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Abstract
In this paper, we present a new type of extra-gradient method for generalized
variational inequalities with multi-valued mapping in an infinite-dimensional Hilbert
space. For this method, the generated sequence possesses an expansion property
with respect to the initial point, and the existence of the solution to the problem can
be verified through the behavior of the generated sequence. Furthermore, under
mild conditions, we show that the generated sequence of the method strongly
converges to the solution of the problem which is closest to the initial point.
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1 Introduction
Let F be a multi-valued mapping fromH into H with nonempty values, whereH is a real
Hilbert space. Let X be a nonempty, closed and convex subset of the Hilbert spaceH. The
generalized variational inequality problem, abbreviated as GVIP, is to find a vector x∗ ∈ X
such that there exists ω∗ ∈ F(x∗) satisfying

〈
ω∗,x – x∗〉 ≥ , ∀x ∈ X, (.)

where 〈·, ·〉 stands for the inner product of vectors inH. If the multi-valued mapping F is
a single-valued mapping fromH toH, then the GVIP collapses to the classical variational
inequality problem [, ].
The generalized variational inequalities find application in economics and transporta-

tion equilibrium, engineering sciences, etc. and have received much attention in the past
decades [–]. It is well known that the extra-gradient method [, ] is a popular solu-
tion method, which has a contraction property, i.e., the generated sequence {xk}∞k= by the
method satisfies

∥∥xk+ – x∗∥∥ ≤ ∥∥xk – x∗∥∥, ∀k ≥ 

for any solution x∗ of the GVIP. It should be noted that the proximal point algorithm also
possesses this property []. In this paper, inspired by the work in [] for finding the zeros
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of maximal monotone operators in a real Hilbert space, we proposed a new type of extra-
gradient solution method for the GVIP which has the following expansion property w.r.t.
the initial point, i.e.,

∥∥xk – x
∥∥ ≤ ∥∥xk+ – x

∥∥, ∀k.

Furthermore, we establish the strong convergence of the method in the case that the so-
lution set X∗ is nonempty, and we show that the generated sequence {‖xk‖}∞k= diverges to
infinity if the solution set is empty.
The rest of this paper is organized as follows. In Section , we give some related concepts

and conclusions needed in the subsequent analysis. In Section , we present our designed
algorithm and establish the convergence of the algorithm.

2 Preliminaries
Let x ∈H and K be a nonempty, closed, and convex subset inH. A point y ∈ K is said to
be the orthogonal projection of x onto K if it is the closest point to x in K , i.e.,

y = argmin
{‖y – x‖ | y ∈ K

}
,

and we denote y by PK (x). The well-known properties of the projection operator are as
follows.

Lemma . [] Let K be a nonempty, closed, and convex subset inH. Then for any x, y ∈
H, and z ∈ K , the following statements hold:

(i) 〈PK (x) – x, z – PK (x)〉 ≥ ;
(ii) ‖PK (x) – PK (y)‖ ≤ ‖x – y‖ – ‖PK (x) – x + y – PK (y)‖.

Remark . In fact, (i) in Lemma . also provides a sufficient condition for a vector u to
be the projection of the vector x, i.e., u = PK (x) if and only if

〈u – x, z – u〉 ≥ , ∀z ∈ K .

Definition . Let K be a nonempty subset ofH. The multi-valued mapping F : K → H

is said to be
(i) monotone if and only if

〈u – v,x – y〉 ≥ , ∀x, y ∈ K ,u ∈ F(x), v ∈ F(y);

(ii) pseudo-monotone if and only if, for any x, y ∈ K , u ∈ F(x), v ∈ F(y),

〈u, y – x〉 ≥  �⇒ 〈v, y – x〉 ≥ .

To proceed, we present the definition of maximal monotone multi-valued mapping F .

Definition . Let K be a nonempty subset ofH. The multi-valued mapping F : K → H

is said to be a maximal monotone operator if F is monotone and the graph

G(F) =
{
(x,u) ∈ K ×H | u ∈ F(x)

}

is not properly contained in the graph of any other monotone operator.
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It is clear that a monotone multi-valued mapping F is maximal if and only if, for any
(x,u) ∈ K ×H such that 〈u – v,x – y〉 ≥ , ∀(y, v) ∈G(F), then u ∈ F(x).

Definition . Let K be a nonempty, closed, and convex subset of the Hilbert space H.
A multi-valued mapping F : K → H is said to be

(i) upper semi-continuous at x ∈ K if for every open set V containing F(x), there is an
open set U containing x such that F(y)⊂ V for all y ∈ K ∩U ;

(ii) lower semi-continuous at x ∈ K if given any sequence xk converging to x and any
y ∈ F(x), there exists a sequence yk ∈ F(xk) that converges to y;

(iii) continuous at x ∈ K if it is both upper semi-continuous and lower semi-continuous
at x.

Throughout this paper, we assume that the multi-valued mapping F : X → H is maxi-
malmonotone and continuous onX with nonempty compact convex values, whereX ⊆H
is a nonempty, closed, and convex set.

3 Main results
For any x ∈H and ξ ∈ F(x), set

r(x, ξ ) = x – PX(x – ξ ).

Then the projection residue r(x, ξ ) can verify the solution set of problem (.).

Proposition . Point x ∈ X solves problem (.) if and only if r(x, ξ ) =  i.e.,

x = PX(x – ξ ) for some ξ ∈ F(x).

Now, we give the description of the designed algorithm for problem (.), whose basic
idea is as follows. At each step of the algorithm, compute the projection residue r(xk , ξ k)
at iterate xk . If it is a zero vector for some ξ k ∈ F(xk), then stop with xk being a solution
of problem (.); otherwise, find a trial point yk by a back-tracking search at xk along the
residue r(xk , ξ k), and the new iterate is obtained by projecting x onto the intersection of
X with two halfspaces, respectively, associated with yk and xk . Repeat this process until
the projection residue is a zero vector.

Algorithm .
Step : Choose σ ,γ ∈ (, ), x ∈ X , k = .
Step : Given the current iterate xk , if ‖r(xk , ξ )‖ =  for some ξ ∈ F(xk), stop; else take

any ξ k ∈ F(xk) and compute

zk = PX
(
xk – ξ k).

Take

yk = ( – ηk)xk + ηkzk ,

where ηk = γmk , with mk being the smallest non-negative integer m satisfying
∃ζ k ∈ F(xk – γmr(xk , ξ k)) such that

〈
ζ k , r

(
xk , ξ k)〉 ≥ σ

∥∥r(xk , ξ k)∥∥. (.)
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Step : Let xk+ = PH
k∩H

k∩X(x), where

H
k =

{
x ∈H | 〈x – yk , ζ k 〉 ≤ ,∀ζ k ∈ F

(
yk

)}
,

H
k =

{
x ∈H | 〈x – xk ,x – xk

〉 ≤ 
}
.

Set k = k +  and go to Step .

The following conclusion addresses the feasibility of the stepsize rule (.), i.e., the exis-
tence of point ζ k .

Lemma . If xk is not a solution of problem (.), then there exists a smallest non-negative
integer m satisfying (.).

Proof By the definition of r(xk , ξ k) and Lemma ., it follows that

〈
PX

(
xk – ξ k) – (

xk – ξ k),xk – PX
(
xk – ξ k)〉 ≥ ,

which implies

〈
ξ k , r

(
xk , ξ k)〉 ≥ ∥∥r(xk , ξ k)∥∥ > . (.)

Since γ ∈ (, ), we get

lim
m→∞

(
xk – γmr

(
xk , ξ k)) = xk .

Combining this with the fact that F is continuous, we know that there exists ζm ∈ F(xk –
γmr(xk , ξ k)) such that

lim
m→∞ ζm = ξ k ;

hence, by (.), one has

lim
m→∞

〈
ζm, r

(
xk , ξ k)〉 = 〈

ξ k , r
(
xk , ξ k)〉 ≥ ∥∥r(xk , ξ k)∥∥ > .

This completes the proof. �

Lemma . Suppose the solution set X∗ is nonempty, then the halfspace H
k in Algo-

rithm . separates the point xk from the set X∗.Moreover,

X∗ ⊆H
k ∩X, ∀k ≥ .

Proof By the definition of r(xk , ξ k) and Algorithm ., we have

yk = ( – ηk)xk + ηkzk = xk – ηkr
(
xk , ξ k),

which can be written as

ηkr
(
xk , ξ k) = xk – yk .
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Then, by this and (.), one has

〈
ζ k ,xk – yk

〉
> , (.)

where ζ k is a vector in F(yk). So, by the definition of H
k and (.) it follows that xk /∈H

k .
On the other way, for any x∗ ∈ X∗ and x ∈ X, we have

〈
ω∗,x – x∗〉 ≥ , ω∗ ∈ F

(
x∗).

Since F is monotone on X, one has

〈
ω,x – x∗〉 ≥ 〈

ω∗,x – x∗〉 ≥ , ∀ω ∈ F(x). (.)

Let x = yk in (.). Then for any ζ k ∈ F(yk),

〈
ζ k , yk – x∗〉 ≥ ,

which implies x∗ ∈H
k . Moreover, since

X∗ ⊆H
k ∩X, ∀k ≥ ,

the desired result follows. �

Regarding the projection step, we shall prove that the set H
k ∩ H

k ∩ X is always
nonempty, even when the solution set X∗ is empty. Therefore the whole algorithm is well
defined in the sense that it generates an infinite sequence {xk}∞k=.

Lemma . If the solution set X∗ �= ∅, then X∗ ⊆H
k ∩H

k ∩X for all k ≥ .

Proof From the analysis in Lemma ., it is sufficient to prove that X∗ ⊆ H
k for all k ≥ .

The proof will be given by induction. Obviously, if k = ,

X∗ ⊆H
 =H.

Now, suppose that

X∗ ⊆H
k

holds for k = l ≥ . Then

X∗ ⊆H
l ∩H

l ∩X.

For any x∗ ∈ X∗, by Lemma . and the fact that

xl+ = PH
l ∩H

l ∩X
(
x

)
,
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we have

〈
x∗ – xl+,x – xl+

〉 ≤ .

Thus X∗ ⊆H
l+. This shows that X∗ ⊆H

k for all k ≥  and the desired result follows. �

Lemma . Suppose that X∗ = ∅, then H
k ∩H

k ∩X �= ∅ for all k ≥ .

Proof On the contrary, suppose k >  is the smallest non-negative number such that

H
k ∩H

k ∩X = ∅.

Then xk , yk , ζ k are defined for k = , , . . . ,k, and there exists a positive number M such
that

{
xk |  ≤ k ≤ k

} ⊆ B
(
x,M

)

and

{
xk – ξ k |  ≤ k ≤ k, ξ k ∈ F

(
xk

)} ⊆ B
(
x,M

)
,

where

B
(
x,M

)
=

{
x ∈H | ∥∥x – x

∥∥ ≤M
}
.

Set

h(x) =

⎧⎨
⎩
, if x ∈ int(X)∩ B(x, M),

+∞, otherwise.

Then h :H → R ∪ {+∞} is a lower semi-continuous proper convex function. By the defi-
nition of subgradient, we have

∂h(x) =

⎧⎪⎪⎨
⎪⎪⎩

{}, if x ∈ int(X)∩ {x | ‖x – x‖ < M},
{λ(x – x) | λ ≥ }, if x ∈ int(X)∩ {x | ‖x – x‖ = M},
∅, otherwise.

So, ∂h(x) and

F ′ = F + ∂h

are all maximal monotone mappings []. Furthermore,

F ′(x) = F(x), if x ∈ int(X)∩ {
x | ∥∥x – x

∥∥ < M
}
,

and xk , yk , ζ k for k = , , . . . ,k also satisfy the conditions of Algorithm .. Since the
domain of F ′ is bounded, by the proof of Theorem  in [], we know that F ′(x) has a zero

http://www.journalofinequalitiesandapplications.com/content/2014/1/223
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point i.e., there exists a point x̄ ∈ int(X)∩ {x | ‖x – x‖ < M} such that

 ∈ F ′(x̄) = F(x̄),

which implies that the solution set X∗ is nonempty. We arrive at a contradiction and the
desired result follows. �

In order to establish the convergence of the algorithm, we first show the expansion prop-
erty of the algorithm w.r.t. the initial point.

Lemma . Suppose Algorithm . reaches an iteration k + . Then

∥∥xk+ – xk
∥∥ +

∥∥xk – x
∥∥ ≤ ∥∥xk+ – x

∥∥.

Proof By the iterative process of Algorithm ., one has

xk+ = PH
k∩H

k∩X
(
x

)
.

So xk+ ∈H
k and

PH
k

(
xk+

)
= xk+.

From the definition of H
k , it follows that

〈
z – xk ,x – xk

〉 ≤ , ∀z ∈H
k .

Thus, xk = PH
k
(x) from Remark .. Then, from Lemma ., we have

∥∥PH
k

(
xk+

)
– PH

k

(
x

)∥∥ ≤ ∥∥xk+ – x
∥∥ –

∥∥PH
k

(
xk+

)
– xk+ + x – PH

k

(
x

)∥∥,

which can be written as

∥∥xk+ – xk
∥∥ ≤ ∥∥xk+ – x

∥∥ –
∥∥xk – x

∥∥,

i.e.,

∥∥xk+ – xk
∥∥ +

∥∥xk – x
∥∥ ≤ ∥∥xk+ – x

∥∥,

and the proof is completed. �

From Lemma ., Algorithm . generates an infinite sequence if the solution set of
problem (.) is empty. More precisely, we have the following conclusion.

Theorem. Suppose Algorithm . generates an infinite sequence {xk}∞k=.Assume the se-
quence {ηk}∞k= is bounded away from zero. Then the generated sequence {xk}∞k= is bounded
and its each weak accumulation point is a solution of problem (.) if the solution set X∗ is

http://www.journalofinequalitiesandapplications.com/content/2014/1/223
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nonempty. Otherwise

lim
k→+∞

∥∥xk – x
∥∥ = +∞

if the solution set X∗ is empty.

Proof For the case that X∗ �= ∅, by Lemma . and

xk+ = PH
k∩H

k∩X
(
x

)
,

we know that

∥∥xk+ – x
∥∥ ≤ ∥∥x∗ – x

∥∥

for any x∗ ∈ X∗. So, {xk}∞k= is a bounded sequence.
Then, by Lemma ., we know the sequence {‖xk – x‖}∞k= is nondecreasing and

bounded, which implies that

lim
k→∞

∥∥xk+ – xk
∥∥ = . (.)

On the other hand, by the fact that xk+ ∈H
k , we have

〈
xk+ – yk , ζ k 〉 ≤ , (.)

where ζ k can be chosen as (.). Since

yk = ( – ηk)xk + ηkzk = xk – ηkr
(
xk , ξ k),

by (.), one has

〈
xk+ – yk , ζ k 〉 = 〈

xk+ – xk + ηkr
(
xk , ξ k), ζ k 〉 ≤ ,

which can be written as

ηk
〈
r
(
xk , ξ k), ζ k 〉 ≤ 〈

xk – xk+, ζ k 〉.

Using the Cauchy-Schwarz inequality and (.), we obtain

ηkσ
∥∥r(xk , ξ k)∥∥ ≤ ηk

〈
r
(
xk , ξ k), ζ k 〉 ≤ ∥∥xk+ – xk

∥∥∥∥ζ k∥∥. (.)

Since F is continuous with compact values, Proposition . in [] implies that {F(yk) :
k ∈ N} is a bounded set, and hence the sequence {ζ k : ζ k ∈ F(yk)} is bounded. Thus, by
(.) and (.), it follows that

lim
k→∞

ηk
∥∥r(xk , ξ k)∥∥ = .

http://www.journalofinequalitiesandapplications.com/content/2014/1/223
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By assumption that {ηk}∞k= is bounded away from zero, we have

lim
k→∞

∥∥r(xk , ξ k)∥∥ = . (.)

Since the sequence {xk}∞k= is bounded, it has weak accumulation points. Without loss
of generality, assume that the subsequence {xkj} weakly converges to x̄, i.e.,

xkj ⇀ x̄, as j → ∞.

Since r(x, ξ ) is a continuous and single valued operator, from Theorem  of [], we know
that r(x, ξ ) is a weak continuous operator. Thus,

∥∥r(x̄, ξ )∥∥ = lim
j→∞

∥∥r(xkj , ξ kj
)∥∥ = 

for some ξ ∈ F(x̄) and x̄ is a solution of problem (.).
Now, consider the case that the solution set is empty. For this case, the inequality

∥∥xk+ – xk
∥∥ +

∥∥xk – x
∥∥ ≤ ∥∥xk+ – x

∥∥

and (.) still hold. Thus, the sequence {‖xk –x‖}∞k= is also nondecreasing. Now, we claim
that

lim
k→+∞

∥∥xk – x
∥∥ = +∞.

Otherwise, a similar argument to the one above leads to the conclusion that any weak ac-
cumulation point of {xk}∞k= is a solution of problem (.), which contradicts the emptiness
of the solution set, and the conclusion follows. �

We are in a position to prove strong convergence of Algorithm ..

Theorem . Suppose Algorithm . generates an infinite sequence {xk}∞k=. If the solution
set X∗ is nonempty and the sequence {ηk} is bounded away from zero, then the sequence
{xk}∞k= converges strongly to a solution x∗ such that x∗ = PX∗ (x); otherwise, limk→+∞ ‖xk –
x‖ = +∞. That is, the solution set of problem (.) is empty if and only if the sequence
generated by Algorithm . diverges to infinity.

Proof For the case that the solution set is nonempty, from Theorem ., we know that
the sequence {xk}∞k= is bounded and that every weak accumulate point x∗ of {xk}∞k= is a
solution of problem (.). Let {xkj}∞j= be a weakly convergent subsequence of {xk}∞k=, and
let x∗ ∈ X∗ be its weak limit. Let x̄ = PX∗ (x). Then by Lemma .,

x̄ ∈H
kj– ∩H

kj– ∩X

for all j. So, from the iterative procedure of Algorithm .,

xkj = PH
kj–

∩H
kj–

∩X
(
x

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/223


Chen et al. Journal of Inequalities and Applications 2014, 2014:223 Page 10 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/223

one has

∥∥xkj – x
∥∥ ≤ ∥∥x̄ – x

∥∥. (.)

Thus,

∥∥xkj – x̄
∥∥ =

∥∥xkj – x + x – x̄
∥∥

=
∥∥xkj – x

∥∥ +
∥∥x – x̄

∥∥ + 
〈
xkj – x,x – x̄

〉

≤ ∥∥x̄ – x
∥∥ +

∥∥x – x̄
∥∥ + 

〈
xkj – x,x – x̄

〉
,

where the inequality follows from (.). Letting j → ∞, it follows that

lim sup
j→∞

∥∥xkj – x̄
∥∥ ≤ 

∥∥x̄ – x
∥∥ + 

〈
x∗ – x,x – x̄

〉

= 
〈
x∗ – x̄,x – x̄

〉
. (.)

Due to Lemma . and the fact that x̄ = PX∗ (x) and x∗ ∈ X∗, we have

〈
x∗ – x̄,x – x̄

〉 ≤ .

Combing this with (.) and the fact that x∗ is a weak limit of {xkj}∞j=, we conclude that
the sequence {xkj}∞j= strongly converges to x̄ and

x∗ = x̄ = PX∗
(
x

)
.

Since x∗ was taken as an arbitrary weak accumulation point of {xk}∞k=, it follows that
x̄ is the unique weak accumulation point of this sequence. Since {xk}∞k= is bounded, the
whole sequence {xk}∞k= weakly converges to x̄. On the other hand, we have shown that
every weakly convergent subsequence of {xk}∞k= converges strongly to x̄. Hence, the whole
sequence {xk}∞k= converges strongly to x̄ ∈ X∗.
For the case that the solution set is empty, the conclusion can be obtained directly from

Theorem .. �
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