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1 Introduction
In , SM Ulam proposed the following stability problem: Given an approximately ad-
ditive mapping, can one find the strictly additive mapping near it? A year later, DH Hyers
gave an affirmative answer to this problem for additive mappings between Banach spaces.
Subsequently many mathematicians came to deal with this problem (cf. [–]).
We introduce an alternative homomorphism from a set X with two binary operations ◦

and ∗ to another set E with two binary operations � and � defined by

f (x ◦ y) � f (x ∗ y) = f (x) � f (y) (∀x, y ∈ X),

and we investigate the Ulam type stability problem for such a mapping when E is a com-
pletemetric space. In particular, if s� t = s for all s, t ∈ E, then our results imply the stability
results obtained in []. Also the method used in the paper have already applied for some
other equations (cf. [–]).

One consequence of Banach’s fixed point theorem
A fixed point theorem has played an important role in the stability problem (cf. []). The
authors used an easy consequence of Banach’s fixed point theorem in []. It will serve again
in this paper. Here we review it.
Let X be a set and (E,d) a complete metric space. Fix two mappings f : X → E and

ϕ : X →R
+, whereR+ denotes the set of all nonnegative real numbers. Denote by �f ,ϕ the

set of all mappings u : X → E such that there exists a finite constant Ku satisfying

d
(
u(x), f (x)

) ≤ Kuϕ(x) (∀x ∈ X).
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For any u, v ∈ �f ,ϕ , we define

ρf ,ϕ(u, v) = inf
{
K ≥  : d

(
u(x), v(x)

) ≤ Kϕ(x) (∀x ∈ X)
}
.

Then (�f ,ϕ ,ρf ,ϕ) is a complete metric space which contains f .
Now, fix three mappings σ : X → X, τ : E → E and ε : X × X → R

+. For any mapping
u : X → E, we define the mapping Tσ ,τu : X → E by

(Tσ ,τu)(x) = τ
(
u(σx)

)
(x ∈ X).

Also, we consider three quantities:

ασ ,ε = inf
{
K ≥  : ε(σx,σy)≤ Kε(x, y) (x, y ∈ X)

}
,

βσ ,ϕ = inf
{
K ≥  : ϕ(σx)≤ Kϕ(x) (x ∈ X)

}
,

γτ = inf
{
K ≥  : d(τ s, τ t)≤ Kd(s, t) (s, t ∈ E)

}
.

If ασ ,ε < ∞, βσ ,ϕ < ∞ and γτ < ∞, then we have

ε(σx,σy)≤ ασ ,εε(x, y) (∀x, y ∈ X),

ϕ(σx)≤ βσ ,ϕϕ(x) (∀x ∈ X),

d(τ s, τ t)≤ γτd(s, t) (∀s, t ∈ E),

respectively. We will use these inequalities throughout this paper.
We now state our fixed point theorem.

LemmaA ([, Proposition .]) Let X be a set and (E,d) a complete metric space. Suppose
that four mappings f : X → E, ϕ : X → R

+, σ : X → X and τ : E → E satisfy

Tσ ,τ f ∈ �f ,ϕ , βσ ,ϕ < ∞, γτ <∞ and βσ ,ϕγτ < .

Then Tσ ,τ (�f ,ϕ) ⊆ �f ,ϕ and Tσ ,τ has a unique fixed point f∞ in �f ,ϕ .Moreover,

lim
n→∞d

((
Tn

σ ,τ f
)
(x), f∞(x)

)
=  and d

(
f (x), f∞(x)

) ≤ ρf ,ϕ(Tσ ,τ f , f )
 – βσ ,ϕγτ

ϕ(x)

for all x ∈ X.

2 A stability of alternative homomorphisms
Let (X,◦,∗) be a set X with two binary operations ◦ and ∗. Let (E,d,�,�) be a complete
metric space (E,d) with two binary operations � and �. Given f : X → E, we consider the
following commutative diagram:

X ×X
(f ◦)× (f ∗)
––––––––→ E × E

f × f
⏐⏐� ⏐⏐��

E × E ––––––→� E.

()
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This means that

f (x ◦ y) � f (x ∗ y) = f (x) � f (y) (∀x, y ∈ X). ()

In particular, if s � t = s for all s, t ∈ E, then () and () become

X ×X ◦––––––→ X

f × f
⏐⏐� ⏐⏐�f

E × E ––––––→� E

and

f (x ◦ y) = f (x) � f (y) (∀x, y ∈ X).

In other words, f is a homomorphism from X to E. Thus, if a mapping f : X → E satis-
fies (), then we say that f is an alternative homomorphism.
In this section, we establish two general settings, on which we can give an affirmative

answer to theUlam type stability problem for the commutative diagram (). These settings
have a property such as duality, that is, each of them works as a complement of the other.
Let us describe the first setting. For ε : X × X → R

+ and δ : X → R
+, we consider the

following three conditions:
(i) The square operator x �→ x ◦ x is an automorphism of X with respect to ◦ and ∗.

We denote by σ the inverse mapping of this automorphism.
(ii) The binary operations � and � on E are continuous. The square operator

τ : s �→ s � s is an endomorphism of E with respect to � and �.
(iii) α ≡ ασ ,ε < ∞, β ≡ βσ ,δ < ∞, γ ≡ γτ <∞ and γ max{α,β} < .

Under the above conditions, we show the Ulam type stability for the commutative dia-
gram (), as follows.

Theorem Let (X,◦,∗) and (E,d,�,�) be as above. Suppose that fourmappings σ : X → X,
τ : E → E, ε : X × X → R

+ and δ : X → R
+ satisfy (i), (ii), and (iii). If a mapping f : X → E

satisfies

d
(
f (x ◦ y) � f (x ∗ y), f (x) � f (y)

) ≤ ε(x, y) (∀x, y ∈ X), ()

d
(
f (x) � f (σx ∗ σx), f (x)

) ≤ δ(x) (∀x ∈ X), ()

then there exists a mapping f∞ : X → E such that

f∞(x ◦ y) � f∞(x ∗ y) = f∞(x) � f∞(y) (∀x, y ∈ X), ()

f∞(x) � f∞(σx ∗ σx) = f∞(x) (∀x ∈ X), ()

d
(
f (x), f∞(x)

) ≤ αε(x,x) + δ(x)
 – γ max{α,β} (∀x ∈ X). ()

Moreover, if a mapping g : X → E satisfies (), (), and

∃Kg ≥  : d
(
f (x), g(x)

) ≤ Kg
{
αε(x,x) + δ(x)

}
(∀x ∈ X), ()

then g = f∞.
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Proof For simplicity, we write T = Tσ ,τ .We note that α, β , and γ are finite by (iii). Suppose
that f : X → E satisfies () and (). Put ϕ(x) = αε(x,x)+δ(x) for all x ∈ X. To apply LemmaA
to f and ϕ, we first observe that Tf ∈ �f ,ϕ . Fix x ∈ X. Replacing x and y in () by σx, we
get

d
(
f (σx ◦ σx) � f (σx ∗ σx), f (σx) � f (σx)

) ≤ ε(σx,σx).

Since

σx ◦ σx = σ –(σx) = x,

f (σx) � f (σx) = τ
(
f (σx)

)
= (Tf )(x),

and

ε(σx,σx)≤ αε(x,x),

it follows that

d
(
f (x) � f (σx ∗ σx), (Tf )(x)

) ≤ αε(x,x).

Using this and (), we have

d
(
(Tf )(x), f (x)

) ≤ d
(
(Tf )(x), f (x) � f (σx ∗ σx)

)
+ d

(
f (x) � f (σx ∗ σx), f (x)

)
≤ αε(x,x) + δ(x)

= ϕ(x).

Hence Tf ∈ �f ,ϕ and ρf ,ϕ(Tf , f ) ≤ .
We next estimate the quantity βσ ,ϕ . For x ∈ X, we have

ϕ(σx) = αε(σx,σx) + δ(σx)

≤ αε(x,x) + βδ(x)

≤max{α,β}(αε(x,x) + δ(x)
)

=max{α,β}ϕ(x).

Hence βσ ,ϕ ≤max{α,β} and βσ ,ϕγτ ≤ γ max{α,β} <  by (iii).
Thus we can apply Lemma A. As a consequence, T has a unique fixed point f∞ ∈ �f ,ϕ .

Moreover,

lim
n→∞d

((
Tnf

)
(x), f∞(x)

)
=  ()

and

d
(
f (x), f∞(x)

) ≤ ρf ,ϕ(Tf , f )
 – βσ ,ϕγτ

ϕ(x) ()

for all x ∈ X. Since ρf ,ϕ(Tf , f ) ≤  and βσ ,ϕγτ ≤ γ max{α,β} < , () implies ().
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Here we show (). If x, y ∈ X and n ∈N, then we have

d
(
f∞(x ◦ y) � f∞(x ∗ y), f∞(x) � f∞(y)

)
≤ d

(
f∞(x ◦ y) � f∞(x ∗ y),

(
Tnf

)
(x ◦ y) � (

Tnf
)
(x ∗ y)

)
+ d

((
Tnf

)
(x ◦ y) � (

Tnf
)
(x ∗ y),

(
Tnf

)
(x) � (

Tnf
)
(y)

)
+ d

((
Tnf

)
(x) � (

Tnf
)
(y), f∞(x) � f∞(y)

)
. ()

We will see that the right hand side of () tends to  as n→ ∞. The first and third terms
on the right hand side tend to  as n → ∞, because of () and the continuity of � and �
in (ii). Moreover, the second term, say An(x, y), is estimated as follows: By (i), (ii), and (),
we have

An(x, y) = d
(
τ n(f (σ n(x ◦ y))) � τ n(f (σ n(x ∗ y)

))
, τ n(f (σ nx

)) � τ n(f (σ ny
)))

= d
(
τ n(f (σ nx ◦ σ ny

))
� τ n(f (σ nx ∗ σ ny

))
, τ n(f (σ nx

) � f
(
σ ny

)))
= d

(
τ n(f (σ nx ◦ σ ny

)
� f

(
σ nx ∗ σ ny

))
, τ n(f (σ nx

) � f
(
σ ny

)))
≤ γ nd

(
f
(
σ nx ◦ σ ny

)
� f

(
σ nx ∗ σ ny

)
, f

(
σ nx

) � f
(
σ ny

))
≤ γ nε

(
σ nx,σ ny

)
≤ γ nαnε(x, y),

where τ n and σ n denote the n-fold compositions of endomorphisms τ and σ , respectively.
Since γα <  by (iii), it follows that An(x, y)→  as n→ ∞. Thus the right hand side of ()
tends to , and we obtain ().
Next, we show (). For x ∈ X, we replace x and y in () by σx to get

f∞(σx ◦ σx) � f∞(σx ∗ σx) = f∞(σx) � f∞(σx).

Since σx ◦ σx = x and

f∞(σx) � f∞(σx) = τ
(
f∞(σx)

)
= (Tf∞)(x) = f∞(x),

we obtain ().
Finally, we show the last statement. Since g satisfies () and (), we have

(Tg)(x) = τ
(
g(σx)

)
= g(σx) � g(σx)

= g(σx ◦ σx) � g(σx ∗ σx)

= g(x) � g(σx ∗ σx)

= g(x)

for all x ∈ X. This says that g is a fixed point of T . Also, by (), we have g ∈ �f ,ϕ . Thus the
uniqueness of a fixed point of T in �f ,ϕ implies that g = f∞. �
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The next corollary is obtained in [].

Corollary  ([, Corollary .]) Let X be a set with a binary operation ◦ such that the
square operation x �→ x ◦ x is an automorphism of X with respect to ◦ and E a complete
metric space with a continuous binary operation � such that the square operation τ : s �→
s � s is an endomorphism of E with respect to �. Let ε : X × X → R

+ and suppose that
α ≡ ασ ,ε < ∞, γ ≡ γτ < ∞ and γα < , where σ denotes the inverse mapping of the square
operation x �→ x ◦ x. If a mapping f : X → E satisfies

d
(
f (x ◦ y), f (x) � f (y)

) ≤ ε(x, y) (∀x, y ∈ X),

then there exists a unique mapping f∞ : X → E such that

f∞(x ◦ y) = f∞(x) � f∞(y) and d
(
f (x), f∞(x)

) ≤ α

 – αγ
ε(x,x)

for all x, y ∈ X.

Proof Consider the case that ∗ = ◦ and s � t = s for s, t ∈ E, in Theorem . In this case, τ is
clearly an endomorphism of E with respect to �. Therefore the corollary follows immedi-
ately from Theorem  with δ = . �

Now we turn to another setting. Let (X,◦,∗) and (E,d,�,�) be as in the first part of this
section. For ε : X ×X →R

+ and δ : X → R
+, we consider the following three conditions:

(iv) The square operator σ̃ : x �→ x ◦ x is an endomorphism of X with respect to ◦ and ∗.
(v) The binary operations � and � on E are continuous. The square operator s �→ s � s is

an automorphism of E with respect to � and �. We denote by τ̃ the inverse mapping
of this automorphism.

(vi) α̃ ≡ ασ̃ ,ε < ∞, β̃ ≡ βσ̃ ,δ <∞, γ̃ ≡ γτ̃ < ∞, and γ̃ max{α̃, β̃} < .
Under the above conditions, we show the Ulam type stability for the commutative dia-
gram (), as follows.

Theorem Let (X,◦,∗) and (E,d,�,�) be as above. Suppose that fourmappings σ̃ : X → X,
τ̃ : E → E, ε : X ×X →R

+ and δ : X →R
+ satisfy (iv), (v), and (vi). If a mapping f : X → E

satisfies () and

d
(
f (x ◦ x) � f (x ∗ x), f (x ◦ x)) ≤ δ(x) (∀x ∈ X), ()

then there exists a mapping f∞ : X → E satisfying ()

f∞(x ◦ x) � f∞(x ∗ x) = f∞(x ◦ x) (∀x ∈ X), ()

d
(
f (x), f∞(x)

) ≤ γ̃ {ε(x,x) + δ(x)}
 – γ̃ max{α̃, β̃} (∀x ∈ X). ()

Moreover, if a mapping g : X → E satisfies (), (), and

∃Kg ≥  : d
(
f (x), g(x)

) ≤ Kg γ̃
{
ε(x,x) + δ(x)

}
(∀x ∈ X), ()

then g = f∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/228
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Proof For simplicity, we write T̃ = Tσ̃ ,τ̃ , that is, (T̃ f )(x) = τ̃ (f (σ̃x)) for x ∈ X. We note
that α̃, β̃ and γ̃ are finite by (vi). Suppose that f : X → E satisfies () and (). Put
ϕ̃(x) = γ̃ {ε(x,x) + δ(x)} for all x ∈ X. To apply Lemma A to f and ϕ̃, we first observe that
T̃ f ∈ �f ,ϕ̃ . Fix x ∈ X. Since τ̃ (f (x) � f (x)) = f (x), it follows from () and () that

d
(
(T̃f )(x), f (x)

)
= d

(
τ̃
(
f (σ̃x)

)
, f (x)

)
= d

(
τ̃
(
f (x ◦ x)), τ̃(

f (x) � f (x)
))

≤ γ̃d
(
f (x ◦ x), f (x) � f (x)

)
≤ γ̃

{
d
(
f (x ◦ x), f (x ◦ x) � f (x ∗ x)

)
+ d

(
f (x ◦ x) � f (x ∗ x), f (x) � f (x)

)}
≤ γ̃

{
δ(x) + ε(x,x)

}
= ϕ̃(x).

Hence T̃ f ∈ �f ,ϕ̃ and ρf ,ϕ̃(T̃f , f ) ≤ .
We next estimate the quantity βσ̃ ,ϕ̃ . For x ∈ X, we have

ϕ̃(σ̃x) = γ̃
{
ε(σ̃x, σ̃x) + δ(σ̃x)

}
≤ γ̃

{
α̃ε(x,x) + β̃δ(x)

}
≤ γ̃ max{α̃, β̃}{ε(x,x) + δ(x)

}
=max{α̃, β̃}ϕ̃(x).

Hence βσ̃ ,ϕ̃ ≤max{α̃, β̃} and βσ̃ ,ϕ̃γτ̃ ≤ γ̃ max{α̃, β̃} <  by (vi).
Thus we can apply Lemma A. As a consequence, T̃ has a unique fixed point f∞ ∈ �f ,ϕ̃ .

Moreover,

lim
n→∞d

((
T̃nf

)
(x), f∞(x)

)
=  ()

and

d
(
f (x), f∞(x)

) ≤ ρf ,ϕ̃(T̃ f , f )
 – βσ̃ ,ϕ̃γτ̃

ϕ̃(x) ()

for all x ∈ X. Since ρf ,ϕ̃(T̃ f , f ) ≤  and βσ̃ ,ϕ̃γτ̃ ≤ γ̃ max{α̃, β̃} < , () implies ().
Here we show (). If x, y ∈ X and n ∈N, then we have

d
(
f∞(x ◦ y) � f∞(x ∗ y), f∞(x) � f∞(y)

)
≤ d

(
f∞(x ◦ y) � f∞(x ∗ y),

(
T̃nf

)
(x ◦ y) � (

T̃nf
)
(x ∗ y)

)
+ d

((
T̃nf

)
(x ◦ y) � (

T̃nf
)
(x ∗ y),

(
T̃nf

)
(x) � (

T̃nf
)
(y)

)
+ d

((
T̃nf

)
(x) � (

T̃nf
)
(y), f∞(x) � f∞(y)

)
.

Letting n → ∞, the first and third terms on the right hand side tend to , because of ()
and the continuity of � and � in (v). Moreover, the second term, say Ãn(x, y), is estimated

http://www.journalofinequalitiesandapplications.com/content/2014/1/228
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as follows: By (iv), (v), and (),

Ãn(x, y) = d
(
τ̃ n(f (σ̃ n(x ◦ y))) � τ̃ n(f (σ̃ n(x ∗ y)

))
, τ̃ n(f (σ̃ nx

)) � τ̃ n(f (σ̃ ny
)))

= d
(
τ̃ n(f (σ̃ nx ◦ σ̃ ny

))
� τ̃ n(f (σ̃ nx ∗ σ̃ ny

))
, τ̃ n(f (σ̃ nx

) � f
(
σ̃ ny

)))
= d

(
τ̃ n(f (σ̃ nx ◦ σ̃ ny

)
� f

(
σ̃ nx ∗ σ̃ ny

))
, τ̃ n(f (σ̃ nx

) � f
(
σ̃ ny

)))
≤ γ̃ nd

(
f
(
σ̃ nx ◦ σ̃ ny

)
� f

(
σ̃ nx ∗ σ̃ ny

)
, f

(
σ̃ nx

) � f
(
σ̃ ny

))
≤ γ̃ nε

(
σ̃ nx, σ̃ ny

)
≤ γ̃ nα̃nε(x, y),

where τ̃ n and σ̃ n denote the n-fold compositions of endomorphisms τ̃ and σ̃ , respectively.
Since γ̃ α̃ <  by (vi), it follows that Ãn(x, y)→  as n→ ∞. Thus we obtain ().
Next, we show (). Replacing y in () by x, we have

f∞(x ◦ x) � f∞(x ∗ x) = f∞(x) � f∞(x). ()

Also since

τ̃
(
f∞(x ◦ x)) = τ̃

(
f∞(σ̃x)

)
= (T̃ f∞)(x) = f∞(x) = τ̃

(
f∞(x) � f∞(x)

)
,

it follows that

f∞(x ◦ x) = f∞(x) � f∞(x).

Combining with (), we obtain ().
Finally, we show the last statement. Since g satisfies () and (), we have

g(σ̃x) = g(x ◦ x) = g(x ◦ x) � g(x ∗ x) = g(x) � g(x) = τ̃–(g(x)),
that is, (T̃g)(x) = g(x) for all x ∈ X. This says that g is a fixed point of T̃ . Also, by (), we
have g ∈ �f ,ϕ̃ . Hence the uniqueness of a fixed point of T̃ in �f ,ϕ̃ implies that g = f∞. �

The next corollary is obtained in [].

Corollary  ([, Corollary .]) Let X be a set with a binary operation ◦ such that the
square operation σ̃ : x �→ x ◦ x is an endomorphism of X with respect to ◦ and E a complete
metric space with a continuous binary operation � such that the square operation s �→
s � s is an automorphism of E with respect to �. Let ε : X × X → R

+ and suppose that
α̃ ≡ ασ̃ ,ε < ∞, γ̃ ≡ γτ̃ < ∞ and γ̃ α̃ < , where τ̃ denotes the inverse mapping of the square
operation s �→ s � s. If a mapping f : X → E satisfies

d
(
f (x ◦ y), f (x) � f (y)

) ≤ ε(x, y) (∀x, y ∈ X),

then there exists a unique mapping f∞ : X → E such that

f∞(x ◦ y) = f∞(x) � f∞(y) and d
(
f (x), f∞(x)

) ≤ γ̃

 – α̃γ̃
ε(x,x)

for all x, y ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2014/1/228
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Proof Consider the case that ∗ = ◦ and s � t = s for s, t ∈ E, in Theorem . Then τ̃ is clearly
an endomorphismofEwith respect to �. Therefore the corollary follows immediately from
Theorem  with δ = . �

3 Application I
The Ulam type stability problem for Euler-Lagrange type additive mappings has been in-
vestigated in []. Here we take up the following Euler-Lagrange type mapping f : X → E
satisfying

f (ax + by) + f (bx + ay) + (a + b)
(
f (–x) + f (–y)

)
=  (∀x, y ∈ X), ()

whereX is a complex normed space, E a complex Banach space and a,b ∈Cwith a+b �= .
The following is an Ulam type stability result for this mapping.

Corollary  (cf. [, Theorem .]) Let ε : X ×X →R+ and suppose that
(vii) ∃K ≥  : |a + b|K <  and ε(x, y) ≤ Kε(–(a + b)x, –(a + b)y) (∀x, y ∈ X).

If a mapping f : X → E satisfies

∥∥f (ax + by) + f (bx + ay) + (a + b)
(
f (–x) + f (–y)

)∥∥ ≤ ε(x, y) (∀x, y ∈ X), ()

then there exists a unique mapping f∞ : X → E satisfying () and

∥∥f (x) – f∞(x)
∥∥ ≤ K

( – |a + b|K )
ε(–x, –x) (∀x ∈ X). ()

Proof Put u = –x, v = –y for each x, y ∈ X. Under these transformations, () changes into
the following estimate:

∥∥∥∥ 
{
f (–au – bv) + f (–bu – av)

}
+
a + b


{
f (u) + f (v)

}∥∥∥∥ ≤ ε(u, v) (∀u, v ∈ X), ()

where ε(u, v) = 
ε(–u, –v) (∀u, v ∈ X).

Now we define u ◦ v = –au – bv, u ∗ v = –bu – av for each u, v ∈ X. In this case, we can
easily see that the square operator u �→ u ◦ u is an endomorphism of X with respect to ◦
and ∗. Also since a+b �= , this endomorphism is bijective and so automorphic.We denote
by σ the inversemapping of this automorphism.Moreover, we define s� t = – 

 (a+b)(s+ t),
s � t = 

 (s + t) for each s, t ∈ E. Then we can also see that the binary operations � and �

on E are continuous and the square operator τ : s �→ s � s is an automorphism of E with
respect to � and �. Note that () changes into the following:

∥∥f (u ◦ v) � f (u ∗ v) – f (u) � f (v)
∥∥ ≤ ε(u, v) (∀u, v ∈ X). ()

Since x ◦ x = x ∗ x for all x ∈ X, it follows that σx ∗ σx = σx ◦ σx = σ –σx = x for all x ∈ X.
Also, since s � s = s for all s ∈ E, it follows that f (x) � f (σx ∗ σx) = f (x) � f (x) = f (x) for all
x ∈ X and then () holds with δ = . Moreover, βσ ,δ =  must hold with δ = . It is also
obvious that γτ = |a + b| from the definition of τ . We also note that ασ ,ε ≤ K from the

http://www.journalofinequalitiesandapplications.com/content/2014/1/228
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second condition of (vii) and hence γτασ ,ε ≤ |a + b|K <  from the first condition of (vii).
Therefore, by Theorem , there exists a unique mapping f∞ : X → E such that

f∞(u ◦ v) � f∞(u ∗ v) = f∞(u) � f∞(v) (∀u, v ∈ X),

namely, () holds and

∥∥f (u) – f∞(u)
∥∥ ≤ ασ ,εε(u,u)

 – γτ max{ασ ,ε ,βσ ,δ} ≤ K
( – |a + b|K )

ε(–u, –u) (∀u ∈ X),

and so () holds. �

The following is also an Ulam type stability result for the mapping satisfying ().

Corollary  (cf. [, Theorem .]) Let ε : X ×X →R
+ and suppose that

(viii) ∃K ≥  : K < |a + b| and ε(–(a + b)x, –(a + b)y)≤ Kε(x, y) (∀x, y ∈ X).
If a mapping f : X → E satisfies (), then there exists a unique mapping f∞ : X → E satis-
fying () and

∥∥f (x) – f∞(x)
∥∥ ≤ 

(|a + b| –K )
ε(–x, –x) (∀x ∈ X). ()

Proof As observed in the proof of Corollary , () changes into (). Now we define
u ◦ v = –au – bv, u ∗ v = –bu – av for each u, v ∈ X. In this case, we can easily see that the
square operator σ̃ : u �→ u◦u is an endomorphism of X with respect to ◦ and ∗. Moreover,
we define s � t = – 

 (a + b)(s + t), s � t = 
 (s + t) for each s, t ∈ E. Then we can also see that

the binary operations � and � on E are continuous and the square operator s �→ s � s is an
endomorphism of E with respect to � and �. Also since a + b �= , this endomorphism is
bijective and so automorphic.We denote by τ̃ the inverse mapping of this automorphism.
Note that () changes into (). Since x ◦ x = x ∗ x (∀x ∈ X) and s � s = s (∀s ∈ E), it follows
that f (x ◦ x) � f (x ∗ x) = f (x ◦ x) for all x ∈ X and then () holds with δ = .
Moreover, βσ̃ ,δ =  must hold with δ = . It is also obvious that γτ̃ = |a + b|– from the

definition of τ̃ . We also note that ασ̃ ,ε ≤ K from the second condition of (viii) and hence
γτ̃ ασ̃ ,ε ≤ |a + b|–K <  from the first condition of (viii).
Therefore, by Theorem , there exists a unique mapping f∞ : X → E such that

f∞(u ◦ v) � f∞(u ∗ v) = f∞(u) � f∞(v) (∀u, v ∈ X),

namely, () holds and

∥∥f (u) – f∞(u)
∥∥ ≤ γτ̃ ε(u,u)

 – γτ̃ max{ασ̃ ,ε ,βσ̃ ,δ}

≤ |a + b|–
( – |a + b|–K )

ε(–u, –u)

=


(|a + b| –K )
ε(–u, –u) (∀u ∈ X),

and so () holds. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/228
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Corollary  (cf. [, Corollary .]) Suppose that |a + b| �= , δ,p,q ≥  and p + q �= . If a
mapping f : X → E satisfies

∥∥f (ax + by) + f (bx + ay) + (a + b)
{
f (–x) + f (–y)

}∥∥ ≤ δ‖x‖p‖y‖q

for all x, y ∈ X, then there exists a unique mapping f∞ : X → E satisfying () and

∥∥f (x) – f∞(x)
∥∥ ≤ δ

(||a + b|p+q – |a + b|| ‖x‖
p+q (∀x ∈ X).

Proof Put ε(x, y) = δ‖x‖p‖y‖q for each x, y ∈ X.
(a) The case where either

{
|a + b| > ,
p + q > ,

or

{
|a + b| < ,
p + q < .

Put K = |a + b|–(p+q). Then K satisfies (vii). Note also that

K
( – |a + b|K )

ε(–x, –x) =
δ

(|a + b|p+q – |a + b|)‖x‖
p+q

for all x ∈ X. Then the desired result follows from Corollary .
(b) The case where either

{
|a + b| > ,
p + q < ,

or

{
|a + b| < ,
p + q > .

Put K = |a + b|p+q. Then K satisfies (viii). Note also that


(|a + b| –K )

ε(–x, –x) =
δ

(|a + b| – |a + b|p+q)‖x‖
p+q

for all x ∈ X. Then the desired result follows from Corollary . �

4 Application II
Let (X, +) be an Abelian group. In [], the following result has been shown by A. Simon
and P. Volkmann.

http://www.journalofinequalitiesandapplications.com/content/2014/1/228
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Lemma B ([, Théorème )] A mapping f : X →R satisfies

max
{
f (x + y), f (x – y)

}
= f (x) + f (y) (∀x, y ∈ X), ()

if and only if f (x) = |π (x)| (∀x ∈ X) for some additive function π : X →R.

In this section, we deal with theUlam type stability problem for Equation (). Put x◦y =
x + y and x ∗ y = x – y for each x, y ∈ X. Moreover, put s � t = s + t and s � t =max{s, t} for
each s, t ∈ R. Then () changes into (). Also we can easily see that the square operation
σ̃ : x �→ x ◦ x is endomorphic with respect to ◦ and ∗ and that the square operator s �→
s � s is automorphic with respect to � and �. Denote by τ̃ the inverse mapping of this
automorphism. In this case, it is obvious that τ̃ (s) = 

 s for each s ∈ R and hence γτ̃ = /.
Now let ε be a nonnegative constant and suppose that f : X → R satisfies

∣∣max
{
f (x + y), f (x – y)

}
–

{
f (x) + f (y)

}∣∣ ≤ ε (∀x, y ∈ X). ()

Putting x = y =  in (), we obtain

∣∣f ()∣∣ ≤ ε. ()

Also, putting x = y in (), we obtain

–ε + f () ≤ –ε +max
{
f (x + x), f ()

} ≤ f (x) (∀x ∈ X). ()

Combining () and (), we obtain

–ε ≤ f (x) (∀x ∈ X). ()

Put δ = ε. By () and (), we obtain

 ≤max
{
f (x + x), f ()

}
– f (x + x)≤ ε + ε = δ (∀x ∈ X),

and hence () holds. Moreover, note that ασ̃ ,ε = βσ̃ ,δ =  since ε and δ are constant. Then
Lemma B and Theorem  easily imply the following.

Corollary  Let X be anAbelian group and ε a nonnegative constant. If f : X →R satisfies
(), then there exists an additive mapping π : X →R such that

∣∣f (x) – ∣∣π (x)∣∣∣∣ ≤ ε (∀x ∈ X).

For the related results, see [, ].
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2. Brzdȩk, J: Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hung. 141, 58-67 (2013)
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