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Abstract
In this work, Agranovich-Vishik type abstract elliptic operators in the half-plane are
studied. We derive maximal regularity properties of these operators in UMD-valued
Sobolev spaces. Our main aim is to prove existence and uniqueness theorems for the
solution of abstract elliptic equation with regular boundary conditions on these
function spaces. First, by applying the Fourier multiplier, we prove the separability
properties of this differential operator in R

n. By using the embedding theorem and
the trace theorem, we obtain the main result.
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1 Introduction
Boundary value problems (BVPs) for differential-operator equations (DOEs) in abstract
spaces have been studied extensively by many researchers [–]. The maximal regularity
properties for partial differential equations (PDEs), and, particularly, for elliptic equations
have been studied in [–, –]. The main objective of the present paper is to discuss
the BVP for a general elliptic equation with complex parameter in a Banach space-valued
Sobolev class. Regularity properties in parameter dependent elliptic equations were de-
rived in [] for a polynomial dependence, and in [, , ] for the case of linear depen-
dence of a complex parameter. Here, the complex parameter is included polynomially in
the principal part of the equation.
Consider, on R

n, the following differential operator:

A(D,q) =
∑

|α|+β≤l

aα,βqβDα , ()

depending polynomially on a complex parameter q, of order l with constant complex co-
efficients where β ∈N∪ {}.
We firstly consider the following equation in the whole space:

A(D,q)u =
∑

|α|+β≤l

aα,βqβDαu = f (x), x = (x, . . . ,xn) ∈R
n, ()
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then we prove the separability properties of differential operator () in the Bochner space
Lp(Rn;E) (i.e., E-valued Lp spaces where E is a Banach space). In particular, the existence
and uniqueness of maximal regular solution is derived. In addition, we derive the uni-
formly coercive estimation of the solution in the space Lp(Rn;E).
Let Rn

+ = {x : x ∈ R
n,xn > } and R

n
– = {x : x ∈ R

n,xn < }. We denote x = (x′,xn) =
(x, . . . ,xn). Consider the following BVP:

A(D,q)u =
∑

|α|+β≤l

aα,βqβDαu = f (x), x = (x, . . . ,xn) ∈R
n
+, ()

Bj
(
x′,D,q

)
u =

∑
|α|+β≤m

bαβqβDαu|xn= = gj
(
x′), j = , . . . ,m. ()

gj are trace functions defined on R
n–. The boundary operators Bj are subject to an al-

gebraic condition which we call Condition II (see Section ). Then we prove the isomor-
phism theorem (algebraic and topological) of problem ()-() between E-valued Sobolev

type spaces Wl,p(Rn
+;E) and Wl–m,p(Rn

+;E) × ∏m
j= B

l–mj– 
p

p,p (Rn–;E) (j = , . . . ,m). Since E
is an arbitrary UMD space, the maximal regularity properties of various class of elliptic
BVPs is obtained by choosing a different E. This condition, when q = , becomes the well-
known condition of Shapiro-Lopatinskii [, ], which is often also called the ellipticity
condition for problem ()-(). When q = , the BVP ()-() is considered in a bounded do-
main with sufficiently smooth boundary, satisfying the complementing condition for all
properly elliptic differential operators in [, ]. In addition, Agranovich-Vishik worked
out problem ()-() in a half-plane and domain with sufficiently smooth boundary [].
Extensive references can be found in [] (see also []).
While studying the elliptic operator depending on a parameter q, it will be convenient

for us to use norms depending on the parameter. We put

‖|u‖|l,p =
(‖u‖pl,p + |q|pl‖u‖p,p

) 
p . ()

For any fixed q, the norms ‖u‖l,p and ‖|u‖|l,p are clearly equivalent.

2 Notation and background
The notation follows the usual standard. Let E be a Banach space and Lp(Ω ;E) denotes
the space of strongly measurable E-valued functions that are defined on the measurable
subset Ω ⊂R

n with the norm

‖u‖Lp(Ω ,E) =
(∫

Ω

‖u‖pE dx
) 

p
<∞. ()

The Banach space E is often called a UMD space if the Hilbert operator

(Hf )(x) = lim
ε→

∫
|x–y|>ε

f (y)
x – y

dy

is bounded in Lp(Ω ,E) for  < p < ∞.
The term ‘UMD’ is an abbreviation for ‘unconditional martingale differences’. UMD

spaces include spaces such as Lp, lp for p ∈ (,∞).
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Let l be an integer≥ . The E-valued Sobolev space,Wl,p(Ω ;E), of order l onΩ is defined
by

Wl,p(Ω ;E) =
{
u
∣∣∣u ∈ Lp(Ω ;E),Dαu ∈ Lp(Ω ;E), |α| ≤ l,

‖u‖l,p = ‖u‖Wl,p(Ω ;E) =
∑
|α|≤l

∥∥Dαu
∥∥
Lp(Ω ;E) < ∞

}
, ()

where

Dα =
∂α+···+αn

∂xα
 · · · ∂xαn

n
, α = (α, . . . ,αn) ∈N

n, |α| = α + · · · + αn.

We shall set

Lp(Ω ,E) =W ,p(Ω ,E).

By S = S(Rn;E), we denote the Schwartz space of rapidly decreasing smooth functions.
Let F denote the E-valued Fourier transform and let  < p < ∞. A function ψ ∈ C(Rn) is
called a multiplier from Lp(Rn;E) to Lp(Rn;E) if the mapping f → Tψ f = F–ψ(ξ )Ff for
f ∈ S(Rn;E) is well defined and provided that there is a constant C so that

‖Tψ f ‖Lp(Rn ;E) ≤ C‖f ‖Lp(Rn ;E).

The norm of ψ inMp(E) is defined by

‖ψ‖Mp(E) = ‖Tψ‖Lp(Rn ;E)→Lp(Rn ;E).

Letmi be positive integers, ki be non-negative integers, si be positive numbers andmi >
si – ki > , i = , , . . . ,n, s = (s, s, . . . , sn), ≤ p≤ ∞,  ≤ q ≤ ∞,  < y < ∞. The E-valued
Besov spaces Bs

p,q(Ω ;E) are defined as

Bs
p,q(Ω ;E) =

{
f : f ∈ Lp(Ω ;E),‖f ‖Bsp,q(Ω ;E) = ‖f ‖Lp(Ω ;E)

+
n∑
i=

(∫ h


h–[(si–ki)q+]

∥∥Δ
mi
i (h,Ω)Dki

i f
∥∥q
Lp(Ω ;E) dh

) 
q
< ∞

}

for  ≤ q < ∞. For q =∞, recall that

‖f ‖Bsp,∞(Ω ;E) =
n∑
i=

sup
<h<h

‖Δmi
i (h,Ω)Dki

i f ‖Lp(Ω ;E)

hsi–ki
.

The definition of Bs
p,q(Ω ;E) is independent ofmi and ki.

Let Ω be a domain in R
n. A linear operator T mapping Wm,p(Ω ;E) into Wm,p(Rn;E) is

called an extension forΩ provided that, for every u ∈Wm,p(Ω ;E), the equalityTu(x) = u(x)
holds a.e. in Ω , and for eachm there is a constant K such that

‖Tu‖Wm,p(Rn ;E) ≤ K‖u‖Wm,p(Ω ;E). ()
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Now, we shall give some theorems which will be used to prove the maximal regularity
properties of elliptic differential equations in E-valued Sobolev spaces.
By using [] and an interpolation of Banach spaces (see [–, , , ]), we obtain the

following.

Theorem  (Trace theorem) Let E be a UMD space. Then the transformations

u→ ujxn
(
x′, 

)
, j = , , . . . ,m – ,

are bounded, linear, and surjective from Wm,p(Rn
+;E) into B

m–j– 
p

p,p (Rn–;E).

Proof It is clear that

Wm,p(Rn
+;E

)
=Wm,p(R+;Wm,p(

R
n–;E

)
,Lp

(
R

n–;E
))
.

Then by the virtue of the trace theorem of [], the operator

u→ ujxn
(
x′, 

)
will be linear, bounded, and surjective from Wm,p(Rn

+;E) into (Wm,p(Rn–;E),Lp(Rn–;
E)) j+ 

p
m ,p

.

It is well known that (see, for example, [])

(
Wm,p(

R
n–;E

)
,Lp

(
R

n–;E
))

j+ 
p

m ,p
= B

m–j– 
p

p,p
(
R

n–;E
)
.

This completes the proof. �

Theorem  (Extension theorem) Let E be a UMD-space. Then there exists a bounded
linear extension operator from Wm,p(Rn

+;E) to Wm,p(Rn;E).

Proof By virtue of [], the restriction to R
n
+ of a function in C∞

 (Rn;E) is dense in
Wm,p(Rn

+;E) for any m and p. So, we define the extension operator T only for such func-
tions. Letψ ∈ C∞([,∞)) be a real-valued function satisfyingψ(t) =  if t ∈ [,  ],ψ(t) = 
if t ≥ . Let u ∈ C∞

 (Rn;E). Then we set

Tu(x) =

{
u(x), if x ∈ R

n
+,∑∞

k= akf (–kxn)u(x′, –kxn), if x ∈R
n
–,

where ak is a sequence defined as follows:

∞∑
k=

nkak = (–)n, n≥  ()

and

∞∑
k=

nk|ak| < ∞. ()
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It is clear that Tu has compact support in C∞(Rn
+;E)∩C∞(Rn

–;E). If x ∈R
n
–, we have

DαTu(x) =
∞∑
k=

ak
αn∑
j=

(
αn

j

)(
–k

)αn f αn–j
(
–kxn

)
Dj

nD
α′
u
(
x′, –kxn

)
,

which we write

DαTu(x) =
∞∑
k=

Ψk(x). ()

Since Ψk(x) =  when –xn > 
k– , it follows from () that the above series converges abso-

lutely and uniformly as xn tends to zero. Using (), we get

lim
xn→–

DαTu(x) = lim
xn→+

DαTu(x) =DαTu().

Hence, we say that DαTu ∈ C∞
 (Rn;E). Moreover, if |α| ≤m,

∥∥Ψk(x)
∥∥p
E ≤ Kp

 |ak|pkmp
∑

|β|≤m

∥∥Dβu
(
x′, –kxn

)∥∥p
E ,

where K depends onm, p, n, and f . Integrating over Rn
–,

{∫
Rn–

‖Ψk‖pE
} 

p
≤ K|ak|km

{(

k

) ∑
|β|≤m

∫
Rn–

∥∥Dβu
(
x′, –kxn

)∥∥p
E dx

} 
p
.

Hence

‖Ψk‖W,p(Rn–;E) = K|ak|km
{ ∑

|β|≤m

∫
R
n
+

∥∥Dβu(y)
∥∥p
E dy

} 
p

= K|ak|km‖u‖Wm,p(Rn
+;E). ()

It follows from ()-() that

∥∥DαTu
∥∥
Lp(Rn–;E)

≤ K‖u‖Wm,p(Rn
+;E)

∞∑
k=

|ak|km ≤ K‖u‖Wm,p(Rn
+;E).

It is obvious that

∥∥DαTu
∥∥
Lp(Rn

+;E)
≤ K‖u‖Wm,p(Rn

+;E).

Combining these, we obtain

‖Tu‖Wm,p(Rn ;E) ≤ K‖u‖Wm,p(Rn
+;E),

with K = K (m,p,n). Thus, the proof is finished. �

By virtue of [] we state the following theorems.
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Theorem  (Embedding theorem) Let E be a UMD space and α = (α, . . . ,αn), |α| ≤ m,
 ≤ μ ≤ |α|

m . Then the embedding

DαWm,p(
R

n
+;E

)
↪→ Lp

(
R

n;E
)

()

is continuous, and for all u ∈Wm,p(Rn
+;E) and  < h < h, the following estimate holds:

∥∥Dαu
∥∥
Lp(Rn

+;E)
≤ hμ‖u‖Wm,p(Rn

+;E) + h–(–μ)‖u‖Lp(Rn ;E). ()

Theorem  (Fourier multiplier theorem) Let E be a UMD space and ψ be a Cn+ function
defined on Rn. Assume there is a constant cψ such that for all multi-indices α satisfying
|α| < n +  we have

|x||α|∣∣Dαψ(x)
∣∣ < cψ . ()

Then for  < p < ∞ the operator Tψ , which is defined as F–ψF , has an extension to
LP(Rn;E) which satisfies

‖Tψ f ‖Lp ≤ cp‖f ‖Lp .

The constants cp depend only on cψ , n, and p (see []).

3 Elliptic problem inR
n

We shall consider the equation

A(D,q)u(x,q) = f (x,q) ()

in the whole space Rn, where A(D,q) is a differential operator with constant complex co-
efficients depending polynomially on a complex parameter q in such a way that, after re-
placing D = (D, . . . ,Dn) by ξ = (ξ, . . . , ξn), we get a homogeneous polynomial A(ξ ,q) of
degree s. Here, s is a non-negative integer. We symbolize it as

A(D,q) =
∑

|α|+β≤s

aαβqβDα ()

and the symbol of the operator is as follows:

A(ξ ,q) =
∑

|α|+β≤s

aαβqβξα .

The parameter varies among the limits of a closed sector Q of the complex plane, with
vertex at the origin of coordinates. That is,

Q = {q : α ≤ argq ≤ β}.

We begin our analysis by proving Proposition  with the help of Theorem .

http://www.journalofinequalitiesandapplications.com/content/2014/1/233
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Proposition  Let E be a UMD space. For l ≥ s, the operator A(D,q) is a bounded operator
from Wl,p(Rn;E) to Wl–s,p(Rn;E).More precisely, we have the following estimate:

‖Au‖Wl–s,p + |q|l–s‖Au‖Lp ≤ C′

{∥∥u(x,q)∥∥Wl,p + |q|l‖u‖Lp

}
, ()

where the constants C′
 and C′

 are independent of q and u.

Proof Let u ∈ Wl,p(Rn;E) be any function. By taking the norm of A(D,q)u, and using ()
and interpolation, we obtain

‖|Au‖|l–s,p = ‖Au‖l–s,p + |q|l–s‖Au‖,p

=
∑

|γ |≤l–s

∥∥∥∥ ∑
|α|+β≤s

aαβqβDα+γu
∥∥∥∥
,p

+ |q|l–s
∥∥∥∥ ∑

|α|+β≤s

aαβqβDαu
∥∥∥∥
,p

=
∑

|γ |≤l–s

∥∥as,Ds+γu + · · · + a,sqsu
∥∥
,p

+ |q|l–s∥∥as,Dsu + · · · + a,sqsu
∥∥
,p

≤
∑

|γ |≤l–s

∥∥as,Ds+γu
∥∥
,p + · · · +

∑
|γ |=l–s

∥∥a,sqsu∥∥
,p

+ |q|l–s{∥∥as,Dsu
∥∥
,p + · · · + ∥∥a,sqsu∥∥

,p

}
≤

∑
|γ |≤l

∥∥as,Dγu
∥∥
,p + · · · + |q|l‖a,su‖,p.

Since the coefficients of the operator A are constants, by using Theorem , we obtain

‖|Au‖|l–s,p
(
R

n;E
) ≤ C

{∑
|γ |≤l

∥∥Dγu
∥∥
,p + · · · + |q|l‖u‖,p

}
= C‖|u‖|l,p

(
R

n;E
)
,

where C is chosen such that C =max{aj,k : j,k = , . . . ,m}. This completes the proof. �

We require the following conditions.

Condition I
(a) If |ξ | + |q| �= , then A(ξ ,q) �=  for all q ∈Q and ξ ∈R

n (ξ �= ).
(b) We suppose A(ξ ,q)≥M(|ξ |s + |q|s)– holds for all q ∈Q and ξ ∈ R

n (ξ �= ), where
M is a constant.

The main conclusion of this section is the following result.

Theorem  Suppose that Condition I is satisfied, l ≥ s, and  < p < ∞. Then for f ∈
Wl–s,p(Rn;E) there exists one and only one solution u ∈Wl,p(Rn;E) of problem ().More-
over, the coercive uniform estimate holds:

‖|u‖|Wl,p ≤ C‖|f ‖|Wl–s,p ()

for |q| > q where the constant C is independent of q and u.

http://www.journalofinequalitiesandapplications.com/content/2014/1/233
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Proof First of all, we will prove that there is a solution u ∈ Wl,p(Rn;E). Consider the equa-
tion

A(D,q)u(x,q) =
∑

|α|+β≤s

aαβqβDαu(x,q) = f (x,q). ()

Applying the Fourier transformation F to both sides of (), we get

A(ξ ,q)Fu(x,q) = Ff (x,q), A(ξ ,q) =
∑

|α|+β=s

aαβqβξα . ()

By Condition I, for a non-vanishing q ∈ Q, ξ ∈ R
n we have A(ξ ,q) �= . Hence, from ()

we obtain

û(ξ ,q) = A–(ξ ,q)f̂ (ξ ,q).

Now, we rewrite the inequality () as follows:

∑
|α|≤l

∥∥Dαu
∥∥
Lp + |q|l‖u‖Lp ≤ C

{ ∑
|β|≤l–s

∥∥Dβ f
∥∥
Lp + |q|l–s‖f ‖Lp

}
.

Moreover, by using the Fourier transformation, we see that the above estimate is equiva-
lent to

∑
|α|≤l

∥∥F–(iξ )αû
∥∥
Lp
+ |q|l∥∥F–û

∥∥
Lp

≤ C
{ ∑

|β|≤l–s

∥∥F–(iξ )β f̂
∥∥
Lp
+ |q|l–s∥∥F– f̂

∥∥
Lp

}
.

Replacing û with A–(ξ ,q)f̂ we obtain
∑
|α|≤l

∥∥F–(iξ )αA–(ξ ,q)f̂
∥∥
Lp + |q|l∥∥F–A–(ξ ,q)f̂

∥∥
Lp

≤ C
{ ∑

|β|≤l–s

∥∥F–(iξ )β f̂
∥∥
Lp + |q|l–s∥∥F– f̂

∥∥
Lp

}
.

We have to verify the following inequality to finish the proof:
∑
|α|≤l

∥∥F–(iξ )αA–(ξ ,q)f̂
∥∥
Lp + |q|l∥∥F–A–(ξ ,q)f̂

∥∥
Lp

≤ C
∥∥∥∥F–

( ∑
|β|≤l–s

(iξ )β + ql–s
)
f̂
∥∥∥∥
Lp
.

Let us rewrite the inequalities as follows:
∥∥∥∥F–

∑
|α|≤l(iξ )αA–(ξ ,q)∑
|β|≤l–s(iξ )β + ql–s

( ∑
|β|≤l–s

(iξ )β + ql–s
)
f̂
∥∥∥∥
Lp(Rn ;E)

+
∥∥∥∥F– |q|lA–(ξ ,q)∑

|β|≤l–s(iξ )β + ql–s

( ∑
|β|≤l–s

(iξ )β + ql–s
)
f̂
∥∥∥∥
Lp(Rn ;E)

≤ C
∥∥∥∥F–

( ∑
|β|≤l–s

(iξ )β + ql–s
)
f̂
∥∥∥∥
Lp(Rn ;E)

.

http://www.journalofinequalitiesandapplications.com/content/2014/1/233
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Define the following functions:

ψ(ξ ,q) = |q|lA–(ξ ,q)
( ∑

|β|≤l–s

(iξ )β + ql–s
)–

,

ψ(ξ ,q) =
∑
|α|≤l

(iξ )αA–(ξ ,q)
( ∑

|β|≤l–s

(iξ )β + ql–s
)–

.

In order to prove the above estimate, we have to show that the functions ψ(ξ ,q) and
ψ(ξ ,q) are Fourier multipliers in Lp(Rn;E). By applying the multiplier theorem (see, for
example, [, ]), we will show that ψk ∈ Cn+(Rn;B(E)), k = , , for |α| ≤ n + . That is,

|ξ |α∣∣Dαψi(ξ ,q)
∣∣ ≤ Cψi , i = , . ()

For every k ∈N there exists a constant Cn,k such that

|ξ |k ≤ Cn,k
∑
|β|=k

∣∣ξβ
∣∣, ()

where ξ = (ξ, . . . , ξn).
Let |α| = . Using the inequality () and Condition I(a) we find that

|q|l ≤ C
∣∣A(ξ ,q)∣∣(|ξ |l–s + |q|l–s), ()

where C is a constant depending on ψ. Similarly, we can apply the same process to
|ψ(ξ ,q)| ≤ C to obtain

|ξ |l ≤ C
∣∣A(ξ ,q)∣∣(|ξ |l–s + |q|l–s), ()

where C is also a constant depending onψ. If we choose C′ =max{C,C}, we obtain the
following inequality from ()-():

|ξ |l–s|q|l–s
(|ξ |l–s + |q|l–s)

(|ξ |s + |q|s) ≤ C′∣∣A(ξ ,q)∣∣. ()

Because ξ and q are not zero at the same time, and |ξ |l–s|q|l–s
(|ξ |l–s+|q|l–s) is bounded as ξ and q tend

to infinity, we can write

(|ξ |s + |q|s) ≤ C
∣∣A(ξ ,q)∣∣, ()

where C is a constant that does not dependent on ξ or q. That is, we get |ψ(x)| ≤ C and
|ψ(x)| ≤ C. Let α = α = · · · = αk– = αk+ = · · · = αn = , and αk = . Then, by using the
boundedness of ψ, we obtain

|ξk|
∣∣∣∣ ∂

∂ξk
ψ(ξ ,q)

∣∣∣∣
≤ |ξk||q|l

∣∣∣∣ ∂

∂ξk

(∑
|α|≤l
β≤s

cαβqβξ ′α′
ξ

αk
k

)–∣∣∣∣
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= |q|l
∣∣∣∣
(

αk
∑
|α|≤l
β≤s

cαβqβξ ′α′
ξ

αk
k

)(∑
|α|≤l
β≤s

cαβqβξ ′α′
ξ

αk
k

)–∣∣∣∣
= αk|q|l ≤ C,

where ξ ′ = (ξ, . . . , ξk–, ξk+, . . . , ξn) and α′ = (α, . . . ,αk–,αk+, . . . ,αn).
In a similar way, we obtain the above estimate for all α with |α| ≤ n + . Then we have

|ξ |α|Dαψ(x)| ≤ C.Moreover, applying the sameoperationswe obtain |ξ |α|Dαψ(c)| ≤ C.
That is, the functions ψ, ψ are multipliers in Lp(Rn;E). Hence, we find that there is a
solution u ∈Wl,p(Rn;E) for f ∈Wl–s,p(Rn;E) and the coercive estimate () holds.
Finally, to show that the solution is unique, we use the inequality (). Suppose that

there are two solutions u and u satisfying Au = f and Au = f . If we subtract Au = f
from Au = f we get

A(u – u) = .

Hence, by the estimate () we obtain

‖|u – u‖|Wl,p(Rn ;E) ≤ C‖|‖|Wl–s,p(Rn ;E) ⇒ ‖|u – u‖|Wl,p(Rn ;E) = ,

which implies that u = u. �

4 Elliptic problem in the half-space
In this section, we consider the following boundary value problem:

A(D,q)u≡
∑

|α|+β≤m

aαβqβDαu = f (x), x ∈R
n
+, ()

Bj
(
x′,D,q

)
u =

∑
|α|+β≤m

bαβqβDαu|xn= = gj
(
x′), j = , . . . ,m. ()

Here x′ = (x, . . . ,xn–); A(D,q) and Bj(D,q) denote the differential operator with constant
complex coefficients depending on a complex parameter q. By replacing D by ξ we ob-
tain homogeneous polynomials A(ξ ,q) and Bj(ξ ,q) in (ξ, . . . , ξn,q) of degree m and mj,
respectively. The parameter q is the same as before.
The operators in () and () can be connected as follows:

N =
{
A(D,q),B(D,q),B(D,q), . . . ,Bm(D,q)

}
. ()

First, by using the embedding theorem (Theorem ) and the trace theorem (Theorem )
in the spaceWl,p(Rn

+;E), we obtain the following.

Proposition  Let E be a UMD space and l ≥ m be an integer. Then N is a bounded

linear operator from Wl,p(Rn
+;E) to Wl–m,p(Rn

+;E) × ∏m
j= B

l–mj– 
p

p,p (Rn–;E) (j = , . . . ,m).
Moreover, we have the estimate

‖|Au‖|Wl–m,p +
m∑
j=

‖|gj‖|
B
l–mj–


p

p,p

≤ C′′
 ‖|u‖|Wl,p , ()

where the constant C′′
 does not depend on q or u.
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Let F ′ denote the Fourier transform with respect to x′ = (x, . . . ,xn–). By applying the
Fourier transformation F ′ in problem ()-() with respect to x′ (x′ → ξ ′), supposing
that f = , and by replacing xn with y, we get the problem on the half-line

A
(

ξ ′, –i
d
dy

,q
)
v(y) = , y > , ()

Bj

(
ξ ′, –i

d
dy

,q
)
v(y)

∣∣∣∣
y=

= hj, j = , . . . ,m, ()

depending on the parameters ξ ′ and q.
We denote by λ+

j (ξ ′,q) the roots of A(ξ ′,λ,q) with positive imaginary part and we set

A+
(
ξ ′,λ,q

)
=

m∏
j=

(
λ – λ+

j
(
ξ ′,q

))
=

m∑
k=

c+k
(
ξ ′,q

)
λm–k ,

where the coefficients c+k (ξ ′,q) are analytic functions of ξ ′ ∈R
n– and ξ ′,q �= , and they are

homogeneous of degree k. Moreover, for every rectifiable Jordan curve γ in the complex
plane which encircles all the roots λ+

j (see []) we have


π i

∫
γ

A+
m–j–(ξ ′,λ,q)
A+(ξ ′,λ,q)

λk dλ = δjk ,  ≤ j ≤m – , ≤ k ≤m – , ()

where A+
m–j–(ξ ′,λ,q) is defined as follows:

A+
m–j–

(
ξ ′,λ,q

)
=

m–j–∑
k=

c+k
(
ξ ′,q

)
λm–j––k .

Condition II For |ξ ′| + |q| �= , q ∈ Q and ξ ′ ∈Rn–, the polynomials

B
(
ξ ′,λ,q

)
,B

(
ξ ′,λ,q

)
, . . . ,Bm

(
ξ ′,λ,q

)
()

in λ are linearly independent modulo

A+
(
ξ ′,λ,q

)
=

m∏
j=

(
λ – λ+

j
(
ξ ′,q

))
.

Let

Bj
(
ξ ′,λ,q

)
=QjA+(ξ ′,λ,q

)
+ B′

j
(
ξ ′,λ,q

)
.

Condition II is equivalent to the fact that, if B′
j is given by

B′
j(ξ ,q) =

m–∑
k=

b′
jk
(
ξ ′,q

)
λk ,

the determinant of thematrix {b′
jk} is not equal to zero for all ξ ′ ∈R

n– such that |ξ ′|+ |q| �=
, q ∈Q (see []).
For q =  this condition is the same as the Shapiro-Lopatinskii condition.
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Proposition  Assume that Condition I holds. Then Condition II is equivalent to the fact
that problem ()-() admits a solution belonging to S(R+;E), for all hj ∈ E, j = , . . . ,m–.

Proof Assume that Condition II is satisfied and let hi : Rn– × C → E, i = , . . . ,m – , be
m given E-valued functions and ξ ′ (�= ) ∈ R

n. Then, since the determinant of the matrix
{b′

ij}m–
i,j= does not vanish, the system

m–∑
j=

b′
ij
(
ξ ′,q

)
vj

(
ξ ′,q

)
= hi, i = , . . . ,m – ,

has unique E-valued solutions {vj(ξ ′,q)}m–
j= which depend on ξ ′ and q. We set, in a similar

way to [],

u
(
ξ ′,xn,q

)
=


π i

∫
γ

m–∑
j=

vj
(
ξ ′,q

)M+
m–j–(ξ ′,λ,q)
M+(ξ ′,λ,q)

eixnλ dλ,

where γ is a rectifiable Jordan curvewhich encircles the roots λ+
k (ξ ′,q) ofA(ξ ′,λ,q) (see [],

p.). Here, the function u(ξ ′,xn,q) is also an E-valued function, and it satisfies (); fur-
thermore, in a similar way to [], we find that it also satisfies the boundary conditions ().
Hence, u is a unique solution of ()-(). �

Theorem  Suppose that Conditions I and II are satisfied. Let l be an integer greater
than m and  < p < ∞. Assume E is a UMD-space. Then, with a non-vanishing q ∈ Q,

for any functions f ∈ Wl–m,p(Rn
+;E) and gj ∈ B

l–mj– 
p

p,p (Rn–;E) there is a unique solution
u ∈ Wl,p(Rn

+;E) of problem ()-(). In addition, for |q| ≥ q >  the following uniformly
coercive estimate holds:

‖|u‖|Wl,p ≤ C

{
‖|f ‖|Wl–m,p +

m∑
j=

‖|gj‖|
B
l–mj–


p

p,p

}
, ()

where the constant C does not depend on q or u.

Proof Let T be the extension operator from Wl,p(Rn
+;E) to Wl,p(Rn;E). By the extension

theorem (Theorem ), T is a bounded linear operator from Wl,p(Rn
+;E) to Wl,p(Rn;E).

First, we consider the equation

A(D,q)ũ = Tf , x ∈R
n. ()

By using the Fourier transformation, we find that () has a solution expressed as

ũ = F–A–(ξ ,q)F(Tf ). ()

The following estimate holds:

‖|ũ‖|Wl,p(Rn ;E) ≤ C‖|Tf ‖|Wl–m,p(Rn ;E). ()
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By Theorem , this solution belongs toWl,p(Rn;E); so its restriction u = ũ|Rn
+ belongs to

Wl,p(Rn
+;E).

Then the following estimate holds:

‖|u‖|Wl,p(Rn
+;E) ≤ C‖|f ‖|Wl–m,p(Rn

+;E). ()

Now, we consider the problem

A(D,q)u = , x ∈ R
n
+, ()

Bj(D,q)u|xn= = gj – gj, ()

where

gj = Bj(D,q)u|xn=, j = , . . . ,m ()

such that, by virtue of the trace theorem (Theorem ), gj ∈ B
l–mj– 

p
p,p (Rn–;E).

First, we have to show that problem ()-() has a unique solution u ∈Wl,p(Rn
+;E) and

that the following estimate holds:

‖|u‖|Wl,p(Rn
+;E) ≤ C

m∑
j=

‖|gj – gj‖|
B
l–mj–


p

p,p (Rn–;E)
()

with a constant C independent of q or of the functions considered. Then it is clear that
u = u + u is a solution of (), and by Proposition  and () the following estimate is
satisfied:

‖|gj‖|
B
l–mj–


p

p,p

≤ C‖|u‖|
B
l–mj–


p

p,p

≤ CC‖|f ‖|Wl–m,p . ()

Moreover, by using the trace theorem (Theorem ) and estimate (), we get

‖|u‖|Wl,p ≤ ‖|u‖|Wl,p + ‖|u‖|Wl,p

≤ C‖|f ‖|Wl–m,p +C

m∑
j=

‖|gj‖|
B
l–mj–


p

p,p

+C

m∑
j=

‖|gj‖|
B
l–mj–


p

p,p

≤ C‖|f ‖|Wl–m,p +C

m∑
j=

‖|gj‖|
B
l–mj–


p

p,p

with constants C, C independent of q and u.
Thus, it suffices to prove that the problem

A(D,q)u(x) = , x ∈R
n
+, ()

Bj(D,q)u(x)|xn= = gj (j = , . . . ,m) ()

has a unique solution u ∈ Wl,p(Rn
+;E) and that estimate () holds.
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Applying the Fourier transformation with respect to x′ = (x, . . . ,xm) to problem ()-
(), we obtain

A
(
ξ ′,Dn,q

)
F ′u = , ()

Bj
(
ξ ′,Dn,q

)
F ′u|xn= = F ′gj (j = , . . . ,m). ()

Now we apply Proposition  to solve problem ()-(). We find that problem ()-()
has a solution u ∈Wl,p(Rn

+,E), and it is obvious that this solution is unique. This completes
the proof of the theorem. �

5 Application
Let E = lq, where

lq =

{
u = {uk}∞k= :

( ∞∑
k=

|uk|q
) 

q

= ‖u‖lq < ∞
}
. ()

Consider the BVP for a system of elliptic equations in Rn

Lk(x,D)u =
∑

|α|+β≤s

akαβqβDαu = fk , k = , . . . ,N , s,N ∈N,x ∈ R
n, ()

where akαβ , k = , . . . ,N , are complex coefficients.

Theorem Let Condition I hold.Then for fk ∈Wl–s,p(Rn; lq), p,q ∈ (,∞) there is a unique
solution u ∈Wl,p(Rn; lq) of problem () and the following coercive estimate holds:

‖|u‖|Wl,p(Rn ;lq) ≤ K‖|f ‖|Wl–s,p(Rn ;lq).

Now, consider the BVP for system of elliptic equations in R
n
+ as follows:

{
Lk(x,D)u =

∑
|α|+β≤m akαβqβDαu = fk , k = , . . . ,N ,N ∈N,

Bkju|xn= =
∑

|α|+β≤mkj
bkαβjqβDαu|xn= = gkj, x ∈R

n
+,

()

wheremkj ≤ m – , and akαβ and bkαβj are complex coefficients.
From Theorem  we obtain the following.

Theorem  Let Conditions I and II hold. Then for fk ∈ Wl–s,p(Rn
+; lq), p,q ∈ (,∞) and

gkj ∈ B
l–mkj– 

p
p,p (Rn–; lq), problem () has a unique solution u ∈Wl,p(Rn

+; lq) and the uniform
coercive estimate

‖|u‖|Wl,p(Rn
+;lq) ≤ K

{
‖|f ‖|Wl–m,p(Rn

+;lq) +
m∑
j=

‖|bkj‖|
B
l–mkj–


p

p,p (Rn–;lq)

}

holds.
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