr,q)s/'
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. u
Using (34) and the choice 21¢"9 ~ 15, one obtains

1
E Z Z’B/’kl{k S Sj n Sj}w/’,k

j=ir(sra) kel

p
< (Inn)’n .
p

On the other hand,
jisra) » .
E| >0 ) Btk e SN S| < (nm)f 2 eraey =
j=jo kel p

thanks to (30). According to the choice of 21679 ~ n¢ and

/

B s—1/r+1/p B s
T2s=1/r)+20+2d+1 2(s—1/r)+ 20 +2d +1

"

r

; = . .
for > 0, one finds 216Dy ="7 < ywr by direct computations. Hence, E ||ess||§ < pHP

~ ~

in each case, which is (33). Now, (24) follows from (26), (27), (29), and (33). The proof is
done. O

Remark 3.1 We find easily from Theorem 2.1 and Theorem 3.1 that the nonlinear wavelet
estimator converges faster than the linear one for r < p. Moreover, the nonlinear estimator
is adaptive, while the linear one is not.

Remark 3.2 This paper studies wavelet estimations of a density and its derivatives with
Fourier-oscillating noises. The remaining problems include the optimality of the above
estimations, numerical experiments as well as the corresponding regression problems.
We shall investigate those problems in the future.
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