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Abstract

In this paper, we consider the strictly G-preinvex functions introduced by Antczak (J.
Comput. Appl. Math. 217:212-226, 2008). The relationships between semistrictly
G-preinvex functions and strictly G-preinvex functions, G-preinvex functions strictly
G-preinvex functions are investigated under mild assumptions. Our results improve
and extend the existing ones in the literature.
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1 Introduction

Convexity and some generalizations of convexity play a crucial role in mathematical eco-
nomics, engineering, management science, and optimization theory. Therefore, it is im-
portant to consider wider classes of generalized convex functions and also to seek practi-
cal criteria for convexity or generalized convexity (see [1-11] and the references therein).
A significant generalization of convex functions is the introduction of preinvex functions,
which is due to Weir and Mond [3]. Yang and Li [1] presented some properties of prein-
vex functions; in [2] they introduced two new classes of generalized convex functions,
called semistrictly preinvex functions and strictly preinvex functions. They established
relationships between preinvex functions and semistrictly preinvex functions under a cer-
tain set of conditions. Recently, Antczak [4, 6] introduced the concept of G-preinvex func-
tion (strictly G-preinvex function), which includes the preinvex function (strictly prein-
vex function) [3] and r-preinvex function [5] as special cases. Relations of this G-preinvex
function to preinvex functions and some properties of this class of functions were studied
in [4]. Luo and Wu in [7] introduced the semistrictly G-preinvex functions and established
relationships between G-preinvex functions and semistrictly G-preinvex functions under
a certain set of conditions.

In this paper, we investigate the relationships between semistrictly G-preinvex functions
and strictly G-preinvex functions, G-preinvex functions and strictly G-preinvex functions
under mild assumptions. It is worth pointing out that the results obtained here improve
and generalize the corresponding ones given in [12, 13].

The outline of the paper is as follows. In Section 2, we give some preliminaries. The main
results of the paper are presented in Section 3. Section 4 gives some conclusions.

2 Preliminaries
In this section, we describe some definitions of generalized convexity.
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Definition 2.1 ([3]) For a given set K C R” and a given function n: R” x R” — R", K is
said to be an invex set with respect to n iff

Vx,y € K, VYiAel[0,1] = y+Ainxy) eKk.

Definition 2.2 ([3]) Let K C R” be an invex set with respect to n: R” x R” — R". The
function f : K — R is said to be preinvex on K iff, Vx,y € K, VA € [0,1],

F+an(x) <A () + Q- 1)f ().

Definition 2.3 ([2]) Let K € R” be an invex set with respect to n : K x K — R". The
function f : K — R is said to be semistrictly preinvex on K iff, Vx,y € K, f(x) #f(y), VA €
(0,1),

S +anx) < Af (&) + (1= 1)f ().

Definition 2.4 ([2]) Let K € R” be an invex set with respect to 1 : K x K — R". The
function f : K — R is said to be strictly preinvex on K iff, Vx,y € K, x #y, VA € (0,1),

S+ An(x,) <Af(x) + 1= L) ).

In [12], the relationships between preinvex functions and strictly preinvex functions,
semistrictly preinvex functions and strictly preinvex functions were discussed under the
following condition.

Condition C ([3]) Let n: K x K — R". We say that the function 7 satisfies Condition C
iff, Vx,y € K, V1 € [0,1],

n(yy +Anx,y)) = —Ain(x,y),

n(xy +Anx,y) = 1= Mnix,y).
Let I;(K) be the range of f, i.e., the image of K under f, and let G be the inverse of G.

Definition 2.5 ([4, 6]) Let K C R” be an invex set (with respect to 7). The function f :
K — R is said to be G-preinvex on K iff there exist a continuous real-valued increasing
function G : Ir(K) — R and a vector-valued function 7 : K x K — R”" such that, Vx,y € K|
v €[0,1],

fly+ ) < GT(AG(FW) + 1 - VG(f©))).

We note that the G-preinvex function in Definition 2.5 reduces to the preinvex function
in Definition 2.2 and the r-preinvex function in [5] when setting G(¢) = ¢ and G(¢) = ",
r > 0, respectively.

Definition 2.6 ([7]) Let K € R” be an invex set (with respect to n). The functionf : K — R
is said to be semistrictly G-preinvex on K iff there exist a continuous real-valued increasing
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function G : Ir(K) — R and a vector-valued function 7 : K x K — R” such that, Vx,y € K,
fx) #f(), VA € (0,1),

f+any) < GHAG(fW) + (L -VG(F()).

Definition 2.7 ([4]) Let K C R” be an invex set (with respect to n). The functionf : K — R
is said to be strictly G-preinvex on K iff there exist a continuous real-valued increasing
function G : Ir(K) — R and a vector-valued function 7 : K x K — R”" such that, Vx,y € K,
xZy,YA €(0,1),

f+ ) < GHAG(fW) + (1L -VG(F())).

We also observe that the semistrictly G-preinvex function in Definition 2.6 is a general-
ization of the semistrictly preinvex function in Definition 2.3, and the strictly G-preinvex
function in Definition 2.7 is a generalization of the strictly preinvex function in Defini-
tion 2.4 when taking G(t) = ¢.

Example 2.1 This example illustrates that a G-preinvex function is not necessarily a
strictly G-preinvex function. Let

f@) =1n(jx| +1),

X — ifxy <0,
nx,y) = 7o
—x—-y ifxy>0.

Then f is a G-preinvex function on R with respect to 1, where G(£) = ¢’. But if we let
x=0,y=1,x= %,wehave

fO)=fQ)=m2,  fx)=f(0)=0

and

fy+an(x,y) =f(%> = 1n(%) -G’ (%) =G (AG(f®) + (1= NG (f())).

So, f is not a strictly G-preinvex function with respect to n on R.

Example 2.2 This example illustrates that a semistrictly G-preinvex function is not nec-
essarily a strictly G-preinvex function. Let

1 ifx=0,

Sfx) = [0 ifx#0,x e [-6,-2] U[-1,6],

x-y if-1<x<6,-1<y<6,

x—y if-6<x<-2,-6<y<-2,
nxy)=4-7-y if-1<x<6,-6<y<-2,

-y f-6=x<-2-1<y<6y70,

% if-6<x<-2,y=0.
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Then it is not difficult to show that f is a semistrictly G-preinvex function on x € [-6,-2]U
[-1, 6] with respect to 1, where G(¢) = t. However, letx = -1#y=1, A = %, and we have

F+xn@) =f0)=1>0=G (AG(f(%) + 1 - NG(f»))).

Thus, f is not a strictly G-preinvex function with respect to the same n on x € [-6,-2] U
[-1,6].

Example 2.3 This example illustrates that a strictly G-preinvex function is not necessarily
a strictly preinvex function. Let

1
|x|+1'

flx) =

x— ifxy <O,
=177
—x—y ifxy>0.

Then it is not difficult to show that f is a strictly G-preinvex function on R with respect
to n, where G(¢) =Int. Butifweletx=-1,y=1, 1 = %, we have

1

fO) =fQ) =fx)=f(-1)= 5

and

1
fO+anx9) =f(0)=1> 2 =3 () + 1= 1f Q).
So, f is not a strictly preinvex function with respect to n on R.

Remark 2.1 From Example 2.1 and Example 2.2, we know that strictly G-preinvex func-
tions are different from semistrictly G-preinvex functions and G-preinvex functions. By
Example 2.3, we know that the definition of strictly G-preinvex functions is a true gener-

alization of that of strictly preinvex functions.

3 Properties of strictly G-preinvex functions
In [7], the authors discussed the properties of G-preinvex functions and semistrictly
G-preinvex functions. In this section, we derive some properties of strictly G-preinvex
functions. We assume always that:

(i) K € R"isan invex set with respect to n: K x K — R";

(i) n satisfies Condition C; f is a real-valued function on K.

Theorem 3.1 Letf be a semistrictly G-preinvex function with respect to n on K. If x € K is

a local minimum to the problem of minimizing f (x) subject to x € K; then x is a global one.

Proof Suppose that x € K is a local minimum to the problem of minimizing f(x) subject
to x € K. Then there is an e-neighborhood N¢(x) around X such that

f® <f(), VxeKNN(). 3.1)
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If x is not a global minimum of f over K, then there exists x* € K such that
f&) <f(®).

By assumption, f : K — R is a semistrictly G-preinvex function with respect to 1 on K.
Thus,

fE+an(x*%)) < GAG(F(x*)) + 1 - MG(f(R)) <f(®)
for all A € (0,1). For a sufficiently small A > 0, it follows that
x+An(x*,%) € K N Ne(x),
which is a contradiction to (3.1). This completes the proof. O

Remark 3.1 It is easy to see that strict G-preinvexity implies semistrict G-preinvexity, so
by Theorem 3.1, we have the following.

Corollary 3.1 Let f : K — R be a strictly G-preinvex function with respect to n on K. If
x € K is a local minimum to the problem of minimizing f(x) subject to x € K, then X is a
global one.

By Corollary 3.1, we can conclude that strictly G-preinvex functions constitute an im-
portant class of generalized convex functions in mathematical programming.

Theorem 3.2 Let f be a G-preinvex function on K. For each pair x,y € K, x # y, if there
exists o € (0,1) such that

f(y+om(x,y)) < G‘l(ozG(f(x)) + (l—ot)G(f(y))), (3.2)
then f is a strictly G-preinvex function on K.

Proof By contradiction: suppose that there exist x,y € K, x #y, > € (0,1) such that

F+ ) = GTG(FW) + Q- 1NG(F»)). (3.3)
Denote

z2=y+ Mny).
Since f is G-preinvex, we have

f@) <G (AG(f() + A - VG(F()). (3.4)

The above two inequalities imply that

f@) =G (AG(f®) + 1 - MG(f())- (3.5)
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We note that the pair x, z and the pair z, y are both distinct under (3.2), there exists 81, 8 €
(0,1) such that

flz+Binx,2) < GHBIG(f) + (1 - BG(f(2))), (3.6)
f+B2n(z9) < G (BG(f(2) + 1= B)G(F(»))). (3.7)
Denote

X=z+Binx2), y=y+ pan(zy).

From Condition C

X=z+Pinx2) =y +An(xy) + fin(xy + An(x,))
=y+Ain(xy) + (1 -A)Bin(x,y)
=y+ (A + Q- 2)B1)n(x9),

y=y+Ban(zy) =y + Ban(y + An(x,), )
=y + Ban(y + Anlx, ),y + Anlx,y) — An(x,))
=y + Ban(y + 2n(x,9),y + An(x,y) + n(y,y + An(x,9)))
=y—Ban(n,y + An(x,))

=y + ABan(x,y).

Let iy = A+ (1 =X)B1, by = Aoy b = ﬁ It is easy to verify that w1, 1, 1 € (0,1). Again

from Condition C,
y+un&y) =y + wan(,y) + un(y + pan(x,y),y + pan(x,y))
=y + uan(,y) + un(y + man( ),y + min(x,y) + (n2 — u)n(,y))

=¥+ uan(x,y) + wv(y + (%, ),y + uin(x, y)

+ (%)n(x,y + um(x,y))>
(s — 1)
1-m
=y + uan(x, ) — w(pz — p1)n(x, y)

=y+mn(x,y)—( )n(x,yww(x,y))

=y + (2 — ulpa — 1)) n(x,y)
=y +An(x,y)

=2z
Since f is G-preinvex, we have

f@) =G (G(f®) + A - G(f®))- (3.8)


http://www.journalofinequalitiesandapplications.com/content/2014/1/210

Li and Hu Journal of Inequalities and Applications 2014, 2014:210 Page 7 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/210

By the assumption, G is an increasing function and hence, by Lemma 1 of [4], G is also

increasing. Thus, from (3.5)-(3.8), we have

f@) =GN (uG(f®) + (1- wG(f())
< G (w(BG(f ) + (1- B)G(f(2))
+ (1= ) (BG(f(2) + 1 - B)G(f(9)))
= G (uBG(fW) + (1~ B1) + (L - w)B2) G(f(2))
+ (1 -1 - B)G(f))
= GH((uBr + AL = Br) + AB2(1 - 1)) G(f ()
+ (=)@ = B2) + (L= M) = B1) + (L= M)Ba(1 - W) G(f ()
= G (AG(f()) + (1 - DG(F())),

where

wBr+ A= 1) + ABa(l - )

w(d+ Bl =1) = ABa) + ABs
mw(d+ Bl =2) = pa) + o
m
As

(m1 — p2) + po

Q-w)A=B2)+ A== B1) + (1= 1)Ba(1 - )
=1-w)d-p2) + nd - )
=1— o+ pulpa — pa)
=1-2,

which contradicts (3.3). This completes the proof. d

Corollary 3.2 Let f be a G-preinvex function on K. If there exists a € (0,1) such that, for
each pair x,y € K, x %,

f+anxy) <G HaG(fW) + 1-a)G(f(»))),
then f is a strictly G-preinvex function on K.

Corollary 3.3 Letf be a preinvex function on K. For each pair x,y € K, x %y, if there exists
o € (0,1) such that

F+anxy) <afx) + 1 -a)f (y),

then f is a strictly preinvex function on K.
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Remark 3.2 Even Corollary 3.3 is a new result, it is an improvement of [12, Theorem 1].

Corollary 3.4 ([12]) Let f be a preinvex function on K. If there exists o € (0,1) such that,
for each pair x,y € K, x #y,

fl+an(xy)) <af ) + 1 -a)f (),
then f is a strictly preinvex function on K.

Theorem 3.3 f is a strictly G-preinvex function on K if and only if f is a semistrictly
G-preinvex function on K and satisfies the following condition: there exists « € (0,1) such

that, for each pair x,y € K, x # y,

f(y + om(x,y)) < G‘l(aG(f(x)) +(1- a)G(f(y))). (3.9)

Proof The necessity is obvious from Definition 2.7. So we only prove the sufficiency. Since
f is a semistrictly G-preinvex function on K, we only show that f(x) = f(y), ¥ # y implies
that

fr+an(x) < GH(AG(fW) + (L-MG(f(»)) =f(x), VYAre(0,1).
Let x = y + an(x, y). From (3.9) and for each x,y € K, f(x) = f(y), x # y, we have
f@=f(y+anxy) <G (aG(fW) + 1-a)G(f()) =f (). (3.10)

For each A € (0,1), if A < «, taking p = “a;’\, then u € (0,1), and from Condition C, we have

o—A

x+un(y,x) =y +an(x,y) + n(y,y+n(x,y))
=y+anxy) + (- a)ny)

=y +An(x,p).

From the semistrict G-preinvexity of f and (3.10), it follows that

fly+an(xy)) = f(x+ 1y, %))
< GHuG(fO) + - wWG(f@))
<G (uG(f») + 1 - WG(f())
=f().

If A > «, taking v = %‘;‘, then v € (0,1), and from Condition C, we have

A—a
l-«o
=y +an(xy) + (A —a)n(x,y)

X+vn(x,x) =y+an(x,y) + n(xy +an(x,y))

=y +An(x,y).
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From the semistrict G-preinvexity of f and (3.10), it follows that

O +xny) = f(&+vn(x,x)
<G (vG(fw) + A-IG(f())
< G (uG(f®) + 1 - WG(f )
= f@).

This completes the proof. O

Theorems 3.1-3.3 improve and generalize the corresponding ones given in [12, 13] from
the strictly preinvex case to the strictly G-preinvex case.

4 Conclusions

In this paper, we firstly obtain one property of strictly G-preinvex functions, we consider
the strictly G-preinvex functions introduced by Antczak [4]. The relationships between
semistrictly G-preinvex functions and strictly G-preinvex functions, G-preinvex functions
and strictly G-preinvex functions are investigated under weaker conditions. Our results
improve and extend the existing ones in the literature.
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