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Abstract
The main purpose of this paper is to give some fixed point results for mappings
involving generalized (φ ,ψ )-contractions in partially ordered metric spaces. Our
results generalize, extend, and unify several well-known comparable results in the
literature (Jaggi in Indian J. Pure Appl. Math. 8(2):223-230, 1977, Harjani et al. in
Nonlinear Anal. 71:3403-3410, 2009, Luong and Thuan in Fixed Point Theory Appl.
2011:46, 2011). The presented results are supported by three illustrative examples.
MSC: 46N40; 47H10; 54H25; 46T99
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1 Introduction and preliminaries
The Banach contraction mapping principle [] is one of the pivotal results of analysis. It is
widely considered as the source of metric fixed point theory. Also, its significance lies in
its application in a vast number of branches of mathematics. Generalizations of this prin-
ciple have been investigated heavily (see Jaggi [], Harjani et al. [], Luong and Thuan []).
In particular, in , Jaggi [] proved the following theorem satisfying a contractive con-
dition of a rational type.

Theorem  Let (X,d) be a complete metric space. Let T : X → X be a continuous mapping
such that

d(Tx,Ty) ≤ α
d(x,Tx)d(y,Ty)

d(x, y)
+ βd(x, y) (.)

for all distinct points x, y ∈ X where α,β ∈ [, ) with α + β < . Then T has a unique fixed
point.

Existence of fixed point in partially ordered sets has been recently studied in [–].
Recently, Harjani et al. [] proved the ordered version of Theorem . Very recently, Lu-

ong and Thuan [] generalized the results of [] and proved the following.
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Theorem  Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that
(X,d) is a metric space. Let T : X → X be a non-decreasing mapping such that

d(Tx,Ty) ≤M(x, y) –ψ
(
M(x, y)

)
(.)

for all distinct points x, y ∈ X with y ≤ x where ψ : [,∞) → [,∞) is a lower semi-
continuous function with the property that ψ(t) =  if and only if t = , and

M(x, y) =max

{
d(x,Tx)d(y,Ty)

d(x, y)
,d(x, y)

}
. (.)

Also, assume either
(i) T is continuous or
(ii) if {xn} is a non-decreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point.

Set � = {φ | φ : [,∞) → [,∞) is continuous and non-decreasing with φ(t) =  if and
only if t = } and � = {ψ | ψ : [,∞) → [,∞) is lower semi continuous,ψ(t) >  for all
t > , and ψ() = }. For some work on the class of � or the class of � , we refer the reader
to [, , ].
In , Berinde [] introduced an almost contraction, a new class of contractive type

mappings which exhibits totally different features more than the one of the particular
results incorporated [, , , ], i.e., an almost contraction generally does not have
a unique fixed point; see Example  in []. Thereafter, many authors presented several
interesting and useful facts about almost contractions; see [, –].
The purpose of this article is to generalize the above results for a mapping T : X → X

involving a generalized (φ,ψ)-almost contraction. Some examples are also presented to
show that our results are effective.

2 Main result
Our essential result is given as follows.

Theorem  Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that
(X,d) is a complete metric space. Let T : X → X be a non-decreasing mapping which satis-
fies the inequality

φ
(
d(Tx,Ty)

) ≤ φ
(
M(x, y)

)
–ψ

(
M(x, y)

)
+ Lmin

{
d(x,Ty),d(y,Tx),d(x,Tx),d(y,Ty)

}
(.)

for all distinct points x, y ∈ X with y≤ x where φ ∈ �, ψ ∈ � , L ≥  and

M(x, y) =max

{
d(x,Tx)d(y,Ty)

d(x, y)
,d(x, y)

}
.

Also, assume either
(i) T is continuous or
(ii) if {xn} is a non-decreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point.
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Proof Let x ∈ X such that x ≤ Tx. We define a sequence {xn} in X as follows:

xn = Txn– for n≥ . (.)

Since T is a non-decreasing mapping together with (.), we have x = Tx. Inductively,
we obtain

x ≤ x ≤ x ≤ · · · ≤ xn– ≤ xn ≤ xn+ ≤ · · · . (.)

Assume that there exists n such that xn = xn+. Since xn = xn+ = Txn , then T has a
fixed point. Suppose that xn �= xn+ for all n ∈N. Thus, by (.) we have

x < x < x < · · · < xn– < xn < xn+ < · · · . (.)

Regarding (.), the condition (.) implies that

φ
(
d(xn,xn+)

)
= φ

(
d(Txn–,Txn)

)
≤ φ

(
M(xn–,xn)

)
–ψ

(
M(xn–,xn)

)
+ Lmin

{
d(xn–,Txn),d(Txn–,xn),d(xn–,Txn–),d(xn,Txn)

}
≤ φ

(
M(xn–,xn)

)
–ψ

(
M(xn–,xn)

)
+ Lmin

{
d(xn–,xn+),d(xn,xn),d(xn–,xn),d(xn,xn+)

}
= φ

(
M(xn–,xn)

)
–ψ

(
M(xn–,xn)

)
, (.)

where

M(xn–,xn) =max

{
d(xn–,Txn–)d(xn,Txn)

d(xn–,xn)
,d(xn–,xn)

}

=max
{
d(xn,xn+),d(xn–,xn)

}
.

Suppose thatM(xn–,xn) = d(xn,xn+) for some n ≥ . Then the inequality (.) turns into

φ
(
d(xn,xn+)

) ≤ φ
(
d(xn,xn+)

)
–ψ

(
d(xn,xn+)

)
.

Regarding (.) and the property of ψ , this is a contradiction. Thus, M(xn–,xn) =
d(xn–,xn) for all n≥ . Therefore, the inequality (.) yields

φ
(
d(xn,xn+)

) ≤ φ
(
d(xn–,xn)

)
–ψ

(
d(xn–,xn)

)
< φ

(
d(xn–,xn)

)
. (.)

Since φ is non-decreasing, we have d(xn,xn+) ≤ d(xn–,xn). Consequently, {d(xn–,xn)} is
a decreasing sequence of positive real numbers which is bounded below. So, there exists
α ≥  such that limn→∞ d(xn–,xn) = α. We claim that α = . Suppose, to the contrary, that
α > . By taking the limit of the supremum in the relation φ(d(xn,xn+)) ≤ φ(d(xn–,xn)) –
ψ(d(xn–,xn)), as n→ ∞, we get

φ(α)≤ φ(α) –ψ(α) < φ(α),

http://www.journalofinequalitiesandapplications.com/content/2014/1/219
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which is a contradiction. Hence, we conclude that α = , that is,

lim
n→∞d(xn–,xn) = . (.)

We prove that the sequence {xn} is Cauchy in X. Suppose, to the contrary, that {xn} is not
a Cauchy sequence. So, there exists ε >  such that

d(xm(k),xn(k))≥ ε, (.)

where {xm(k)} and {xn(k)} are subsequences of {xn} with

n(k) >m(k)≥ k. (.)

Moreover, n(k) is chosen to be the smallest integer satisfying (.). Thus, we have

d(xm(k),xn(k)–) < ε. (.)

By the triangle inequality, we get

ε ≤ d(xm(k),xn(k)) ≤ d(xm(k),xn(k)–) + d(xn(k)–,xn(k))

< ε + d(xn(k)–,xn(k)).

Keeping (.) in mind and letting n→ ∞ in the above inequality, we get

lim
n→∞d(xm(k),xn(k)) = ε. (.)

Due to the triangle inequality, we have

d(xm(k),xn(k))≤ d(xm(k),xm(k)–) + d(xm(k)–,xn(k)–) + d(xn(k)–,xn(k)) (.)

and

d(xm(k)–,xn(k)–) ≤ d(xm(k)–,xm(k)) + d(xm(k),xn(k)) + d(xn(k),xn(k)–). (.)

By using (.), (.), and letting n → ∞ in (.) and (.), we get

lim
n→∞d(xm(k)–,xn(k)–) = ε. (.)

Analogously, we derive

lim
n→∞d(xm(k),xn(k)–) = ε and lim

n→∞d(xm(k)–,xn(k)) = ε. (.)

Sincem(k) < n(k) we have xm(k)– < xn(k)–. By (.) we have

φ
(
d(xm(k),xn(k))

)
= φ

(
d(Txm(k)–,Txn(k)–)

)

http://www.journalofinequalitiesandapplications.com/content/2014/1/219
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≤ φ
(
M(xm(k)–,xn(k)–)

)
–ψ

(
M(xm(k)–,xn(k)–)

)
+ Lmin

{
d(xn(k)–,Txm(k)–),d(xm(k)–,Txn(k)–),

d(xm(k)–,Txm(k)–),d(xn(k)–,Txn(k)–)
}

≤ φ
(
M(xm(k)–,xn(k)–)

)
–ψ

(
M(xm(k)–,xn(k)–)

)
+ Lmin

{
d(xn(k)–,xm(k)),d(xm(k)–,xn(k)),d(xm(k)–,xm(k)),d(xn(k)–,xn(k))

}
, (.)

where

M(xm(k)–,xn(k)–)

=max

{
d(xm(k)–,Txm(k)–)d(xn(k)–,Txn(k)–)

d(xm(k)–,xn(k)–)
,d(xm(k)–,xn(k)–)

}

=max

{
d(xm(k)–,xm(k))d(xn(k)–,xn(k))

d(xm(k)–,xn(k)–)
,d(xm(k)–,xn(k)–)

}
. (.)

Letting n → ∞ in (.) (and hence in (.)), and taking (.), (.), (.), and (.)
into account, we obtain

φ(ε) ≤ φ
(
max{, ε}) –ψ

(
max{, ε}) + Lmin{ε, ε, , } < φ(ε), (.)

which is a contradiction. Thus, {xn} is a Cauchy sequence in X. Since X is a complete
metric space, there exists z ∈ X such that limn→∞ xn = z.
We will show that z is a fixed point of T . Assume that (i) holds. Then by the continuity

of T , we have

z = lim
n→∞xn = lim

n→∞Txn– = T
(
lim
n→∞xn–

)
= Tz.

Suppose that (ii) holds. Since {xn} is a non-decreasing sequence and limn→∞ xn = z then
z = sup{xn}. Hence, xn ≤ z for all n ∈N. Since T is a non-decreasingmapping, we conclude
that Txn ≤ Tz, or equivalently,

xn ≤ xn+ ≤ Tz for all n ∈ N. (.)

Then z = sup{xn}, and we get z ≤ Tz.
To this end, we construct a new sequence {yn} as follows:

y = z and yn = Tyn– for all n ≥ .

Since z ≤ Tz, we have y ≤ Ty = y. Hence we find that {yn} is a non-decreasing sequence.
By repeating the discussion above, one can conclude that {yn} is Cauchy. Thus there exists
y ∈ X such that limn→∞ yn = y. By (ii), we have y = sup{yn} and so we have yn ≤ y. From
(.), we get

xn < z = y ≤ Tz = Ty ≤ yn ≤ y for all n ∈N. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/219
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If z = y then the proof is finished. Suppose that z �= y. On account of (.), the expression
(.) implies that

φ
(
d(xn+, yn+)

)
= φ

(
d(Txn,Tyn)

)
≤ φ

(
M(xn, yn)

)
–ψ

(
M(xn, yn)

)
+ Lmin

{
d(xn,Tyn),d(yn,Txn),d(xn,Txn),d(yn,Tyn)

}
≤ φ

(
M(xn, yn)

)
–ψ

(
M(xn, yn)

)
+ Lmin

{
d(xn, yn+),d(yn,xn+),d(xn,xn+),d(yn, yn+)

}
, (.)

where

M(xn, yn) =max

{
d(xn,Txn)d(yn,Tyn)

d(xn, yn)
,d(xn, yn)

}

=max

{
d(xn,xn+)d(yn, yn+)

d(xn, yn)
,d(xn, yn)

}
. (.)

Letting n → ∞ in (.) (and hence (.)), we obtain

φ
(
d(y, z)

) ≤ φ
(
d(y, z)

)
–ψ

(
d(y, z)

)
< φ

(
d(y, z)

)
which is a contradiction. So y = z and we have z ≤ Tz ≤ z, then Tz = z. �

If we take L =  in Theorem  we get the following result.

Theorem  Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that
(X,d) is a complete metric space. Let T : X → X be a non-decreasing mapping which satis-
fies the inequality

φ
(
d(Tx,Ty)

) ≤ φ
(
M(x, y)

)
–ψ

(
M(x, y)

)
(.)

for all distinct x, y ∈ X with y≤ x where φ ∈ �, ψ ∈ � and

M(x, y) =max

{
d(x,Tx)d(y,Ty)

d(x, y)
,d(x, y)

}
.

Also, assume either
(i) T is continuous or
(ii) if {xn} is a non-decreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point.

Other corollaries could be derived.

Corollary  Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that
(X,d) is a complete metric space. Let T : X → X be a non-decreasing mapping such that

d(Tx,Ty) ≤M(x, y) –ψ
(
M(x, y)

)
+ Lmin

{
d(x,Ty),d(y,Tx),d(x,Tx),d(y,Ty)

}
(.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/219
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for all distinct x, y ∈ X with y≤ x where ψ ∈ � , L ≥  and

M(x, y) =max

{
d(x,Tx)d(y,Ty)

d(x, y)
,d(x, y)

}
.

Also, assume either
(i) T is continuous or
(ii) if {xn} is a non-decreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point.

Proof Take φ(t) = t in Theorem . �

Corollary  Let (X,≤) be a partially ordered set. Suppose there exists a metric d X such
that (X,d) is a complete metric space. Let T : X → X be a non-decreasing mapping such
that

d(Tx,Ty) ≤ kM(x, y) + Lmin
{
d(x,Ty),d(y,Tx),d(x,Tx),d(y,Ty)

}
, (.)

for all distinct x, y ∈ X with y≤ x where L ≥  and

M(x, y) =max

{
d(x,Tx)d(y,Ty)

d(x, y)
,d(x, y)

}
.

Also, assume either
(i) T is continuous or
(ii) if {xn} is a non-decreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point.

Proof Take ψ(t) = ( – k)ψ(t) for all t ∈ [,∞) in Corollary . �

Corollary  Let (X,≤) be a partially ordered set. Suppose there exists a metric d such that
(X,d) is a complete metric space. Let T : X → X be a non-decreasing mapping such that

d(Tx,Ty) ≤ α
d(x,Tx)d(y,Ty)

d(x, y)
+ βd(x, y) (.)

for all distinct x, y ∈ X with y≤ x where α,β ∈ [, ) with α + β < . Also, assume either
(i) T is continuous or
(ii) if {xn} is a non-decreasing sequence in X such that xn → x, then x = sup{xn}.

If there exists x ∈ X such that x ≤ Tx, then T has a fixed point.

Proof Take L =  and k = α + β for all t ∈ [,∞) in Corollary . Indeed,

d(Tx,Ty) ≤ α
d(x,Tx)d(y,Ty)

d(x, y)
+ βd(x, y)

≤ (α + β)max

{
d(x,Tx)d(y,Ty)

d(x, y)
,d(x, y)

}
. (.)

�
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Theorem  In addition to the hypotheses of Theorem , assume that

for every x, y ∈ X there exists z ∈ X that is comparable to x and y, (.)

then T has a unique fixed point.

Proof Suppose, to the contrary, that x and y are fixed points of T where x �= y. By (.),
there exists a point z ∈ X which is comparable with x and y. Without loss of generality, we
choose z ≤ x. We construct a sequence {zn} as follows:

z = z and zn = Tzn– for all n≥ . (.)

Since T is non-decreasing, z ≤ x implies Tz ≤ Tx = x. By induction, we get zn ≤ x.
If x = zN for some N ≥  then zn = Tzn– = Tx = x for all n ≥ N – . So limn→∞ zn = x.

Analogously, we get limn→∞ zn = y, which completes the proof.
Consider the other case, that is, x �= zn for all n = , , , . . . . Then, by (.), we observe

that

φ
(
d(x, zn)

)
= φ

(
d(Tx,Tzn–)

)
≤ φ

(
M(x, zn–)

)
–ψ

(
M(x, zn–)

)
+ Lmin

{
d(x,Tx),d(zn–,Tzn–),d(x,Tzn–),d(zn–,Tzn–)

}
= φ

(
M(x, zn–)

)
–ψ

(
M(x, zn–)

)
(.)

for all distinct x, y ∈ X with y≤ x where φ ∈ �, ψ ∈ � and

M(x, zn–) =max

{
d(x,Tx)d(zn–,Tzn–)

d(x, zn–)
,d(x, zn–)

}

=max

{
d(x,x)d(zn–, zn)

d(x, zn–)
,d(x, zn–)

}

= d(x, zn–). (.)

Thus,

φ
(
d(x, zn)

) ≤ φ
(
d(x, zn–)

)
–ψ

(
d(x, zn–)

)
< φ

(
d(x, zn)

)
,

which is a contradiction. This ends the proof. �

Remark
• Corollary  is a generalization of Theorem . of Luong and Thuan [].
• Corollary  (with L = ) corresponds to Theorem . and Theorem . of Harjani,
López and Sadarangani [].

• Theorem . generalizes Theorem . of Luong and Thuan [].

Now, we give some examples illustrating our results.

http://www.journalofinequalitiesandapplications.com/content/2014/1/219
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Example  Let X = {, , } be endowed with the usual metric d(x, y) = |x – y| for all
x, y ∈ X, and �:= {(, ), (, ), (, ), (, )}. Consider the mapping

T =

(
  
  

)
.

We define the functions φ,ψ : [, +∞)→ [, +∞) by φ(t) = t and ψ(t) = 
 t. Now, we will

check that all the hypotheses required by Theorem  (Theorem  with L = ) are satisfied.
First, X has the property: if {xn} is a non-decreasing sequence in X such that xn → x,

then x = sup{xn}. Indeed, let {zn} be a non-decreasing sequence in X with respect to �
such that zn → z ∈ X as n → +∞. We have zn � zn+ for all n ∈N.

• If z = , then z =  � z. From the definition of �, we have z = . By induction, we
get zn =  for all n ∈N and z = . Then zn � z for all n ∈N and z = sup{zn}.

• If z = , then z =  � z. From the definition of �, we have z = . By induction, we
get zn =  for all n ∈N and z = . Then zn � z for all n ∈N and z = sup{zn}.

• If z = , then z =  � z. From the definition of �, we have z ∈ {,}. By induction,
we get zn ∈ {,} for all n ∈ N. Suppose that there exists p ≥  such that zp = . From the
definition of�, we get zn = zp =  for all n≥ p. Thus, we have z =  and zn � z for all n ∈N.
Now, suppose that zn =  for all n ∈ N. In this case, we get z =  and zn � z for all n ∈ N

and z = sup{zn}.
Thus, we proved that in all cases, we have z = sup{zn}.
Let x, y ∈ X such that x� y and x �= y, so we have only x =  and y = . In particular

d(T,T) =  and M(, ) = ,

so (.) holds easily. On the other hand, it is obvious that T is a non-decreasing map-
ping with respect to � and there exists x =  such that x � Tx. All the hypotheses of
Theorem  are verified and u =  is a fixed point of T .
Note that Theorem  is not applicable. Indeed, taking x =  and y = 

d(T,T) =  > β = α
d(,T)d(,T)

d(, )
+ βd(, ),

for any α,β ≥  such that α + β < . Also, we could not apply Theorem  in this example.
Indeed, for x =  and y =  (that is, x �= y and x � y), we have

 = d(T,T) >M(T,T) –ψ
(
M(T,T)

)
= –.

Example  Let X = [,∞) be endowed with the Euclidean metric and the order � given
as follows:

x � y ⇐⇒ (x = y) or (x, y≥ ,x≤ y).

Define T : X → X by Tx = x if  ≤ x <  and Tx =  if x ≥ . Define the functions φ,ψ :
[, +∞)→ [, +∞) by φ(t) = t and ψ(t) = t.
Take x � y and x �= y. It means that  ≤ x < y. In particular, d(Tx,Ty) =  and M(x, y) =

y – x. This implies that (.) holds. It is easy that X satisfies the property: if {xn} is a

http://www.journalofinequalitiesandapplications.com/content/2014/1/219
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non-decreasing sequence in X such that xn → x, then xn � x for all n ∈N. Also, the other
conditions of Theorem  are satisfied and u =  is a fixed point of T .
Notice that we cannot apply Theorem  (since T is not continuous) nor Theorem  to

this example. Indeed, letting x� y and x �= y (that is,  ≤ x < y), we have

d(Tx,Ty) =  >M(x, y) –ψ
(
M(x, y)

)
= –(y – x).

Example  Let X = {(, ), (, ), (, )} ⊂ R
 with the Euclidean distance d. (X,d) is,

obviously, a complete metric space. Moreover, we consider the order ≤ in X given by
R = {(x,x),x ∈ X} ∪ {((, ), (, ))}. We also consider T : X → X given by T((, )) = (, ),
T((, )) = (, ) and T((, )) = (, ). Take φ(t) = t andψ(t) = t. Obviously, T is a contin-
uous and non-decreasing mapping since (, ) ≤ (, ) and T(, ) = (, )≤ T(, ) = (, ).
Let x ≤ y and x �= y, then necessarily x = (, ) and y = (, ). Then

d(Tx,Ty) = d
(
(, ), (, )

)
=  and M(x, y) =

√
,

so (.) holds. Also, (, ) ≤ T((, )), therefore all conditions in Theorem  hold and
there are two fixed points which are (, ) and (, ). The non-uniqueness follows from the
fact that the partial order ≤ is not total.
Note that Theorem  is not applicable. Indeed, taking x = (, ) and y = (, )

d(Tx,Ty) =
√
 > (α + β)

√
 = α

d(x,Tx)d(y,Ty)
d(x, y)

+ βd(x, y),

for any α,β ≥  such that α + β < . Also, we could not apply Theorem  in this example.
Indeed, for x = (, ) and y = (, ) we have

 = d(Tx,Ty) >
√
 – 

√
 =M(x, y) –ψ

(
M(x, y)

)
.
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33. Abbas, M, Nazir, T, Radenović, S: Common coupled fixed points of generalized contractive mappings in partially

ordered metric spaces. Positivity (2013). doi:10.1007/s11117-012-0219-z
34. Nieto, JJ, Rodríguez-López, R: Existence and uniqueness of fixed point in partially ordered sets and applications to

ordinary differential equation. Acta Math. Sin. Engl. Ser. 23(12), 2205-2212 (2007)
35. O’Regan, D, Petrusel, A: Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal.

Appl. 341, 1241-1252 (2008)
36. Olatinwo, MO, Postolache, M: Stability results for Jungck-type iterative processes in convex metric spaces. Appl. Math.

Comput. 218(12), 6727-6732 (2012)
37. Petrusel, A, Rus, IA: Fixed point theorems in ordered L-spaces. Proc. Am. Math. Soc. 134, 411-418 (2006)
38. Ran, ACM, Reurings, MVB: A fixed point theorem in partially ordered sets and some applications to matrix equations.

Proc. Am. Math. Soc. 132, 1435-1443 (2004)
39. Rhoades, BE: A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 226, 257-290 (1977)
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