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1 Introduction
Let H be a Hilbert space, C be a nonempty closed convex subset of H , and F : C → H a
nonlinear mapping. The set of fixed points of F is denoted by Fix(F), i.e., Fix(F) = {x ∈ C :
Fx = x}. A monotone variational inequality problem is to find a point x∗ with the property

x∗ ∈ C, such that
〈
Fx∗,x – x∗〉 ≥ , ∀x ∈ C, ()

where F is a monotone operator.
Recently, Lu et al. [] were concerned with a special class of variational inequalities in

which the mapping F is the complement of a nonexpansive mapping and the constraint
set is the set of fixed points of another nonexpansive mapping. Namely, they considered
the following type of monotone variational inequality (VI) problem:

Find x∗ ∈ Fix(T), such that
〈
(I –V )x∗,x – x∗〉 ≥ , ∀x ∈ Fix(T), ()

where T ,V : C → C are nonexpansive mappings and Fix(T) �= ∅.
Hybrid methods for solving VI () were studied by Yamada [], where F is Lipschitzian

and strongly monotone. However, his methods do not apply to the variational inequal-
ity () since the mapping I – V fails, in general, to be strongly monotone, though it is
Lipschitzian. Therefore, other hybrid methods have to be sought. Recently, Moudafi and
Mainge [] studied VI () by regularizing the mapping tS + ( – t)T and defined {xs,t} as
the unique fixed point of the equation

xs,t = sf (xs,t) + ( – s)
[
tS(xs,t) + ( – t)T(xs,t)

]
, s, t ∈ (, ). ()
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Since Moudafi and Mainge’s regularization depends on t, the convergence of the scheme
() is more complicated. Very recently, Lu et al. [] studied VI () by regularizing the map-
ping S and defined {xs,t} as the unique fixed point of the equation

xs,t = s
[
tf (xs,t) + ( – t)S(xs,t)

]
+ ( – s)T(xs,t), s, t ∈ (, ). ()

Note that Lu et al.’s regularization () no longer depends on t.
Motivated and inspired by the result of Lu et al. [], we put forward a question: Can

this implicit hybrid method [] in Hilbert spaces be extended to the framework of Banach
spaces? In this paper, we give a positive answer.
Throughout this paper, we always assume that E is a real Banach space. Let C be a

nonempty closed convex subset of E. Let F : C → E be a nonlinear mapping.
In this paper, we consider the following type of accretive variational inequality problem:

x∗ ∈ Fix(T), such that
〈
(I – S)x∗, j

(
x – x∗)〉 ≥ , ∀x ∈ Fix(T), ()

where S,T : C → C are two nonexpansive mappings with the set of fixed point Fix(T) �= ∅.
Let � denote the set of solutions of VI () and assume that � is nonempty.

2 Preliminaries
Let E be a real Banach space and J be the normalized duality mapping from E into E∗

given by

J(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖∥∥x∗∥∥,‖x‖ = ∥∥x∗∥∥}

for all x ∈ E, where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing
between E and E∗.
Let C be a nonempty closed convex subset of a real Banach space E. Recall the following

concepts of mappings.
(i) A mapping f : C → C is a ρ-contraction if ρ ∈ [, ) and the following property is

satisfied:

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖, ∀x, y ∈ C.

(ii) A mapping T : C → C is nonexpansive provided

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C.

(iii) A mapping F : C → E is
(a) accretive if for any x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Fx – Fy, j(x – y)

〉 ≥ ;

(b) strictly accretive if F is accretive and the equality in (a) holds if and only if x = y;
(c) β-strongly accretive if for any x, y ∈ C there exists j(x – y) ∈ J(x – y) such that

〈
Fx – Fy, j(x – y)

〉 ≥ β‖x – y‖

for some real constant β > .
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Let ϕ : [,∞) := R+ → R+ be a continuous strictly increasing function such that ϕ() = 
and ϕ(t) → ∞ as t → ∞. This function ϕ is called a gauge function. The duality mapping
Jϕ : E → E∗ associated with a gauge function ϕ is defined by

Jϕ(x) =
{
x∗ ∈ E∗ :

〈
x,x∗〉 = ‖x‖ϕ(‖x‖),∥∥x∗∥∥ = ϕ

(‖x‖)}, ∀x ∈ E.

In the case that ϕ(t) = t, Jϕ = J , where J is the normalized duality mapping. Clearly, the
relation Jϕ(x) = ϕ(‖x‖)

‖x‖ J(x), ∀x �=  holds (see []).
Following Browder [], we say that a Banach space E has a weakly continuous duality

mapping if there exists a gauge ϕ for which the duality mapping Jϕ(x) is single valued and
weak-to-weak∗ sequentially continuous (i.e., if {xn} is a sequence in Eweakly convergent to
a point x, then the sequence Jϕ(xn) converges weakly∗ to Jϕ(x)). It is well known that lp has
a weakly continuous duality mapping with a gauge function ϕ(t) = tp– for all  < p < ∞.
Set

�(t) =
∫ t


ϕ(τ )dτ , t > ,

then

Jϕ(x) = ∂�
(‖x‖), ∀x ∈ E,

where ∂ denotes the sub-differential in the sense of convex analysis.

Remark . If Jϕ is weak-to-weak∗ sequentially continuous, then J is strong-to-weak∗ se-
quentially continuous.

Indeed, if xn → x strongly, then xn → x weakly, Jϕ(xn) converges weakly∗ to Jϕ(x) and
ϕ(‖xn‖)→ ϕ(‖x‖) strongly. Since Jϕ(x) ‖x‖

ϕ(‖x‖) = J(x), ∀x �= , for any y ∈ E, we have

∣∣〈y, J(xn)〉 – 〈
y, J(x)

〉∣∣
=

∣∣∣∣
〈
y, Jϕ(xn)

‖xn‖
ϕ(‖xn‖)

〉
–

〈
y, Jϕ(x)

‖x‖
ϕ(‖x‖)

〉∣∣∣∣
≤

∣∣∣∣
〈
y, Jϕ(xn)

‖xn‖
ϕ(‖xn‖)

〉
–

〈
y, Jϕ(xn)

‖x‖
ϕ(‖x‖)

〉∣∣∣∣ +
∣∣∣∣
〈
y, Jϕ(xn)

‖x‖
ϕ(‖x‖)

〉
–

〈
y, Jϕ(x)

‖x‖
ϕ(‖x‖)

〉∣∣∣∣
≤ ‖y‖ϕ(‖xn‖) |‖xn‖ϕ(‖x‖) – ‖x‖ϕ(‖xn‖)|

ϕ(‖xn‖)ϕ(‖x‖) +
‖x‖

ϕ(‖x‖)
∣∣〈y, Jϕ(xn)〉 – 〈

y, Jϕ(x)
〉∣∣

≤ ‖y‖‖xn‖|ϕ(‖x‖) – ϕ(‖xn‖)| + |‖xn‖ – ‖x‖|ϕ(‖xn‖)
ϕ(‖x‖)

+
‖x‖

ϕ(‖x‖)
∣∣〈y, Jϕ(xn)〉 – 〈

y, Jϕ(x)
〉∣∣.

Letting n → ∞, we have

lim
n→∞

〈
y, J(xn)

〉
=

〈
y, J(x)

〉
,

i.e., J is strong-to-weak∗ sequentially continuous.
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Lemma . ([, Lemma .]) Assume that a Banach space E has a weakly continuous du-
ality mapping Jϕ with a gauge ϕ. For all x, y ∈ E, the following inequality holds:

�
(‖x + y‖) ≤ �

(‖x‖) + 〈
y, Jϕ(x + y)

〉
.

In particular, for all x, y ∈ E,

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x + y)

〉
.

Lemma . (see []) Let C be a nonempty closed convex subset of a real Banach space E.
Assume that F : C → E is accretive and weakly continuous along segments; that is F(x +
ty) ⇀ F(x) as t → . Then the variational inequality

x∗ ∈ C,
〈
Fx∗, j

(
x – x∗)〉 ≥ , ∀x ∈ C

is equivalent to the dual variational inequality

x∗ ∈ C,
〈
Fx, j

(
x – x∗)〉 ≥ , ∀x ∈ C.

3 Main results
In this section, we introduce an implicit algorithm and prove this algorithm converges
strongly to x∗ which solves VI (). Let C be a nonempty closed convex subset of a real
Banach space E. Let f : C → C be a contraction and S,T : C → C be two nonexpansive
mappings. For s, t ∈ (, ), we define the following mapping:

x �→Ws,tx := s
[
tf (x) + ( – t)Sx

]
+ ( – s)Tx.

It is obvious thatWs,t : C → C is a contraction. So the contractionWs,t has a unique fixed
point which is denoted xs,t . Namely,

xs,t = s
[
tf (xs,t) + ( – t)S(xs,t)

]
+ ( – s)T(xs,t), s, t ∈ (, ). ()

Theorem . Let C be a nonempty closed convex subset of a reflexive Banach space E
which has a weakly continuous duality map Jϕ(x) with the gauge ϕ. Let f : C → C be a
contraction with constant ρ >  and S,T : C → C be two nonexpansive mappings with
Fix(T) �= ∅. Suppose that the solution set� of VI () is nonempty. Let, for each (s, t) ∈ (, ),
{xs,t} be defined implicitly by (). Then, for each fixed t ∈ (, ), the net {xs,t} converges in
norm, as s → , to a point xt ∈ Fix(T).Moreover, as t → , the net {xt} converges in norm
to the unique solution x∗ of the following variational inequality:

x∗ ∈ �,
〈
(I – f )x∗, J

(
x – x∗)〉 ≥ , ∀x ∈ �. ()

Hence, for each null sequence {tn} in (, ), there exists another null sequence {sn} in (, ),
such that the sequence xsn ,tn → x∗ in norm as n→ ∞.

Proof Step . For each fixed t ∈ (, ), the net {xs,t} is bounded.

http://www.journalofinequalitiesandapplications.com/content/2014/1/217
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For any z ∈ Fix(T), we have

∥∥s[t(f (xs,t) – f (z)
)
+ ( – t)

(
S(xs,t) – S(z)

)]
+ ( – s)

(
T(xs,t) – z

)∥∥
≤ s

∥∥t(f (xs,t) – f (z)
)
+ ( – t)

(
S(xs,t) – S(z)

)∥∥ + ( – s)
∥∥T(xs,t) – Tz

∥∥
≤ st

∥∥f (xs,t) – f (z)
∥∥ + ( – t)s

∥∥S(xs,t) – S(z)
∥∥ + ( – s)‖xs,t – z‖

≤ stρ‖xs,t – z‖ + ( – t)s‖xs,t – z‖ + ( – s)‖xs,t – z‖
=

(
 – st( – ρ)

)‖xs,t – z‖.

Combining the above inequality and Lemma ., we obtain

�
(‖xs,t – z‖) = �

(∥∥s[t(f (xs,t) – f (z)
)
+ ( – t)

(
S(xs,t) – S(z)

)]
+ ( – s)

(
T(xs,t) – z

)
+ st

(
f (z) – z

)
+ s( – t)

(
S(z) – z

)∥∥)
≤ �

(∥∥s[t(f (xs,t) – f (z)
)
+ ( – t)

(
S(xs,t) – S(z)

)]
+ ( – s)

(
T(xs,t) – z

)∥∥)
+ st

〈
f (z) – z, Jϕ(xs,t – z)

〉
+ ( – t)s

〈
S(z) – z, Jϕ(xs,t – z)

〉
≤ �

((
 – st( – ρ)

)‖xs,t – z‖) + st
〈
f (z) – z, Jϕ(xs,t – z)

〉
+ ( – t)s

〈
S(z) – z, Jϕ(xs,t – z)

〉
≤ (

 – st( – ρ)
)
�

(‖xs,t – z‖) + st
〈
f (z) – z, Jϕ(xs,t – z)

〉
+ ( – t)s

〈
S(z) – z, Jϕ(xs,t – z)

〉
,

which implies that

�
(‖xs,t – z‖) ≤ t

t( – ρ)
〈
f (z) – z, Jϕ(xs,t – z)

〉
+

 – t
t( – ρ)

〈
S(z) – z, Jϕ(xs,t – z)

〉
. ()

Taking ϕ(t) = t, then Jϕ = J and �(t) = t
 , from () we have

‖xs,t – z‖ ≤ t
t( – ρ)

〈
f (z) – z, J(xs,t – z)

〉
+
( – t)
t( – ρ)

〈
S(z) – z, J(xs,t – z)

〉

≤ t
t( – ρ)

∥∥f (z) – z
∥∥‖xs,t – z‖ + ( – t)

t( – ρ)
∥∥S(z) – z

∥∥‖xs,t – z‖, ()

which implies that

‖xs,t – z‖ ≤ 
t( – ρ)

max
{∥∥f (z) – z

∥∥,∥∥S(z) – z
∥∥}

.

So for each fixed t ∈ (, ), {xs,t} is bounded, furthermore {f (xs,t)}, {S(xs,t)} and {T(xs,t)} are
all bounded.
Step . xs,t → xt ∈ Fix(T) as s → .
From () and the boundedness of the sequences {f (xs,t)}, {S(xs,t)} and {T(xs,t)}, for each

fixed t ∈ (, ) we have

‖xs,t – Txs,t‖ = s
∥∥tf (xs,t) + ( – t)S(xs,t) – Txs,t

∥∥ →  (s→ ). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/217
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Assume that {sn} ⊂ (, ) is such that sn →  (n → ∞). From (), for any z ∈ Fix(T), we
have

�
(‖xsn ,t – z‖) ≤ t

t( – ρ)
〈
f (z) – z, Jϕ(xsn ,t – z)

〉
+

 – t
t( – ρ)

〈
S(z) – z, Jϕ(xsn ,t – z)

〉
. ()

Since {xsn ,t} is bounded, without loss of generality, we may assume that {xsn ,t} converges
weakly to a point xt as n → ∞. This together with () implies that xt ∈ Fix(T). Taking
z = xt in (), we have

�
(‖xsn ,t – xt‖

) ≤ 
t( – ρ)

〈
tf (xt) + ( – t)S(xt) – xt , Jϕ(xsn ,t – xt)

〉
. ()

Since Jϕ is weakly continuous, it follows from () that �(‖xsn ,t – xt‖) →  as n → ∞,
which implies that xsn ,t → xt strongly. This has proved the relative norm compactness of
the net {xs,t} as s → .
Taking s = sn in (), we have

‖xsn ,t – z‖ ≤ t
t( – ρ)

〈
f (z) – z, J(xsn ,t – z)

〉
+
( – t)
t( – ρ)

〈
S(z) – z, J(xsn ,t – z)

〉
.

Since Jϕ is weakly continuous, then by Remark ., J is strong-to-weak∗ sequentially con-
tinuous. Let sn →  in the above inequality, we have

‖xt – z‖ ≤ t
t( – ρ)

〈
f (z) – z, J(xt – z)

〉
+
( – t)
t( – ρ)

〈
S(z) – z, J(xt – z)

〉
.

Hence we obtain

xt ∈ Fix(T),
〈
tf (z) + ( – t)S(z) – z, J(xt – z)

〉 ≥ , ∀z ∈ Fix(T).

This together with Lemma ., we have

xt ∈ Fix(T),
〈
tf (xt) + ( – t)S(xt) – xt , J(xt – z)

〉 ≥ , ∀z ∈ Fix(T). ()

Next, we prove that the entire net {xs,t} converges strongly to xt as s → . We assume that
xs′n ,t → x′

t where s′n → . Similar to the above proof, we have x′
t ∈ Fix(T) and

x′
t ∈ Fix(T),

〈
tf

(
x′
t
)
+ ( – t)S

(
x′
t
)
– x′

t , J
(
x′
t – z

)〉 ≥ , ∀z ∈ Fix(T). ()

Taking z = x′(t) and z = xt in () and (), respectively, we have

t
〈
f (xt) – xt , J

(
xt – x′

t
)〉
+ ( – t)

〈
S(xt) – xt , J

(
xt – x′

t
)〉 ≥ ,

t
〈
f
(
x′
t
)
– x′

t , J
(
x′
t – xt

)〉
+ ( – t)

〈
S
(
x′
t
)
– x′

t , J
(
x′
t – xt

)〉 ≥ .

Adding up the above two inequalities yields

t
〈
(I – f )xt – (I – f )x′

t , J
(
xt – x′

t
)〉
+ ( – t)

〈
(I – S)xt – (I – S)x′

t , J
(
xt – x′

t
)〉 ≤ .

http://www.journalofinequalitiesandapplications.com/content/2014/1/217
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Since

〈
(I – f )xt – (I – f )x′

t , J
(
xt – x′

t
)〉 ≥ ( – ρ)

∥∥xt – x′
t
∥∥,

〈
(I – S)xt – (I – S)x′

t , J
(
xt – x′

t
)〉 ≥ ,

we obtain

( – ρ)
∥∥xt – x′

t
∥∥ ≤ ,

i.e., xt = x′
t . So the entire net {xs,t} converges in norm to xt ∈ Fix(T) as s → .

Step . The net {xt} is bounded.
For any y ∈ �, taking z = y in (), we have

〈
tf (xt) + ( – t)S(xt) – xt , J(xt – y)

〉 ≥ ,

which together with the fact of y ∈ � implies that

t
〈
(I – f )xt – (I – f )y, J(xt – y)

〉
+ ( – t)

〈
(I – S)xt – (I – S)y, J(xt – y)

〉
≤ t

〈
f (y) – y, J(xt – y)

〉
+ ( – t)

〈
Sy – y, J(xt – y)

〉
≤ t

〈
f (y) – y, J(xt – y)

〉
. ()

Since I – f is strongly accretive and I – S is accretive, we obtain

〈
(I – f )xt – (I – f )y, J(xt – y)

〉 ≥ ( – ρ)‖xt – y‖, ()
〈
(I – S)xt – (I – S)y, J(xt – y)

〉 ≥ . ()

It follows from ()-() that

‖xt – y‖ ≤ 
 – ρ

〈
f (y) – y, J(xt – y)

〉

≤ 
 – ρ

∥∥f (y) – y
∥∥‖xt – y‖. ()

Hence we have

‖xt – y‖ ≤ 
 – ρ

∥∥f (y) – y
∥∥, ∀t ∈ (, ).

Step . The net xt → x∗ ∈ � which solves VI ().
First, the uniqueness of the solution of VI () is obvious. We denote the unique solution

by x∗.
Next we prove that ωw(xt) ⊂ �, i.e., if {tn} is a null sequence in (, ) such that xtn → x′

weakly as n→ ∞, then x′ ∈ �. Indeed, since {xt} ⊂ Fix(T), then x′ ∈ Fix(T). Since I – S is
accretive, for any z ∈ Fix(T) we have

〈
(I – S)z, J(z – xt)

〉 ≥ 〈
(I – S)xt , J(z – xt)

〉
. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/217
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It follows from () that

〈
(I – S)xt , J(z – xt)

〉 ≥ t
 – t

〈
(I – f )xt , J(xt – z)

〉
. ()

By virtue of () and (), we have

〈
(I – S)z, J(z – xt)

〉 ≥ t
 – t

〈
(I – f )xt , J(xt – z)

〉
,

furthermore, we get

〈
(I – S)z, Jϕ(z – xt)

〉 ≥ t
( – t)

〈
(I – f )xt , Jϕ(xt – z)

〉
,

≥ –
t

( – t)
(‖xt‖ + ∥∥f (xt)∥∥)

ϕ
(‖xt – z‖).

Letting t = tn →  (n → ∞) in the above inequality, since {xt} is bounded and ϕ is a con-
tinuous strictly increasing function, we have

〈
(I – S)z, Jϕ

(
z – x′)〉 ≥ , ∀z ∈ Fix(T).

This implies that

〈
(I – S)z, J

(
z – x′)〉 ≥ , ∀z ∈ Fix(T),

hence from the above inequality and Lemma ., we have

〈
(I – S)x′, J

(
z – x′)〉 ≥ , ∀z ∈ Fix(T),

i.e., x′ ∈ �.
Next we show that x′ is the solution of VI (). Taking y = x′ and t = tn in (), we obtain

∥∥xtn – x′∥∥ ≤ 
 – ρ

〈
f
(
x′) – x′, J

(
xtn – x′)〉

=


 – ρ

〈
f
(
x′) – x′, Jϕ

(
xtn – x′)〉 ‖xtn – x′‖

ϕ(‖xtn – x′‖) ,

which implies that

∥∥xtn – x′∥∥ϕ
(∥∥xtn – x′∥∥) ≤ 

 – ρ

〈
f
(
x′) – x′, Jϕ

(
xtn – x′)〉. ()

Since xtn → x′ weakly and Jϕ is weakly continuous, let tn →  in (), we get

∥∥xtn – x′∥∥ϕ
(∥∥xtn – x′∥∥) →  (n→ ∞),

which together with the property of ϕ implies that xtn → x′ in norm. It follows from ()
and () that

〈
(I – f )xt , J(xt – y)

〉 ≤ . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/217
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Since J is strong-to-weak∗ sequentially continuous and f is a contraction, we have

∣∣〈(I – f )xtn , J(xtn – y)
〉
–

〈
(I – f )x′, J

(
x′ – y

)〉∣∣
≤ ∣∣〈(I – f )xtn , J(xtn – y)

〉
–

〈
(I – f )x′, J(xtn – y)

〉∣∣
+

∣∣〈(I – f )x′, J(xtn – y)
〉
–

〈
(I – f )x′, J

(
x′ – y

)〉∣∣
≤ ∣∣〈(I – f )xtn , J(xtn – y)

〉
–

〈
(I – f )x′, J(xtn – y)

〉∣∣
+

∣∣〈(I – f )x′, J(xtn – y)
〉
–

〈
(I – f )x′, J

(
x′ – y

)〉∣∣
≤ ( + ρ)

∥∥xtn – x′∥∥‖xtn – y‖
+

∣∣〈(I – f )x′, J(xtn – y)
〉
–

〈
(I – f )x′, J

(
x′ – y

)〉∣∣ →  (n→ ∞). ()

Letting t = tn →  (n→ ∞) in () and combining () we have

〈
(I – f )x′, J

(
x′ – y

)〉 ≤ , ∀y ∈ �.

So x′ is the solution of VI (). By uniqueness, we have x′ = x∗. Therefore, xt → x∗ in norm
as t → . The proof is complete. �
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