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Abstract
In this paper, we establish the generalized Hyers-Ulam stability problem of radical
quadratic functional equations f (

√
x2 + y2) = f (x) + f (y) in fuzzy Banach spaces via the

direct and fixed point methods.
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1 Introduction
The stability problem concerning the stability of group homomorphisms of functional
equations was originally introduced by Ulam [] in . The famous Ulam stability prob-
lem was partially solved by Hyers [] for a linear functional equation of Banach spaces.
Hyers’ theorem was generalized by Aoki [] for additive mappings and by Rassias [] for
linear mappings by considering an unbounded Cauchy difference. The paper of Rassias
has had a lot of influence in the development of what we call the generalized Hyers-Ulam
stability of functional equations. A generalization of Rassias’ theorem was obtained by
Gǎvruta [] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Rassias’ approach. Cădariu and Radu [] applied the fixed point method to
the investigation of the Jensen functional equation. They could present a short and sim-
ple proof (different from the direct method initiated by Hyers in ) for the generalized
Hyers-Ulam stability of the Jensen functional and the quadratic functional equations.
The functional equation

f (x + y) + f (x – y) = f (x) + f (y) (.)

is called a quadratic functional equation. Quadratic functional equations were used to
characterize inner product spaces. In particular, every solution of the quadratic equation
is said to be a quadratic mapping. The generalized Hyers-Ulam stability problem for the
quadratic functional equation (.) was proved by Skof []. Recently, the stability problem
of the radical quadratic functional equations in various spaces was proved in the papers
[–].
In , Katsaras [] defined a fuzzy norm on a linear space to construct a fuzzy vector

topological structure on the space. Some mathematicians have defined fuzzy norms on a
vector space from various points of view [–]. Cheng and Mordeson [] introduced
a definition of fuzzy norm on a linear space in such a manner that the corresponding
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induced fuzzymetric is of the Kramosil andMichálek type []. In , Bag and Samanta
[] modified the definition of Cheng and Mordeson by removing a regular condition.
Also, they investigated a decomposition theorem of a fuzzy norm into a family to crisp
norms and gave some properties of fuzzy norm. The fuzzy stability problems of several
functional equations have been extensively investigated by a number of authors and there
are many interesting results concerning these problems [, –].
In the sequel, we use the definitions and some basic facts concerning fuzzy Banach

spaces given in Bag and Samanta [].

Definition . Let X be a real linear space. A function N : X ×R → [, ] is called a fuzzy
norm on X if, for all x, y ∈ X and s, t ∈R, N satisfies the following conditions:
(N) N(x, t) =  for all t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t/|c|) for all c ∈R with c �= ;
(N) N(x + y, s + t)≥min{N(x, s),N(y, t)};
(N) N(x, ·) is a nondecreasing function of R and limt→∞ N(x, t) = ;
(N) for all x ∈ X with x �= , N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed linear space.

Example . Let (X,‖ · ‖) be a normed linear space and let α,β > . Then

N(x, t) =

⎧⎨
⎩

αt
αt+β‖x‖ , t > ,x ∈ X;

, t ≤ ,x ∈ X,

is a fuzzy norm on X.

Definition . Let (X,N) be a fuzzy normed linear space.
() A sequence {xn} in X is said to be convergent to a point x ∈ X if, for any ε >  and

t > , there exists n ∈ Z
+ such that N(xn – x, t) >  – ε for all n≥ n. In this case, x is

called the limit of the sequence {xn}, which is denoted by x = limn→∞ xn.
() A sequence {xn} in X is called a Cauchy sequence if, for any ε >  and t > , there

exists n ∈ Z
+ such that N(xn+p – xn, t) >  – ε for all n≥ n and p ∈ Z

+.
() If every Cauchy sequence is convergent, then the fuzzy norm is said to be complete

and the fuzzy normed linear space is called a fuzzy Banach space.

A mapping f : X → Y between fuzzy normed linear spaces X and Y is said to be con-
tinuous at a point x ∈ X if, for any sequence {xn} in X converging to a point x ∈ X, the
sequence {f (xn)} converges to f (x). If f : X → Y is continuous at every point x ∈ X, then
f is said to be continuous on X.

Example . Let N :R×R→ [, ] be a fuzzy norm on R defined by

N(x, t) =

⎧⎨
⎩

t
t+‖x‖ , t > ;

, t ≤ .

Then (R,N) is a fuzzy Banach space.
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In this paper, we establish the generalized Hyers-Ulam stability problem of a radical
quadratic functional equation f (

√
x + y) = f (x) + f (y) in fuzzy Banach spaces via the di-

rect and fixed point methods.

2 Fuzzy stability of the radical quadratic functional equations
In this section, we study a fuzzy version of the generalized Hyers-Ulam stability of func-
tional equationwhich approximate uniformly a radical quadraticmapping in fuzzy Banach
spaces.

2.1 The direct method
Theorem . Let � ∈ {–, } be fixed, (Y ,N) be a fuzzy Banach space and φ :R → [,∞)
be a mapping such that

�(x, y) :=
∞∑

n= –�



�n φ

(


�n
 x, 

�n
 y

)
+ φ

(


�n+
 x, 

)
<∞ (.)

for all x, y ∈R. Suppose that f :R→ Y is a mapping with f () =  such that, for all t > ,

lim
t→∞N

(
f
(√

x + y
)
– f (x) – f (y), tφ(x, y)

)
=  (.)

uniformly on R
. Then there exists a unique quadratic mapping Q : R → Y such that, if

there exist δ >  and α >  such that

N
(
f
(√

x + y
)
– f (x) – f (y), δφ(x, y)

) ≥ α (.)

for all x, y ∈R, then

N
(
f (x) –Q(x),

δ


�(x,x)

)
≥ α (.)

for all x ∈ R. Furthermore, the quadratic mapping Q : R → Y is a unique mapping such
that, for all t > ,

N
(
f (x) –Q(x), t�(x,x)

)
=  (.)

uniformly on R.

Proof Assume that � = . For any ε > , by (.), we can find some t >  such that

N
(
f
(√

x + y
)
– f (x) – f (y), tφ(x, y)

) ≥  – ε (.)

for all x, y ∈ R and t ≥ t. Replacing x and y by x+y√
 and x–y√

 in (.), respectively, we have

N
(
f
(√

x + y
)
– f

(
x + y√



)
– f

(
x – y√



)
, tφ

(
x + y√


,
x – y√



))
≥  – ε (.)
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for all x, y ∈ R and t ≥ t. It follows from (.), (.), and (N) that

N
(
f (x) + f (y) – f

(
x + y√



)
– f

(
x – y√



)
, t

(
φ(x, y) + φ

(
x + y√


,
x – y√



)))
≥  – ε (.)

for all x, y ∈ R and t ≥ t. Letting y = x in (.), we have

N
(
f (x) – f

(



 x

)
, tφ̂(x,x)

) ≥  – ε (.)

for all x ∈R and t ≥ t, where φ̂(x,x) = φ(x,x) + φ( 
 x, ). By induction on n, we have

N

(
nf (x) – f

(


n
 x

)
, t

n–∑
k=

n–k–φ̂
(


k
 x, 

k
 x

)) ≥  – ε (.)

for all x ∈R, t ≥ t and n ∈ Z
+. Let t = t. Replacing n and x by p and  n

 x in (.), respec-
tively, we have

N

(
f ( n

 x)
n

–
f (

n+p
 x)

n+p
,
t
n+p

p–∑
k=

p–k–φ̂
(


n+k
 x, 

n+k
 x

)) ≥  – ε (.)

for all n ≥  and p > . It follows from (.) and the equality

p–∑
k=


n+k+

φ̂
(


n+k
 x, 

n+k
 x

)
=



n+p–∑
k=n


k

φ̂
(


k
 x, 

k
 x

)

that, for any δ > , there exists some n ∈ Z
+ such that

t


n+p–∑
k=n


k

φ̂
(


k
 x, 

k
 x

)
< δ

for all n ≥ n and p > . Now, it follows from (.) that

N
(
f ( n

 x)
n

–
f (

n+p
 x)

n+p
, δ

)

≥N

(
f ( n

 x)
n

–
f (

n+p
 x)

n+p
,
t
n+p

p–∑
k=

p–k–φ̂
(


n+k
 x, 

n+k
 x

)) ≥  – ε (.)

for all n≥ n and p > . Thus the sequence { f (
n
 x)

n } is a Cauchy sequence in a fuzzy Banach
space Y and so it converges to some Q(x) ∈ Y . We can define a mapping Q :R → Y by

Q(x) = lim
n→∞

f ( n
 x)

n
,

that is, limn→∞ N( f (
n
 x)

n –Q(x), t) =  for all x ∈R and t > . Let x, y ∈R, t >  and  < ε < .
Since limn→∞ 

n φ̂( n
 x,  n

 y) = , there exists n ∈ Z
+ with n > n such that

tφ̂
(


n
 x, 

n
 y

)
<
nt
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for all n ≥ n. Then, by (N), we have

N
(
Q

(√
x + y

)
–Q(x) –Q(y), t

)
≥min

{
N

(
Q(x + y) –


n

f
(√

nx + ny
)
,
t


)
,N

(
Q(x) –


n

f
(


n
 x

)
,
t


)
,

N
(
Q(y) –


n

f
(


n
 y

)
,
t


)
,N

(
f
(√

nx + ny
)
– f

(


n
 x

)
– f

(


n
 y

)
,
nt


)}
(.)

for all n ≥ n. Since the first three terms on the right-hand side of the above inequality
tend to  as n → ∞ and

N
(
f
(√

nx + ny
)
– f

(


n
 x

)
– f

(


n
 y

)
, tφ̂

(


n
 , 

n
 y

)) ≥  – ε,

we have

N
(
Q

(√
x + y

)
–Q(x) –Q(y), t

) ≥  – ε

for all x, y ∈ R, t >  and  < ε < . It follows from (N) that Q(
√
x + y) =Q(x) +Q(y) for

all x, y ∈R. This means that Q is a quadratic mapping [].
Now, suppose that (.) holds for some δ >  and α > . Then assume that

ψn(x, y) =
n–∑
k=


k+

φ̂
(


k
 x, 

k
 y

)

for all x, y ∈ R. For all x ∈R, by a similar method to the beginning of the proof, we have

N

(
nf (x) – f

(


n
 x

)
, δ

n–∑
k=

n–k–φ̂
(


k
 x, 

k
 x

)) ≥ α (.)

for all n ∈ Z
+. Let t > . Then we have

N
(
f (x) –Q(x), δψn(x,x) + t

)
≥min

{
N

(
f (x) –

f ( n
 x)

n
, δψn(x,x)

)
,N

(
f ( n

 x)
n

–Q(x), t
)}

. (.)

Combining (.) and (.) and using the fact limn→∞ N( f (
n
 x)

n –Q(x), t) = , we obtain

N
(
f (x) –Q(x), δψn(x,x) + t

) ≥ α (.)

for large enough n ∈ Z
+. It follows from the continuity of the functionN(f (x)–Q(x), ·) that

N
(
f (x) –Q(x),

δ


�(x,x) + t

)
≥ α.

Letting t → , we conclude (.).
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Next, assume that there exists another quadratic mapping T which satisfies (.). For
any ε > , by applying (.) for the mappings Q and T , we can find some t >  such that

N
(
f (x) –Q(x),

t

�(x,x)

)
≥  – ε, N

(
f (x) – T(x),

t

�(x,x)

)
≥  – ε

for all x ∈R and t ≥ t. Fix x ∈R and c > . Then we find some n ∈ Z
+ such that

t
∞∑
k=n


k

φ̂
(


k
 x, 

k
 y

)
<
c


for all x, y ∈ R and n≥ n. It follows from

∞∑
k=n


k

φ̂
(


k
 x, 

k
 y

)
=


n

∞∑
k=n


k–n

φ̂
(
k–n

(


n
 x

)
, k–n

(


n
 y

))

=

n

∞∑
m=


m

φ̂
(
m

(


n
 x

)
, m

(


n
 y

))

=

n

�
(


n
 x, 

n
 y

)
that

N
(
Q(x) – T(x), c

)
≥min

{
N

(
f ( n

 x)
n

–Q(x),
c


)
,N

(
T(x) –

f ( n
 x)

n
,
c


)}

=min
{
N

(
f
(


n
 x

)
–Q

(


n
 x

)
, n–c

)
,N

(
T

(


n
 x

)
– f

(


n
 x

)
, n–c

)}
≥min

{
N

(
f
(


n
 x

)
–Q

(


n
 x

)
, nt

∞∑
k=n


k

φ̂
(


k
 x, 

k
 x

))
,

N

(
T

(


n
 x

)
– f

(


n
 x

)
, nt

∞∑
k=n


k

φ̂
(


k
 x, 

k
 x

))}

≥min
{
N

(
f
(


n
 x

)
–Q

(


n
 x

)
, t�

(


n
 x, 

n
 x

))
,

N
(
T

(


n
 x

)
– f

(


n
 x

)
, t�

(


n
 x, 

n
 x

))}
≥  – ε

for all x, y ∈R and c > . Thus we have N(Q(x) –T(x), c) =  for all c >  and so Q(x) = T(x)
for all x ∈R.
For the case � = –, we can state the proof in the same method as in the first case. In

the case, the mappingQ is defined byQ(x) = limn→∞ nf (– n
 x). This completes the proof.

�

Corollary . Let (Y ,N) be a fuzzy Banach space, θ and p ∈R with p <  be positive real
numbers. Suppose that f :R → Y is a mapping with f () =  such that, for all t > ,

lim
t→∞N

(
f
(√

x + y
)
– f (x) – f (y), tθ

(|x|p + |y|p)) =  (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/231
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uniformly on R. Then the limit Q(x) = limn→∞ f (
n
 x)

n exists for all x ∈ X and there exists a
unique quadratic mapping Q :R→ Y such that

lim
t→∞N

(
f (x) –Q(x),

( + 
p
 )

 – 
p


θ |x|pt
)
=  (.)

uniformly on R.

Proof The proof follows from Theorem . by taking φ(x, y) = θ (|x|p + |y|p) for all
x, y ∈R. �

Corollary . Let (Y ,N) be a fuzzy Banach space and ψ : [,∞) → [,∞) be a mapping
such that, for all s, t > ,
(a) ψ(ts) =ψ(t)ψ(s);
(b) ψ(

√
) < .

Suppose that f :R → Y is a mapping with f () =  such that, for all t > ,

lim
t→∞N

(
f
(√

x + y
)
– f (x) – f (y), tθ

(
ψ

(|x|) +ψ
(|y|))) =  (.)

uniformly on R
, where θ >  is fixed. Then the limit Q(x) = limn→∞ f (

n
 x)

n exists for all
x ∈R and defines a quadratic mapping Q :R → Y such that, for all t > ,

lim
t→∞N

(
f (x) –Q(x),

( +ψ(
√
))

 –ψ(
√
)

θψ
(|x|)t) =  (.)

uniformly on R.

Proof The proof follows from Theorem . by taking φ(x, y) = θ (ψ(|x|) + ψ(|y|)) for all
x, y ∈R. �

2.2 The fixed point method
Recall that a mapping d : X → [, +∞] is called a generalized metric on a nonempty set
X if
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x);
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .
A set X with the generalized metric d is called a generalized metric space.
In [], Diaz and Margolis proved the following fixed point theorem, which plays an

important role for the main results in this section.

Theorem. [] Suppose that (�,d) is a complete generalizedmetric space and T : � →
� is a strictly contractive mapping with Lipshitz constant L. Then, for any x ∈ �, either
d(Tnx,Tn+x) = ∞ for all n ≥  or there exists a positive integer n such that
() d(Tnx,Tn+x) < ∞ for all n≥ n;
() the sequence {Tnx} is convergent to a fixed point y∗ of T ;
() y∗ is the unique fixed point of T in the set � = {y ∈ � : d(Tnx, y) < ∞};
() d(y, y∗)≤ 

–Ld(y,Ty) for all y ∈ �.

http://www.journalofinequalitiesandapplications.com/content/2014/1/231
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Theorem . Let (Y ,N) be a fuzzy Banach space and φ :R → [,∞) be a mapping such
that there exists L <  with

φ
(



 x, 


 y

) ≤ Lφ(x, y) (.)

for all x, y ∈R. If f :R→ Y is a mapping with f () =  and

N
(
f
(√

x + y
)
– f (x) – f (y), t

) ≥ t
t + φ(x, y)

(.)

for all x, y ∈ R and t > , then the limit Q(x) = limn→∞ 
n f (

n
 x) exists for all x ∈ R and a

unique quadratic mapping Q :R→ Y satisfies the inequality

N
(
f (x) –Q(x), t

) ≥ ( – L)t
( – L)t + φ̂(x,x)

(.)

for all x ∈ R, where φ̂(x,x) = φ(x,x) + φ( 
 x, ).

Proof Letting x and y by x+y√
 and x–y√

 in (.), respectively, we have

N
(
f
(√

x + y
)
– f

(
x + y√



)
– f

(
x – y√



)
, t

)
≥ t

t + φ( x+y√
 ,

x–y√
 )

(.)

for all x, y ∈ R and t ≥ t. It follows from (.), (.), and (N) that

N
(
f (x) + f (y) – f

(
x + y√



)
– f

(
x – y√



)
, t

)

≥min

{
N

(
f (x) + f (y) – f

(√
x + y

)
, t

)
,

N
(
f
(√

x + y
)
– f

(
x + y√



)
– f

(
x – y√



)
, t

)}

≥min

{
t

t + φ(x, y)
,

t
t + φ( x+y√

 ,
x–y√
 )

}

≥ t
t + φ(x, y) + φ( x+y√

 ,
x–y√
 )

(.)

for all x, y ∈ R and t ≥ t. Letting y = x in (.), we have

N
(
f (x) –



f
(



 x

)
, t

)
≥ t

t + φ̂(x,x)
(.)

for all x ∈R and t ≥ t, where φ̂(x, y) = φ(x, y) + φ( 
 x, ).

Let � be a set of all mapping from R to Y and introduce a generalized metric on � as
follows:

d(g,h) = inf

{
μ ∈ [,∞) :N

(
g(x) – h(x),μt

) ≥ t
t + φ̂(x,x)

,∀x ∈ R, t > 
}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/231
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It is easy to show that (�,d) is a generalized complete metric space []. We consider the
mapping T :� → � defined by

Tg(x) =


g
(



 x

)
for all g ∈ � and x ∈R. Let g,h ∈ � such that d(g,h)≤ μ. Then we have

N
(
Tg(x) – Th(x), tμL

)
=N

(
g
(



 x

)
– h

(



 x

)
, tμL

) ≥ t
t + φ̂(x,x)

for all x ∈R, and so

d(Tg,Th) ≤ Ld(g,h)

for all g,h ∈ �. This means that T is a strictly contractive self-mapping of � with the
Lipschitz constant L.
It follows from (.) that d(f ,Tf ) ≤  < ∞. Now, it follows from Theorem . that the

sequence {Tnf } converges to a unique fixed point Q of T . So there exists a fixed point Q
of T in � such that

Q(x) = lim
n→∞


n

f
(


n
 x

)
(.)

for all x ∈ R since limn→∞ d(Tn,Q) = . Again, using the fixed point method, since Q is
the unique fixed point of T in �∗ = {g ∈ � : d(f , g) < ∞}, we have

d(f ,Q)≤ 
 – L

d(f ,Tf )≤ 
 – L

,

which gives

N
(
f (x) –Q(x), t

) ≥ ( – L)t
( – L)t + φ̂(x,x)

for all x ∈R and t > . Further, we have

N
(
Q

(√
x + y

)
–Q(x) –Q(y), t

)
≥ lim

n→∞N
(
f
(√

nx + ny
)
– f

(


n
 x

)
– f

(


n
 y

)
, nt

)
≥ lim

n→∞
t

t + Lnφ̂(x, y)
=  (.)

for all x, y ∈ R and t > . It follows from (N) and N(Q(
√
x + y) –Q(x) –Q(y), t) ≥  that

Q(
√
x + y) =Q(x) +Q(y) for all x, y ∈R. This means that Q is a quadratic mapping on R.

This completes the proof. �

Theorem . Let (Y ,N) be a fuzzy Banach space and φ :R → [,∞) be a mapping such
that there exists L <  with

φ

(
x√

,
y√


)
≤ L


φ(x, y) (.)
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for all x, y ∈ R. If f : R → Y is a mapping with f () =  and (.), then the limit Q(x) =
limn→∞ nf ( x


n

) exists for all x ∈R and there exists a unique quadraticmappingQ :R → Y

satisfying the inequality

N
(
f (x) –Q(x), t

) ≥ ( – L)t
( – L)t + Lφ̂(x,x)

(.)

for all x ∈ R and t > , where φ̂(x,x) = φ(x,x) + φ( 
 x, ).

Proof It follows from (.) that

N
(
f (x) – f

(
x√


)
,Lt

)
≥ t

t + φ̂(x,x)
(.)

for all x ∈R and t ≥ t, where φ̂(x, y) = φ(x, y) +φ( 
 x, ). Let � and d be as in the proof of

Theorem .. Then (�,d) becomes a generalized complete metric space and we consider
the mapping T : � → � defined by

(Tg)(x) = g
(

x√


)
,

x ∈ R. So, we have d(Tg,Th) ≤ Ld(g,h) for all g,h ∈ �. It follows from Theorem . that
there exists a unique mapping Q :R→ Y in the set {g ∈ � : d(f , g) < ∞} which is a unique
fixed point of T such that

Q(x) = lim
n→∞nf

(
x
 n



)

for all x ∈R. Also, from (.) we have d(f ,Tf ) ≤ L. So, we can conclude that

d(f ,Q)≤ 
 – L

d(f ,Tf )≤ L
 – L

,

which implies the inequality (.). The remaining assertion goes through in a similar way
to the corresponding part of Theorem .. This completes the proof. �

Corollary . Let (Y ,N) be a fuzzy Banach space and θ , p �=  be positive real numbers.
Suppose that f :R → Y is a mapping with f () =  such that, for all t > ,

N
(
f
(√

x + y
)
– f (x) – f (y), t

) ≥ t
t + θ (|x|p + |y|p) (.)

uniformly on R. Then there exists a unique quadratic mapping Q :R → Y such that

N
(
f (x) –Q(x), t

) ≥

⎧⎪⎪⎨
⎪⎪⎩

(–
p
 )t

(–
p
 )t+(+

p
 )θ |x|p

, p < ,

(–
p
 )t

(–
p
 )t+

p
 (+

p
 )θ |x|p

, p > ,
(.)

uniformly on R.
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Proof Taking φ(x, y) = θ (|x|p+ |y|p) for all x, y ∈R and choosing L = 
p
 , we have the desired

result. �

Remark . The radical quadratic functional equation f (
√
x + y) = f (x) + f (y) is not sta-

ble for p =  [].
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