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Abstract

This paper is concerned with the following Dirichlet problem for a quasilinear elliptic
system with variable growth: —div o (x, u(x), Du(x)) = f in €, u(x) = 0 on 92, where

Q C R"is a bounded domain. By means of the Young measure and the theory of
variable exponent Sobolev spaces, we obtain the existence of solutions in
We™(Q,R™) for each f € (Wy™(Q, R™)*.
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1 Introduction and main result

In this paper, we consider the Dirichlet problem for the quasilinear elliptic system

—divo (x, u(x),Du(x)) —f in Q: ( )
u(x) = 0 on 352,

where Q C R” (1 > 2) is a bounded domain. Here, f € (Wé’p(x)(Q,Rm))*,p(x) is Lipschitz
continuous and 1 < p_ := inf, g p(x) < p(x) < p, := sup,.gpx) < 00, and o satisfies the
conditions (H1)-(H3) below. In the following, let M”"*” denote the real vector space of
m x n matrices equipped with the inner product M : N = M;;Nj; (with the usual summation
convention).

(H1) (Continuity) o : Q x R” x M"*" — M"*" is a Carathéodory function, i.e., x —
o (x,u, &) is measurable for every (4, &) € R” x M"*" and (4, &) — o (x, u,£) is continuous
for almost every x € Q.

(H2) (Growth and coercivity) There exist ¢; > 0,¢;>0,0<a € LF'(Q), b € LY(2) and

pﬁl}l <qx) < "g’fﬁ;l) , such that

|o (0, 1,8)| < alx) + c1 (|| + £ P21,

o(%,u,8) £ > —b(x) + o |EPW,

(H3) (Monotonicity) o satisfies one of the following conditions:
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(i) Foranyx e Qand u € R™, £ — o (x,u,&) is C! and monotone, i.e.

(0 u,&)—o(xun):(E-n)=0

forany x € Q, u € R and &,y € M"™*".
(ii) There exists a function W : Q x R™ x M"*" — R such that
o (x,u, ) = D W(x,u,&) and € — W (x,u,&) is convex and C?.
(iii) o is strictly monotone, i.e., o is monotone and

(c@u,&)—o(xu,n):(E-n)=0 implies &=1.
Our main result is as follows.

Theorem 1.1 If o satisfies conditions (H1)-(H3), then the Dirichlet problem (1.1) has a
weak solution u € Wé’p(x)(Q,R’")for every f € (Wé'p(x)(Q,R”’))*.

After Kovacik and Rakosnik first discussed L#®(€2) and W"#®)(Q) spaces in [1], a lot
of research has been done concerning these kinds of variable exponent spaces, for exam-
ple, see [2—6] for the properties of such spaces and [7-9] for the applications of variable
exponent spaces on partial differential equations. These problems with variable exponent
growth possess very complicated nonlinearities, for instance, the p(x)-Laplacian operator
is inhomogeneous. In recent years, these problems have received considerable attention
and raised many difficult mathematical problems. The theory as regards various math-
ematical problems with p(x)-growth conditions has important applications in nonlinear
elastic mechanics, imaging processing, electrorheological fluids, and other physics phe-
nomena [10-15].

Condition (H2) states the variable growth and coercivity condition. For the case that
p(x) is a constant function, Norbert Hungerbiihler [16] studied the problem above. The
classical monotone operator methods developed by [17-20] cannot be applied in func-
tions only satisfying the condition in [16]. Inspired by the works mentioned above, we
want to extend the result of [16] to the case that o satisfies variable growth conditions. To
our knowledge, problem (1.1) with variable growth conditions has never been studied by
others.

The classical result of Leray and Lions and other typical monotone operator methods
require strict monotonicity or monotonicity in the variables (u,£) (see [17-20] and the
references therein). In (H3), it is not required that o is strict monotone or monotone in
the variables (1, &) as had usually been assumed in previous work. We only require that

& — o(x,u,&) is monotone. Here is an example: g: R — R,

0, [¢{I=R;
1, |t|>R.

gl) =
R — _1 t"’% _ [_% _ 1 “’% 1 _ h
For < 5, gu(t) = Su(g(®)) = ([, > gls)ds — [ 2 g(s)ds) = ft_% g(s)ds. For i’ = 7, set

g(®) = Sw(gn(1)). We can take o (x,u, &) = g(|&])|E[P¥26. If |E| <R - 2, o(§) = 0; if |&] >
R+ %, o (x,u,&) = |£[PW-2¢, (H1) and (H2) are satisfied. £ — o (x, u, £) is monotone and C?,
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but not strictly monotone. If (H3)(ii) is assumed, this problem cannot be treated by con-
ventional methods since the gradients of the approximating solutions do not necessarily
converge pointwise where W is not strictly convex (and thus o is not strictly monotone).
Technically, this can be achieved by considering the Young measure generated by the se-
quence of gradients of approximating solutions which is inspired by [21].

This paper is organized as follows: In Section 2, several important properties on variable
exponent spaces are presented; in Section 3, we give some conclusions concerned with
the Young measure in a variable exponent space; in Section 4, we construct the Galerkin
approximation sequence; in Section 5, the proof of Theorem 1.1 is given.

2 Preliminaries
In this section, we first recall some facts on variable exponent spaces /™ () and
Whr®)(Q). See [1, 4—6] for details.

Let P(2) be the set of all Lebesgue measurable functions p : Q — [1, +o00], where 2 C R”
(n > 2) is a nonempty open subset. Denote

o) = | el ax e supuco), 1)

00

. u
||u||p(x) =inf{t>0: Pp(x) ? <1y, (2.2)

where Q,, = {x € Q: p(x) = 00}. The variable exponent Lebesgue space L”* () is the class
of all functions u such that p,(fou) < oo for some £ > 0. L[P¥(Q) is a Banach space en-
dowed with the norm (2.2). Equation (2.1) is called the modular of u in LZ¥(S).

For a given p(x) € P(2), we define the conjugate function p’(x) as

00, ifxeQ ={xeQ:pk)=1};
px)y =11, ifx € Qoo;

P®_ - for other x € Q.
plx)-1

Lemma 2.1 ([6]) Let p € P(R2), then the inequality
[ v s = 2l i
Q

holds for every u € [’ (Q), v e LF'9(Q).
In the following of this section, for every p € P(Q2), we assume 1 < p_ < p(x) < p, < 00.

Lemma 2.2 ([5]) For any u € [’*)(Q), we have:
1. [f”M”p(x) >1, then ||u||§(’x) < pp(x)(u) < ”u”ﬁrx)
2. Ifllullpw < L, then lullhiy < ppwy () < llullgyy-

Lemma 2.3 ([5]) Ifp- > 1, [’¥W(Q) is reflexive, and the dual space of L’ () is LF'0(Q).

Lemma 2.4 ([1]) Let |Q2| < 0o, where |S2| denotes the Lebesgue measure of 2, p1(x), p2(x) €
P(Q), then the necessary and sufficient condition for L>"¥)(Q) C LP'W(Q) is that py(x) <
Dpa(x) for almost every x € Q, and in this case the embedding is continuous.
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Next k is a given positive integer. Given a multi-index o = (e, ..., ,) € N”, we set || =
o +---+a, and D* = D' ... D%, where D; = 3/9x; is the generalized derivative operator.
The generalized Sobolev space W**®)(Q) is the class of functions z on Q such that D*u €
LPW(Q) for every multi-index a with || < k. W*?®(Q) is a Banach space endowed with

the norm

letllpey = ) D% ull . (2.3)

la] <k

By Wg’p ® () we denote the subspace of W**®)(Q) which is the closure of C3°(Q2) with
respect to the norm (2.3).
For any u € W7®¥(Q), define

VulP® 4 (yp®
[lzel| = inf t>0:/udx§1 )
o tp)

then || - ||| is an equivalent norm of W?®(Q). If Q is a bounded domain, Vil is an
equivalent norm of Wé'p (x)(Q).

Lemma 2.5 ([1]) The spaces W*?®)(Q) and Wg’p (x)(Q) are separable. Furthermore they
are reflexive if p_ > 1.

We denote the dual space of W(])( @ Q) by W' ®(Q), then we have

Lemma 2.6 ([1]) Let p € P(2) N L*°(2). Then for every G € WHr' ®)(Q), there exists g €
{80 € L) : || < k} such that

O /Q Dux)ga(x)dx, Vue Wy"?(Q).

lee| <k
The norm of W7 ®(Q) is defined as

G
Gl &) = SUp M:ueW"’*’W(sz)\{O} .
2]l £, )

Lemma 2.7 ([4]) Let Q be a domain in R" with cone property. Ifp : @ — R is Lipschitz con-
tinwousand 1<p_<p*<%,q: Q — R is measurable and satisfies p(x) < q(x) < p*(x) :=

n%f(ic) for almost every x € Q, then there is a continuous embedding W*PW(Q) < LIW(Q).

Lemma 2.8 ([4]) Let Q be a domain in R" with cone property. If p: Q@ — R is continuous
andl<p_<p* <_%, then for any measurable function q(x) defined in Q with p(x) < q(x) for
almost every x € Q, and inf, g (p*(x) — g(x)) > 0, there is a continuous compact embedding
Wk,p(x)(Q) N Lq(x)(Q).

Lemma 2.9 ([1]) Let h: Q2 x R” — R, m € N, satisfy the Carathéodory conditions, p;,r €
P(Q)NL>®(RQ),i=1,...,m. Ifthere exist a nonnegative function g € L'®(Q) and a constant
¢ > 0 such that

m (%)
(6, 6)| < g@)+ ¢ 3161

i=1
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for every &€ € R™ and almost every x € 2, then the Nemyckii operator H : " (Q) x - - - x
LPn¥)(Q) — L'™(RQ), defined by

H(uy,...,u,,)(x) = h(x, ul(x),...,um(x)), x €,
is continuous and bounded.

3 The Young measure generated by sequences in variable exponent space

Weak convergence is a basic tool of modern nonlinear analysis, because it has the same
compactness properties as the convergence in finite dimensional spaces (see [22]). But this
notion does not behave as we desire with respect to nonlinear functionals and operators.
The Young measure is a device to overcome these difficulties. For the details we refer to
[21-24]. Inspired by these works, we will show our conclusions on Young measures in
variable exponent space. In what follows, we denote f~(x) = max{—f(x), 0} as the negative

part of f(x). First, we recall the definition of Young measures and some lemmas.

Definition 3.1 ([22]) Assume that the sequence {f;}?2, is bounded in L*°(£2;R”). Then
there exist a subsequence {fi } C {fc};2; and a Borel probability measure v, on R™ for
a.e. x € , such that for each F € C(R™) we have

E(fi) AF weakly* in L>(£2),
where

F(x)= /R FO)dn() (ae.xeQ).

We call {v,}xcis the family of Young measure associated with the subsequence {fk/. }}’:"1.

Lemma 3.2 ([21]) Let Q C R” be Lebesgue measurable (not necessarily bounded) and z; :
Q— R" j=1,2,..., be a sequence of Lebesgue measurable functions. Then there exist a
subsequence zy and a family {v,}zcq of nonnegative Radon measures on R", such that
(i) llvell == [ dvs <1 for almost every x € Q2.
(i) @(zx) A @ weakly* in L>(2) for any ¢ € Co(R™), where ¢(x) = (vy, @) and
Co(R™) = {p € C(R™) : limyy s |(2)] = O},
(iii) Iffor any R >0

lim supmeas{x € QN B(O,R): |z (x)| > L} =0, (3.1)

L—00 peN

then ||v,|| = 1 for almost every x € , and for any measurable A C Q we have ¢(z;) — ¢ =
(ve, @) weakly in L'(A) for continuous ¢ provided the sequence ¢(zy) is weakly precompact
in LY(A).

Lemma 3.2 is the fundamental theorem of the Young measure. A family {v,},cq satisfy-
ing (i)-(ii) always exists and v, is a probability measure if equation (3.1) holds. Lemma 3.2

has useful applications in nonlinear PDE theory. The following lemmas are useful for us.
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Lemma 3.3 ([24]) If|2| < 00 and v, is the Young measure generated by the sequence {u;},
then we have u; — u in measure if and only if v, = 8, for almost every x € Q.

Lemma 3.4 ([24]) Let || < 0. If the sequences {u;} and {v;} generate the Young measures
8u(x) and vy, respectively, where u; : Q@ — R™ and v; : Q — R, then {(u;,v;)} generates the
Young measure 8, @ vx.

Lemma 3.5 ([21]) Let F: Q x R” x M"*" — R be a Carathéodory function and {u;} be
a sequence of measurable functions, where uy : Q@ — R™, such that uy — u in measure and
Duy generates the Young measure vy. Then

k—00

liminf/ F (%, ux (%), Dug (%)) dxz/ / F(x,u,A) dvy(A) dx,
Q Q MWIXVI

provided that the negative part F~(x, ui(x), Dui(x)) is equiintegrable.

Theorem 3.6 Ifthe sequence {u;} is bounded in LPW(Q,R™), then there is a Young measure
v, generated by {u;} satisfying || vyl =1 and the weak L'-limit of {u;} is [m A dv.(X).

Proof It suffices to prove that {u;} satisfies equation (3.1) in Lemma 3.2. By Lemma 2.2,
there is C > 0, for any R > 0,

CZ/ Iuj|p(")dx
Q

>

/ |M1‘ |p(x) dx
{x€QNB(0,R):|u;j(x)| > L}

> [P- meas{x e QNB(O,R): |uj(x)| > L}.
Thus

supmeas{x e QNB(0O,R): |uj(x)| > L} < £ — 0, asL— oo.
jeN Lr-

According to Lemma 3.2(iii), ||v,]| = 1. By Lemma 2.3, L’®(£2, R™) is reflexive, then there
is a subsequence of {;} (still denoted by {u;}) weakly convergent in LPW (2, R™). Moreover
{u;} weakly converges in L!(£2,R™). By Lemma 3.2(iii), taking ¢ as the identity mapping /,
we have u; — (v, I) = [pm A dv,(1) weakly in L'(Q,R™). O

Theorem 3.7 Let |Q2| < 00. If up — u in Wé’p(x)(Q,R”’), then the sequence {(ux, Duy)} gen-
erates the Young measure 8, ® vy. Moreover, for almost every x € Q, v, is a probability
measure and satisfies (vy,I) = Du(x).

Proof Since uy — u in Wé’p(x)(Q,Rm), {uy} is bounded in Wé’p<x)(§2,Rm). By Lemma 2.8,
U — u in Lp(x)(Q,R”‘) and u; — u in measure. (3.2)

According to Theorem 3.6 and Lemma 3.3, {u;} generates the Young measure 8, and
{Duy} generates the Young measure v, such that v, is a probability measure. By Lemma 3.4,
the sequence {(ux, Duy)} generates the Young measure () ® vy.
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Since u; — u in Wé’p(x)(Q,R’") and u; — u in LP9(Q,R™), we have
Du — Du  in IP®(Q,M"*"),
moreover
Dug — Du in L'(Q,M"™").
By Theorem 3.6, we can infer that (v, I) = Du(x). O
4 Galerkin approximation
LetViCcVo,C---C Wé’p (x)(Q, R™) be a sequence of finite dimensional subspaces with the
property that |,y Vi is dense in Wé’p (x)(Q, R™). We define the operator

J: WP (@, R™) — (W™ (,R™)),

U (wr—>/cr(x,u(x),Du(x)):Dwdx—(f,w)),
Q

where (, ) denotes the dual pairing of (Wé’p (x)(Q,Rm))* and Wé’p (x)(Q,Rm), and o satisfies
(H1)-(H3).

Lemma 4.1 Forevery u € Wé’p(x)(Q,R”‘), the functional J(u) is linear and bounded.

Proof 1t is easy to see that J(u) is linear. By the growth condition in (H2) and Lemma 2.7,

/ |U(x, u,Du)\pl(x) dx < C/ (|a(x) |pl(x) + |u|q(x)p/(x) + |Du|(p(x)_l)”/(")) dx < 00.
Q Q
By Lemma 2.1 and Lemma 2.2, for each w € Wé”'(x)(ﬂ, R™)

[V, w)f =

/ o(x,u,du) : Dwdx — {f, w)‘
Q

< / ’a(x,u,du)‘ - |Dw|dx + ‘(f,w)|
Q

= 2” ‘o(x, L{,DM)} ”p/(x) ” [Dw| ”p(x) + ||f||—1,p’(x) il

= Clliwlll.
This implies that J(«) is bounded. O
Lemma 4.2 The restriction of ] to a finite linear subspace of Wé’p (x)(Q,R’") is continuous.

Proof By the continuity assumption (H1) and the growth condition in (H2),

17Ga) =T @) || = sup |((x), w) = (J (), w)|

lIlwlll=1
= sup /a(x,uk,Duk):Dwdx—/ o (x,u,Du) : Dwdx
liwli=11J Q

< C|| ’a(x, ug, Duy) — o (x, u,Du)‘ S

Page 7 of 16
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Observe that

/

()p'(x) (PW-1p' @)
|lo(x,u,Du)| < alx) + Ci(Jul 7@ +|Du| 7® ).

Thus by Lemma 2.7 and Lemma 2.9, we can get the conclusion.

Let us fix some k and assume that the dimension of V is r and ¢y,

For simplicity, we write Y ;_, a’'¢); = a’¢;. Then we define

a' J(a'dy), d1)
a? J(a'dy), d2)

G:R' >R, -
a” J(d'), br)
Lemma 4.3 G is continuous and

G(a)-a— oo as|a|rr — 00,

where - denotes the inner product of two vectors in R".

O

..., ¢, is a basis of V.

Proof In order to prove that G is continuous, it is sufficient to show that G(a;) — G(ao) in

R" as a; — ap in R". Let u; = alg; € Vi, uo = alyp; € Vi. Then |ay||r-

and ||ao||r- is equivalent to |||uo|||. We have

|(Gla) - G@),| = |/(ig) ~ T (a0:), )]
= “](ul) _](uO) ”—l,p/(x) : |||¢]|||

is equivalent to |||z]||

Since J is continuous on finite dimensional subspaces, we can get the continuity of G.

Moreover taking u = a'¢; € Vi, |lallrr — oo is equivalent to ||u|| — oo, thus

G(a)-a={J(a'¢;),a'p)
= (](Lt), M)

= / o (%, u,Du) : Dudx — {f, u)
Q

> / —b(x) + 2| DulP® dx — |[f |1 pr ) - lull
Q

> C+ Cllull= = Ifll-1p - Mlzelll — oo,
as |||ul|| = oo.

Lemma 4.4 For any k € N, there exists uy € Vi such that

(](uk),v) =0, ve V.

Page 8 of 16
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Proof By Lemma 4.3, there exists R > 0 such that for any a € dBz(0) C R" we have
G(a) - a > 0 and the topological argument [25] shows that G(x) = 0 has a solution x € Bg(0).
Hence, for each k there exists u; € Vi such that our conclusion holds. (|

5 Proof of Theorem 1.1
In this section, first we give some lemmas for o satisfying (H1)-(H3). Then we prove The-
orem 1.1.

Lemma 5.1 If uy — u in Wé’p(x)(Q,]Rm), o satisfies (H1)-(H3) and {Duy} generates the

Young measure vy, then the following inequality holds:

/ / o, u,A): Adve(A) dx < / / o(x,u,\) : Dudv,()\) dx. (5.1)
Q men Q men
Furthermore o (x, ux(x), Duy(x)) is equiintegrable.
Proof Let us consider the sequence
Iy = (o (x, ug, Duy) — o (x, u,Du)) : (Dug — Du).

We will use Lemma 3.5 giving

X::liminff Ikdxz/ f o(x,u,A) : (A — Du) dv(A) dx. (5.2)
Q Q Jmmxn

k—00

So we have to establish the equiintegrability of negative part I, of I. We write I in the

form

I = o (x, ur, Duy) : Duy — o (x, uy, Dug) : Du

—o(x,u,Du) : Duy + o (x,u, Du) : Du =: Iy + Ixo + Iy 3 + Ii 4.

To get the equiintegrability of the sequence {I; »}, we take a measurable subset Q' C €2 and
by Lemma 2.1

|cr(x, U, Du) :Du!dx < / |U(x, uk,Duk)| - |Du| dx
% ol

= 2” |U(x’ l/lk,DI/lk)|

P | |Du| ”p(x),sz/'

Since {u;} is bounded in W/é’p(x)(ﬁ, R™), by the growth condition in (H2) and Lemma 2.7,
/ |a(x, uk,Duk)‘p/(x) dx
Q

< C/ |a(x) !p @, |uk|q(x)1’,(") + |Duk|(”(x)_1)1’,(") dx < C. (5.3)
Q

Thus |||o (%, wx, Dug) ||| (), is bounded by Lemma 2.2. fQ/ |Du|P® dx is arbitrarily small
if the measure of Q' is chosen small enough, and so is ||[Du|||yx),e by Lemma 2.2. The
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equiintegrability of the sequence {lx3} can be obtained also by the boundedness of {u]}.
We can get the equiintegrability of /i, by observing that

o (x, g, Dug) : Dy > ~b(x) + co| Duge '™ > —b(x)

and moreover

f[k’]ldxff |b(x)|dx.
1% %

By equation (3.2) we can infer from Lemma 3.5 that equation (5.1) holds.
Next we will prove that X < 0. Define dist(x, V) = inf,cy, [l — v|| and fix & > 0. Then,
there exists ko € N such that dist(u, Vi) < ¢ for any k > ko, or equivalently,

dist(zeg — u, Vi) = inf |||lug — 12 — v|||
veVi

= inf ||u - w|| = dist(x, Vi) < &,
weVy

for any k > ko. Consequently, for vx € Vi, by Lemma 4.4 we may estimate X as follows:

k—00

X= liminf/ o (%, ux, Duy) : (Duy — Du) dx
Q

= liminf(/ o (x, g, Duy) : D(ug — u — vy) dx+/
Q

k—o00 Q

o (x, ug, Duy) : Dvy dx)

< liminf2|||o (x, ux, Dugg) |
k— o0

4OR ” |D(”k —u- Vk)| ||p(x) +{f,vi).

The term |||o (%, u, Dug)|lly(x) is bounded by the growth condition (H2). On the other
hand, by choosing vx € Vi in such a way that ||ux — u — vi||| < 2¢ for any k > ko, the term

1Dt — 4 — vie) || pi) is bounded by 2¢. Moreover, we have

’(f’ Vk>| = |<f: Vi — (ug = u))! + !(f’ Uk — M>| = 28”f||—1,p’(x) +0o(1).

Since ¢ > 0 is arbitrary, this proves X < 0. We conclude from equation (5.2) that equation
(5.1) holds.
At last we get the equiintegrability of o (x, 1, Duy) from

/ o (x, ug, Duy) dx

5/ |cr(x,uk,Duk)| -1dx§2|||a(x,uk,Duk)|
Q/

pwe .o

where |||o (&, g, Du)| ||y ), is bounded by equation (5.3) and the term ||1]| 5,0’ is arbi-
trarily small if the measure of Q' is chosen small enough. O

Lemma 5.2 [fequation (5.1) holds, v is a probability measure for almost every x € Q, and
(vy, I) = Du(x), we find that for almost every x € Q

(a(x, u,\) —o(x, u,Du)) :(A=Du)=0 on suppv,.
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Proof Notice that
// o (%, u, Du) : (A — Du) dv () dx
Q men
=// a(x,u,Du):Advx(A)dx—// o (x,u,Du) : Dudv,(1) dx
Q JMmxn Q Jmmxn

:/ o (x,u,Du) : Advx(k)dx—/ a(x,u,Du):Du/ 1dv,(\)dx
Q men Q MWIXH

=0.

We infer from equation (5.1) that

/ / (o (0, u, A) — o (x, u,Du)) :(A—Du)dvy(X)dx < 0.
Q Jmmxn

By the monotonicity of o, the integrand in the above inequality is nonnegative. It follows

that for almost every x €

(a(x, u,\) — o (x, u,Du)) :(A—=Du)=0 on suppv,.

Lemma 5.3 If uy — u in Wé’p(x)(Q,R”’) and o satisfies (H1)-(H3), then for any v €

Wé’p(x)(Q, R™), we have

/ (o(x, ug, Duy) : Dv — o (x, u, Du) :DV) dx— 0 ask— oo.
Q

Proof By Theorem 3.7, the sequence {(ux, Duy)} generates the Young measure §,() ® vy
and for almost every x € €2, v, is a probability measure such that (v, I) = Du(x). The proof
will be divided into three cases. In the following, cases (i)-(iii) correspond to the three

cases of (H3).

Case (i): We claim that in this case for almost every x € Q2 and for every u € M"*” the

following identity holds on supp v,:

o, u,\): =0, u,Du): u+ (Vo(x, u,Du)u) :(Du—A),

where V is the derivative with respect to the third variable of o. Indeed, by the mono-

tonicity of o we have for each t e R
(a(x, u,A) —o(x,u, Du + tu)) :(A=Du—tu) >0,
and, by Lemma 5.2,

o(x,u,)): (A —Du) —o(x,u,A) : tie — o (x, u, Du + tu) : (A — Du — t1)

=o(x,u,Du): (A —Du) —o(x,u,\): t;t — o (x, u, Du + tir) : (A — Du — t1).
Therefore

—o(x,u,\) : tw > —o(x,u, Du) : (A — Du) + o (x, u, Du + tp) : (A — Du — tu)
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and
o (x, u,Du + tu) = o (x, u, Du) + Vo (x, u, Du)ti + o(t).
Thus

o, u,Du+tu): (A —Du—tu)
=0, u,Du +tu): (A — Du) — o (x,u, Du + tj1) : tie
=o(x,u,Du): (A — Du) + Vo (x,u, Du)tu : (A — Du)
—o(x,u,Du) : tiu + Vo (x,u, Du)ti : tp + o(t)

=o(x,u,Du): (A — Du) + t(Va(x, u,Du)p : (A — Du) — o (x, u, Du) : u) +o(t).
Then we get
—o (X, u,\)  tu > t((VU(x, u,Du),u)(A —Du) — o (x,u,Du) : /L) +o(t).

Equation (5.4) follows from this inequality since the sign of ¢ is arbitrary. Take u = Ej;,
where Ej; is the matrix whose entry in the ith row and jth column is 1 and others are 0.
Then by equation (5.4),

o (x,u, M)y = o (x,u, Du);; + (Vo(x, u,Du)u)i], : (Du —A),

further we can get
[ atwmumnydnty= [ ot Duydn6)
supp vx supp vx

+ (Vo(x, u,Du),u)i]. : / (Du — A) dvg(A).

Supp vy

Notice that .

Supp vy

(Du — A)dvy(A) = 0, thus

/ o (x,u,A)dvy(X) = / o (x, u, Du) dvy(A) = o (x, u, Du).
supp vy

Supp vy

Since equation (5.3) and Lemma 5.1 imply that the sequence {o (x, ux, Duy)} is bounded
and equiintegrable, by the Dunford-Pettis criterion and Lemma 3.2 its weak L!-limit & is
given by

o= / o, u, ) dve(\) = o (x,u, Du).
supp vx

By Lemma 2.3, the sequence {o (x, ux, Duy)} converges weakly in LF'®(Q, M™"). Hence
its weak L' ®)_limit is also o (x, 4, Du). Then we conclude that

/(cr(x, uy, Duy) : Dv — o (x, u, Du) :DV) dx— 0 ask— oo.
Q
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Case (ii): We start by showing that for almost every x € 2,

supp v, C K, = {k e M"™" . Wx,u,\) = W(x,u,Du) + o (x,u, Du) : (A —Du)}.
If A € supp vy, by Lemma 5.2

1-%) (o (x,u,\) — o (x, u,Du)) :(A—Du)=0 forallte][0,1]. (5.5)
On the other hand, by monotonicity, for ¢ € [0,1] we have

(1 - )(o (%, u, Du + £ (. — Du)) — o (x,1,1)) : (Du— 1) > 0. (5.6)
Subtracting equation (5.5) from equation (5.6), we get

1-2 (o (x, u,Du + t(A — Du)) —o(x, u,Du)) :(Du—-A)>0 (5.7)
for any ¢ € [0,1]. By monotonicity,

(o (%, D + t(A — Du)) — o (x, 1, D)) : £(A — D) > 0.
Since ¢t € [0,1], we have

(0 (x, u,Du + t(A — Du)) —o(x,u, Du)) :(1-t)(,=Du) > 0.
Then we have

(U (x, u,Du + t(\ — Du)) —o(x,u, Du)) :(A-Du)=0 (5.8)

for any ¢ € [0,1], whenever A € supp v,. Now, it follows from equation (5.8) that

1
Wix,u, ) = W(x, u,Du) + / o (x, u,Du + t(A — Du)) : (L —=Du)dt
0
= W(x,u,Du) + o (x,u,Du) : (. — Du).

Thus we can conclude that A € K, i.e. supp v, C K.

By the convexity of W we have W (x, u, &) > W(x,u, Du) + o (x,u, Du) : (§ — Du) for any
& e M"*" For every A € K, weset P(A) = W(x,u, A), Q1) = W(x,u, Du) + o (x,u, Du) : (A —
Duy). Since the mapping A — W(x, i, 1) is continuously differentiable, for every ¢ € M"*",

teR,
P(r+ t(/;) —PO) QG+ t‘/;) —AM L),
PO+ m;) ~PG) _ QUi+ tsf;) —AM o),

Hence DP = DQ and we obtain

ox,u,A)=0(x,u,Du) foranyA € K, D supp vy. (5.9)
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Consequently

o (x):= /meno(x, u, M) dvg(A)

= / o (x,u, ) dvy (L) = o (x, u,Du). (5.10)
Supp vx

Now consider the Carathéodory function

glx,¢,A) = |a(x,§,k) —o)|, ¢eR™xreM™"
The sequence gi(x) = g(x, ur(x), Dui(x)) is equiintegrable, so
& —g weaklyin L'(RQ)
and the weak limit g is
2= [ ot n) - 7] di ) © dui)
= / |o (%, u(x), 1) =T (x)| dva(2)
SUpp vy
= f |a( ,u(x),k) - a(x, u(x),Du(x)) ’ dve(A) =0
SUpp vy
by equations (5.9) and (5.10). Then

/ ‘a(x, uk(x),Duk(x)) -0 (x, u(x),Du(x)) ‘ dx — 0.
Q

Therefore by Vitali’s theorem
/ (G(x, Uy, Duy) : Dv — o (x, u, Du) :DV) dx— 0 ask— oo.
Q

Case (iii): By strict monotonicity, it follows from Lemma 5.2 that supp v, = {Du(x)}, thus
Vx = Opu(y for almost every x € Q. By Lemma 3.3 and Duyy — Du in the measure and by
equation (3.2) ux — u in the measure. After extracting a suitable subsequence if neces-
sary, we can infer that Duy — Du for almost every x € Q2 and u; — u for almost ev-
ery x € Q. Then o (x, ux, Duy) — o (x,u, Du) for almost every x € Q, moreover we have
o (%, uk, Duy) — o (x,u, Du) in the measure. By the equiintegrability of o (x, ug, Duy) : Dv,
already discussed above, the Vitali theorem implies

/ (o(x, ug, Duy) : Dv — o (x, u, Du) :DV) dx— 0 ask— oo.
Q

The proof of Lemma 5.3 is completed. O

Proof of Theorem 1.1 1t is sufficient to prove that for any v € W™ (Q,R™) there is 1 €
W, (Q, R™) such that (J(u),v) = 0.

Page 14 of 16


http://www.journalofinequalitiesandapplications.com/content/2014/1/23

Fu and Yang Journal of Inequalities and Applications 2014, 2014:23 Page 150f 16
http://www.journalofinequalitiesandapplications.com/content/2014/1/23

From the coercivity assumption in (H2) and Lemma 4.3, it follows that there exists R > 0
such that (J(x), #) > 1 whenever [|u]|| > R. Thus, for the sequence of Galerkin approxima-

tions uy € Vi constructed in Lemma 4.4, we have
llllll <R forall k.

Then we may extract a subsequence (still denoted by u;) such that
ur—u in Wé’p(x)(ﬂ, R™).

Foranyve Wé’p(x)(Q,R”‘), since | J;oy Vi is dense in Wé’p(x)(Q,R’”), there is a sequence
{vi} C U,y Vi such that vi — vin W&’p(x)(ﬂ, R™) as k — oco. By Lemma 5.3, we have

(](uk)’ Vk) - U(u)r V)
= f (o (x, uk, Duy) : Dvg — o (%, ug, Duy) : Dv
Q

+ 0 (%, ug, Duy) : Dv — o (x, u, Du) :DV) dx + (f,vk —v)

-0

as k — oco. Lemma 4.4 implies that (/(z),v) =0 forallv e W&’p(x)(ﬂ, R™). O
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