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1 Introduction
A classical question in the theory of functional equations is the following:When is it true
that a function which approximately satisfies a functional equation must be close to an ex-
act solution of the equation? If the problem accepts a solution, we say that the equation is
stable. The first stability problem concerning group homomorphisms was raised by Ulam
[] in . In , Hyers [] gave a positive answer to the above question for additive
groups under the assumption that the groups are Banach spaces. Aoki [] proved a gener-
alization of Hyers’ theorem for additive mappings and Rassias [] proved a generalization
of Hyers’ theorem for linear mappings.

Theorem . (ThM Rassias) Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality ‖f (x + y) – f (x) – f (y)‖ ≤ ε(‖x‖p + ‖y‖p),
for all x, y ∈ E, where ε and p are constants with ε >  and  ≤ p < . Then the limit L(x) =
limn→∞ f (nx)

n exists, for all x ∈ E, and L : E → E′ is the unique additive mapping which
satisfies

∥∥f (x) – L(x)
∥∥ ≤ ε

 – p
‖x‖p,

for all x ∈ E. Also, if for each x ∈ E the function f (tx) is continuous in t ∈R, then L is linear.

This new concept is known as a theHyers-Ulam stability or theHyers-Ulam-Rassias sta-
bility of functional equations. Furthermore, in , a generalization of Rassias’ theorem
was obtained by Gǎvruta [] by replacing the bound ε(‖x‖p + ‖y‖p) by a general control
function ϕ(x, y).
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In , a generalized Hyers-Ulam stability problem for the quadratic functional equa-
tion was proved by Skof [] for mappings f : X → Y , where X is a normed space and Y is
a Banach space. In , Cholewa [] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group and, in , Czerwik [] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The readers are re-
ferred to [–] and references therein for detailed information on stability of functional
equations.
In , Hensel [] has introduced a normed space which does not have the Archime-

dean property. It turned out that non-Archimedean spaces have many nice applications
(see [–]).

Definition . By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | :K → [,∞) such that, for all r, s ∈K, the following conditions hold: (a) |r| =
 if and only if r = ; (b) |rs| = |r||s|; (c) |r + s| ≤max{|r|, |s|}.

Clearly, by (b), || = |–| =  and so, by induction, it follows from (c) that |n| ≤ , for all
n≥ .

Definition . Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | · |.
() A function ‖ · ‖ : X →R is a non-Archimedean norm (valuation) if it satisfies the

following conditions: (a) ‖x‖ =  if and only if x = , for all x ∈ X ; (b) ‖rx‖ = |r|‖x‖,
for all r ∈K and x ∈ X ; (c) the strong triangle inequality (ultra-metric) holds, that is,
‖x + y‖ ≤max{‖x‖,‖y‖}, for all x, y ∈ X .

() The space (X,‖ · ‖) is called a non-Archimedean normed space (briefly, NAN-space).

Note that ‖xn – xm‖ ≤max{‖xj+ – xj‖ :m≤ j ≤ n – }, for allm,n ∈N with n >m.

Definition . Let (X,‖ · ‖) be a non-Archimedean normed space.
(a) A sequence {xn} is a Cauchy sequence in X if {xn+ – xn} converges to zero in X .
(b) The non-Archimedean normed space (X,‖ · ‖) is said to be complete if every Cauchy

sequence in X is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key
property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all
x, y > , there exists a positive integer n such that x < ny.

Example . Fix a prime number p. For any nonzero rational number x, there exists a
unique positive integer nx such that x = a

bp
nx , where a and b are positive integers not di-

visible by p. Then |x|p := p–nx defines a non-Archimedean norm on Q. The completion of
Q with respect to the metric d(x, y) = |x – y|p is denoted by Qp, which is called the p-adic
number field. In fact, Qp is the set of all formal series x =

∑∞
k≥nx akp

k , where |ak| ≤ p – .
The addition and multiplication between any two elements of Qp are defined naturally.
The norm |∑∞

k≥nx akp
k|p = p–nx is a non-Archimedean norm on Qp and Qp is a locally

compact field.

In Section , we adopt the usual terminology, notions and conventions of the theory
of random normed spaces as in []. Throughout this paper, let 	+ denote the set of all
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probability distribution functions F :R∪ [–∞, +∞]→ [, ] such that F is left-continuous
and nondecreasing on R and F() = , F(+∞) = . It is clear that the set D+ = {F ∈ 	+ :
l–F(–∞) = }, where l–f (x) = limt→x– f (t), is a subset of 	+. The set 	+ is partially ordered
by the usual point-wise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t), for
all t ∈R. For any a≥ , the element Ha(t) of D+ is defined by

Ha(t) =

⎧⎨
⎩, if t ≤ a,

, if t > a.

We can easily show that the maximal element in 	+ is the distribution function H(t).

Definition . A function T : [, ] → [, ] is a continuous triangular norm (briefly, a t-
norm) if T satisfies the following conditions: (a) T is commutative and associative; (b) T is
continuous; (c) T(x, ) = x, for all x ∈ [, ]; (d) T(x, y) ≤ T(z,w) whenever x ≤ z and y≤ w,
for all x, y, z,w ∈ [, ].

Three typical examples of continuous t-norms are as follows: TP(x, y) = xy, Tmax(x, y) =
max{a + b – , }, TM(x, y) =min(a,b). Recall that, if T is a t-norm and {xn} is a sequence
in [, ], then Tn

i=xi is defined recursively by T 
i=x = x and Tn

i=xi = T(Tn–
i= xi,xn), for all

n≥ . T∞
i=nxi is defined by T∞

i=xn+i.

Definition . A random normed space (briefly, RN-space) is a triple (X,μ,T), where X
is a vector space, T is a continuous t-norm and μ : X → D+ is a mapping such that the
following conditions hold:
(a) μx(t) =H(t), for all t >  if and only if x = ;
(b) μαx(t) = μx( t

|α| ), for all α ∈R with α �= , x ∈ X and t ≥ ;
(c) μx+y(t + s) ≥ T(μx(t),μy(s)), for all x, y ∈ X and t, s ≥ .

Every normed space (X,‖ · ‖) defines a random normed space (X,μ,TM), where μu(t) =
t

t+‖u‖ , for all t >  and TM is the minimum t-norm. This space X is called the induced
random normed space.
If the t-norm T is such that sup<a<T(a,a) = , then every RN-space (X,μ,T) is a

metrizable linear topological space with the topology τ (called theμ-topology or the (ε, δ)-
topology, where ε >  and λ ∈ (, )) induced by the base {U(ε,λ)} of neighborhoods of θ ,
where

U(ε,λ) =
{
x ∈ X : μx(ε) >  – λ

}
.

Definition . Let (X,μ,T) be an RN-space.
(a) A sequence {xn} in X is said to be convergent to a point x ∈ X (write xn → x as

n→ ∞) if limn→∞ μxn–x(t) = , for all t > .
(b) A sequence {xn} in X is called a Cauchy sequence in X if limn→∞ μxn–xm (t) = , for all

t > .
(c) The RN-space (X,μ,T) is said to be complete if every Cauchy sequence in X is

convergent.
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Theorem . If (X,μ,T) is RN-space and {xn} is a sequence such that xn → x, then
limn→∞ μxn (t) = μx(t).

Definition . Let X be a set. A function d : X×X → [,∞] is called a generalizedmetric
on X if d satisfies the following conditions:
(a) d(x, y) =  if and only if x = y, for all x, y ∈ X ;
(b) d(x, y) = d(y,x), for all x, y ∈ X ;
(c) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X .

Theorem . ([, ]) Let (X,d) be a complete generalized metric space and J : X → X
be a strictly contractive mapping with Lipschitz constant L < . Then, for all x ∈ X, either
d(Jnx, Jn+x) = ∞, for all nonnegative integers n, or there exists a positive integer n such
that
(a) d(Jnx, Jn+x) < ∞, for all n ≥ n;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jnx, y) < ∞};
(d) d(y, y∗) ≤ d(y,Jy)

–L , for all y ∈ Y .

In this paper, using the fixed point and direct methods, we prove the HUR-approxima-
tion of the following CJA functional equation:

f
(
x + y + z



)
= f (x) + f (y) + f (z) (.)

in various normed spaces.

2 NAN-stability
In this section, we deal with the stability problem for the Cauchy-Jensen additive func-
tional equation (.) in non-Archimedean normed spaces.

Theorem . Let X be a non-Archimedean normed space and Y is a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with

ϕ

(
x

,
y

,
z


)
≤ αϕ(x, y, z)

|| , (.)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying

∥∥∥∥f
(
x + y + z



)
– f (x) – f (y) – f (z)

∥∥∥∥
Y

≤ ϕ(x, y, z), (.)

for all x, y, z ∈ X. Then there exists a unique additive mapping  : X → Y such that

∥∥f (x) – (x)∥∥Y ≤ αϕ(x, x,x)
(|| – ||α)–, (.)

for all x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2014/1/209


Park et al. Journal of Inequalities and Applications 2014, 2014:209 Page 5 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/209

Proof Putting y = x and z = x in (.), we get ‖f (x) – f (x)‖Y ≤ ϕ(x, x,x), for all x ∈ X.
So

∥∥∥∥f (x) – f
(
x


)∥∥∥∥
Y

≤ ||–αϕ(x, x,x), (.)

for all x ∈ X. Consider the set S := {h : X → Y } and introduce the generalized metric on S:

d(g,h) = inf
μ∈(,+∞)

∥∥g(x) – h(x)
∥∥
Y ≤ μϕ(x, x,x),

for all x ∈ X, where, as usual, infφ = +∞. It is easy to show that (S,d) is complete (see
[]). Now we consider the linear mapping J : S → S such that Jg(x) := g( x ), for all x ∈ X.
Let g,h ∈ S be given such that d(g,h) = ε. Then ‖g(x) – h(x)‖Y ≤ εϕ(x, x,x), for all x ∈ X.
Hence

∥∥Jg(x) – Jh(x)
∥∥
Y =

∥∥∥∥g
(
x


)
– h

(
x


)∥∥∥∥
Y

≤ α · εϕ(x, x,x),

for all x ∈ X. So d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤ αd(g,h),
for all g,h ∈ S. It follows from (.) that d(f , Jf ) ≤ ||–α. By Theorem ., there exists a
mapping  : X → Y satisfying the following:
()  is a fixed point of J , i.e.,

(x) = 
(
x


)
, (.)

for all x ∈ X. Themapping  is a unique fixed point of J in the setM = {g ∈ S : d(h, g) < ∞}.
This implies that  is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying ‖f (x) – (x)‖Y ≤ μϕ(x, x,x), for all x ∈ X;
() d(Jnf ,) →  as n→ ∞. This implies the equality

lim
n→∞nf

(
x
n

)
= (x), (.)

for all x ∈ X;
() d(f ,) ≤ d(f ,Jf )

–α
, which implies the inequality d(f ,) ≤ α(|| – ||α)–. This implies

that the inequalities (.) holds. It follows from (.) and (.) that

∥∥∥∥
(
x + y + z



)
– (x) – (y) – (z)

∥∥∥∥
Y

= lim
n→∞

‖f ( x+y+zn+ ) – f ( x
n ) – f ( y

n ) – f ( z
n )‖Y

||–n
≤ lim

n→∞αnϕ(x, y, z) = ,

for all x, y, z ∈ X. So ( x+y+z ) = (x) +(y) +(z), for all x, y, z ∈ X. Hence  : X → Y is an
CJA mapping and we get the desired results. �
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Corollary . Let θ be a positive real number and r is a real number with  < r < . Let
f : X → Y be a mapping satisfying

∥∥∥∥f
(
x + y + z



)
– f (x) – f (y) – f (z)

∥∥∥∥
Y

≤ θ
(‖x‖r + ‖y‖r + ‖z‖r), (.)

for all x, y, z ∈ X. Then there exists a unique CJA mapping  : X → Y such that

∥∥f (x) – (x)∥∥Y ≤ ||θ(
 + ||r)(||r+ – ||)–‖x‖r ,

for all x ∈ X.

Proof The proof follows from Theorem . by taking ϕ(x, y, z) = (‖x‖r + ‖y‖r + ‖z‖r), for
all x, y, z ∈ X. Then we can choose α = ||–r and we get the desired result. �

Theorem . Let X be a non-Archimedean normed space and Y is a complete non-
Archimedean space. Let ϕ : X → [,∞) be a function such that there exists an α <  with
ϕ(x, y, z) ≤ ||αϕ( x ,

y
 ,

z
 ), for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying (.).

Then there exists a unique CJA mapping  : X → Y such that

∥∥f (x) – (x)∥∥Y ≤ ϕ(x, x,x)
(|| – ||α)–, (.)

for all x ∈ X.

Proof Let (S,d) be the generalized metric space defined in the proof of Theorem .. Now
we consider the linear mapping J : S → S such that Jg(x) := g(x)

 , for all x ∈ X. Let g,h ∈ S
be given such that d(g,h) = ε. Then ‖g(x) – h(x)‖Y ≤ εϕ(x, x,x), for all x ∈ X. Hence

∥∥Jg(x) – Jh(x)
∥∥
Y =

∥∥∥∥g(x)
–
h(x)


∥∥∥∥
Y

≤ ||α · εϕ(x, x,x)
|| ,

for all x ∈ X. So d(g,h) = ε implies that d(Jg, Jh) ≤ αε. This means that d(Jg, Jh) ≤ αd(g,h),
for all g,h ∈ S. It follows from (.) that d(f , Jf ) ≤ ||–. By Theorem ., there exists a
mapping  : X → Y satisfying the following:
()  is a fixed point of J , i.e.,

(x)


= (x), (.)

for all x ∈ X. Themapping  is a unique fixed point of J in the setM = {g ∈ S : d(h, g) < ∞}.
This implies that  is a unique mapping satisfying (.) such that there exists a μ ∈ (,∞)
satisfying ‖f (x) – (x)‖Y ≤ μϕ(x, x,x), for all x ∈ X;
() d(Jnf ,) →  as n → ∞. This implies the equality limn→∞ f (nx)

n = (x), for all x ∈ X;
() d(f ,) ≤ d(f ,Jf )

–α
, which implies the inequality d(f ,) ≤ (||– ||α)–. This implies that

the inequalities (.) holds. The rest of the proof is similar to the proof of Theorem ..
�
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Corollary . Let θ be a positive real number and r is a real number with r > . Let f :
X → Y be a mapping satisfying (.). Then there exists a unique CJA mapping  : X → Y
such that

∥∥f (x) – (x)∥∥Y ≤ θ
(
 + ||r)(|| – ||r)–‖x‖r ,

for all x ∈ X.

Proof The proof follows from Theorem . by taking ϕ(x, y, z) = (‖x‖r + ‖y‖r + ‖z‖r), for
all x, y, z ∈ X. Then we can choose α = ||r– and we get the desired result. �

Theorem . Let G be an additive semigroup and X is a non-Archimedean Banach space.
Assume that λ :G → [, +∞) be a function such that

lim
n→∞||nλ

(
x
n

,
y
n

,
z
n

)
= , (.)

for all x, y, z ∈G. Suppose that, for any x ∈G, the limit

£(x) = lim
n→∞ max

≤k<n
||kλ

(
x

k+
,
x
k

,
x

k+

)
(.)

exists and f :G → X be a mapping satisfying

∥∥∥∥f
(
x + y + z



)
– f (x) – f (y) – f (z)

∥∥∥∥
X

≤ λ(x, y, z). (.)

Then the limit (x) := limn→∞ nf ( x
n ) exists, for all x ∈ G, and defines an CJA mapping

 :G → X such that

∥∥f (x) – (x)∥∥ ≤ £(x). (.)

Moreover, if limj→∞ limn→∞ maxj≤k<n+j ||kλ( x
k+ ,

x
k ,

x
k+ ) =  then  is the unique CJA

mapping satisfying (.).

Proof Putting y = x and z = x in (.), we get

∥∥f (x) – f (x)
∥∥
Y ≤ λ(x, x,x), (.)

for all x ∈G. Replacing x by x
n+ in (.), we obtain

∥∥∥∥n+f
(

x
n+

)
– nf

(
x
n

)∥∥∥∥ ≤ ||nλ
(

x
n+

,
x
n

,
x

n+

)
. (.)

Thus, it follows from (.) and (.) that the sequence {nf ( x
n )}n≥ is a Cauchy sequence.

Since X is complete, it follows that {nf ( x
n )}n≥ is convergent. Set (x) := limn→∞ nf ( x

n ).
By induction on n, one can show that

∥∥∥∥nf
(

x
n

)
– f (x)

∥∥∥∥ ≤ max
≤k<n

||kλ
(

x
k+

,
x
k

,
x

k+

)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/209
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for all n ≥  and x ∈ G. By taking n → ∞ in (.) and using (.), one obtains (.). By
(.) and (.), we get

∥∥∥∥
(
x + y + z



)
– (x) – (y) – (z)

∥∥∥∥
= lim

n→∞||n
∥∥∥∥f

(
x + y + z
n+

)
– f

(
x
n

)
– f

(
y
n

)
– f

(
z
n

)∥∥∥∥
≤ lim

n→∞||nλ
(

x
n

,
y
n

,
z
n

)
= ,

for all x, y, z ∈ X. So


(
x + y + z



)
= (x) + (y) + (z). (.)

Letting x = y = z =  in (.), we get () = . Letting z = x + y in (.), we get (x + y) =
(x) + (y), for all x, y ∈ X. Hence the mapping  : X → Y is Cauchy additive.
To prove the uniqueness property of , let � be another mapping satisfying (.). Then

we have

∥∥(x) –�(x)
∥∥
X = lim

n→∞||n
∥∥∥∥

(
x
n

)
–�

(
x
n

)∥∥∥∥
X

≤ lim
k→∞

||nmax

{∥∥∥∥
(

x
n

)
– f

(
x
n

)∥∥∥∥
X
,
∥∥∥∥f

(
x
n

)
–�

(
x
n

)∥∥∥∥
X

}

≤ lim
j→∞ lim

n→∞ max
j≤k<n+j

||kλ
(

x
k+

,
x
k

,
x

k+

)
= ,

for all x ∈G. Therefore,  =�. This completes the proof. �

Corollary . Let ξ : [,∞) → [,∞) be a function satisfying ξ ( t
|| ) ≤ ξ ( 

|| )ξ (t), ξ (

|| ) <


|| , for all t ≥ . Assume that κ >  and f :G → X be a mapping such that

∥∥∥∥f
(
x + y + z



)
– f (x) – f (y) – f (z)

∥∥∥∥
Y

≤ κ
(
ξ
(|x|) + ξ

(|y|) + ξ
(|z|)),

for all x, y, z ∈G. Then there exists a unique CJA mapping  :G → X such that

∥∥f (x) – (x)∥∥ ≤ ||–( + ||)ξ(|x|).
Proof If we define λ : G → [,∞) by λ(x, y, z) := κ(ξ (|x|) + ξ (|y|) + ξ (|z|)), then we have
limn→∞ ||nλ( x

n ,
y
n ,

z
n ) = , for all x, y, z ∈ G. On the other hand, it follows that £(x) =

||–( + ||)ξ (|x|) exists, for all x ∈G. Also, we have

lim
j→∞ lim

n→∞ max
j≤k<n+j

||kλ
(

x
k+

,
x
k

,
x

k+

)
= lim

j→∞||jλ
(

x
j+

,
x
j
,
x
j+

)
= .

Thus, applying Theorem ., we have the conclusion. This completes the proof. �
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Theorem . Let G be an additive semigroup and X is a non-Archimedean Banach space.
Assume that λ : G → [, +∞) be a function such that limn→∞ λ(nx,ny,nz)

n = , for all
x, y, z ∈ G. Suppose that, for any x ∈G, the limit

£(x) = lim
n→∞ max

≤k<n

λ(kx, k+x, kx)
||k (.)

exists and f : G → X be a mapping satisfying (.). Then the limit (x) := limn→∞ f (nx)
n

exists, for all x ∈G, and

∥∥f (x) – (x)∥∥ ≤ £(x)
|| , (.)

for all x ∈G.Moreover, if limj→∞ limn→∞ maxj≤k<n+j
λ(kx,k+x,kx)

||k = , then  is the unique
CJA mapping satisfying (.).

Proof It follows from (.) that

∥∥∥∥f (x) – f (x)


∥∥∥∥
X

≤ λ(x, x,x)
|| , (.)

for all x ∈G. Replacing x by nx in (.), we obtain

∥∥∥∥ f (nx)n
–
f (n+x)
n+

∥∥∥∥
X

≤ λ(nx, n+x, nx)
||n+ . (.)

Thus it follows from (.) that the sequence { f (nx)n }n≥ is convergent. Set (x) :=
limn→∞ f (nx)

n . On the other hand, it follows from (.) that

∥∥∥∥ f (px)p
–
f (qx)
q

∥∥∥∥ =

∥∥∥∥∥
q–∑
k=p

f (k+x)
k+

–
f (kx)
k

∥∥∥∥∥ ≤ max
p≤k<q

{∥∥∥∥ f (k+x)k+
–
f (kx)
k

∥∥∥∥
}

≤ 
|| max

p≤k<q

λ(kx, k+x, kx)
||k ,

for all x ∈G and p,q ≥  with q > p≥ . Letting p = , taking q → ∞ in the last inequality
and using (.), we obtain (.).
The rest of the proof is similar to the proof of Theorem .. This completes the proof.

�

Corollary . Let ξ : [,∞) → [,∞) be a function satisfying ξ (||t)≤ ξ (||)ξ (t), ξ (||) <
||, for all t ≥ . Let κ >  and f :G → X be a mapping satisfying

∥∥∥∥f
(
x + y + z



)
– f (x) – f (y) – f (z)

∥∥∥∥ ≤ κ
(
ξ
(|x|) · ξ(|y|) · ξ(|z|)),

for all x, y, z ∈G. Then there exists a unique CJA mapping  :G → X such that

∥∥f (x) – (x)∥∥ ≤ κξ
(|x|).
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Proof If we define λ : G → [,∞) by λ(x, y, z) := κ(ξ (|x|) · ξ (|y|) · ξ (|z|)) and apply Theo-
rem ., then we get the conclusion. �

3 RNS-stability
In this section, using the fixedpoint anddirectmethods,we prove theHUR-approximation
of the functional equation (.) in random normed spaces.

Theorem . Let X be a real linear space, (Z,μ′,min) be an RN-space and ϕ : X → Z be
a function such that there exists  < α < 

 such that

μ′
ϕ( x ,

y
 ,

z
 )
(t) ≥ μ′

ϕ(x,y,z)

(
t
α

)
, (.)

for all x, y, z ∈ X and t >  and limn→∞ μ′
ϕ( x

n ,
y
n ,

z
n )

( t
n ) = , for all x, y, z ∈ X and t > . Let

(Y ,μ,min) be a complete RN-space. If f : X → Y be a mapping such that

μf ( x+y+z )–f (x)–f (y)–f (z)(t)≥ μ′
ϕ(x,y,z)(t), (.)

for all x, y, z ∈ X and t > . Then the limit (x) = limn→∞ nf ( x
n ) exists, for all x ∈ X, and

defines a unique CJA mapping  : X → Y such that

μf (x)–A(x)(t)≥ μ′
ϕ(x,x,x)

(
( – α)t

α

)
, (.)

for all x ∈ X and t > .

Proof Putting y = x and z = x in (.), we see that

μf (x)–f (x)(t) ≥ μ′
ϕ(x,x,x)(t). (.)

Replacing x by x
 in (.), we obtain

μf ( x )–f (x)(t)≥ μ′
ϕ( x ,x,

x
 )
(t)≥ μ′

ϕ(x,x,x)

(
t
α

)
, (.)

for all x ∈ X. Replacing x by x
n in (.) and using (.), we obtain

μn+f ( x
n+

)–nf ( x
n )

(t) ≥ μ′
ϕ( x

n+
, x
n ,

x
n+

)

(
t
n

)
≥ μ′

ϕ(x,x,x)

(
t

nαn+

)

and so

μnf ( x
n )–f (x)

( n–∑
k=

kαk+t

)
= μ∑n–

k= k+f (
x

k+
)–k f ( x

k
)

( n–∑
k=

kαk+t

)

≥ Tn–
k=

(
μk+f ( x

k+
)–k f ( x

k
)
(
kαk+t

))
≥ Tn–

k=
(
μ′

ϕ(x,x,x)(t)
)
= μ′

ϕ(x,x,x)(t).

http://www.journalofinequalitiesandapplications.com/content/2014/1/209
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This implies that

μnf ( x
n )–f (x)

(t) ≥ μ′
ϕ(x,x,x)

(
t∑n–

k= kαk+

)
. (.)

Replacing x by x
p in (.), we obtain

μn+pf ( x
n+p )–

pf ( x
p )

(t) ≥ μ′
ϕ(x,x,x)

(
t∑n+p–

k=p kαk+

)
. (.)

Since limp,n→∞ μ′
ϕ(x,x,x)(

t∑n+p–
k=p kαk+

) = , it follows that {nf ( x
n )}∞n= is a Cauchy se-

quence in a complete RN-space (Y ,μ,min) and so there exists a point (x) ∈ Y such that
limn→∞ nf ( x

n ) = (x). Fix x ∈ X and put p =  in (.) and so, for any ε > ,

μ(x)–f (x)(t + ε) ≥ T
(

μ(x)–nf ( x
n )

(ε),μ′
ϕ(x,x,x)

(
t∑n–

k= kαk+

))
. (.)

Taking n → ∞ in (.), we get μ(x)–f (x)(t + ε) ≥ μ′
ϕ(x,x,x)(

(–α)t
α

). Since ε is arbitrary, by
taking ε →  in the previous inequality, we get

μ(x)–f (x)(t) ≥ μ′
ϕ(x,x,x)

(
( – α)t

α

)
.

Replacing x, y and z by x
n ,

y
n and z

n in (.), respectively, we get

μn+f ( x+y+z
n+

)–nf ( x
n )–

nf ( y
n )–

nf ( z
n )

(t)≥ μ′
ϕ( x

n ,
y
n ,

z
n )

(
t
n

)
,

for all x, y, z ∈ X and t > . Since limn→∞ μ′
ϕ( x

n ,
y
n ,

z
n )

( t
n ) = , we conclude that  satisfies

(.). On the other hand


(
x


)
– (x) = lim

n→∞n+f
(

x
n+

)
– lim

n→∞nf
(

x
n

)
= .

This implies that  : X → Y is an CJAmapping. To prove the uniqueness of the CJAmap-
ping , assume that there exists another CJA mapping � : X → Y which satisfies (.).
Then we have

μ(x)–�(x)(t) = lim
n→∞μn( x

n )–
n�( x

n )
(t)

≥ lim
n→∞min

{
μn( x

n )–
nf ( x

n )

(
t


)
,μnf ( x

n )–
n�( x

n )

(
t


)}

≥ lim
n→∞μ′

ϕ( x
n ,

x
n ,

x
n )

(
( – α)t

n

)
≥ lim

n→∞μ′
ϕ(x,x,x)

(
( – α)t
nαn

)
.

Since limn→∞ μ′
ϕ(x,x,x)(

(–α)t
nαn ) = . Therefore, we have μ(x)–�(x)(t) = , for all t > , and so

(x) = �(x). This completes the proof. �
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Corollary . Let X be a real normed linear space, (Z,μ′,min) be an RN-space and
(Y ,μ,min) be a complete RN-space. Let r be a positive real number with r > , z ∈ Z and
f : X → Y be a mapping satisfying

μf ( x+y+z )–f (x)–f (y)–f (z)(t)≥ μ′
(‖x‖r+‖y‖r+‖z‖r)z (t), (.)

for all x, y ∈ X and t > . Then the limit (x) = limn→∞ nf ( x
n ) exists, for all x ∈ X, and

defines a unique CJA mapping  : X → Y such that

μf (x)–(x)(t) ≥ μ′
‖x‖pz

(
(r – )t
r + 

)
,

for all x ∈ X and t > .

Proof Let α = –r and ϕ : X → Z be amapping defined by ϕ(x, y, z) = (‖x‖r+‖y‖r+‖z‖r)z.
Then, from Theorem ., the conclusion follows. �

Theorem . Let X be a real linear space, (Z,μ′,min) be an RN-space and ϕ : X → Z be
a function such that there exists  < α <  such that μ′

ϕ(x,y,z)(t)≥ μ′
αϕ(x,y,z)(t), for all x ∈ X

and t > , and

lim
n→∞μ′

ϕ(nx,ny,nz)
(
nt

)
= ,

for all x, y, z ∈ X and t > . Let (Y ,μ,min) be a complete RN-space. If f : X → Y be a map-
ping satisfying (.). Then the limit (x) = limn→∞ f (nx)

n exists, for all x ∈ X, and defines a
unique CJA mapping  : X → Y such that

μf (x)–(x)(t) ≥ μ′
ϕ(x,x,x)

(
( – α)t

)
, (.)

for all x ∈ X and t > .

Proof It follows from (.) that

μ f (x)
 –f (x)(t)≥ μ′

ϕ(x,x,x)(t). (.)

Replacing x by nx in (.), we obtain

μ f (n+x)
n+

– f (nx)
n

(t)≥ μ′
ϕ(nx,n+x,nx)

(
n+t

) ≥ μϕ(x,x,x)

(
n+t
αn

)
.

The rest of the proof is similar to the proof of Theorem .. �

Corollary . Let X be a real normed linear space, (Z,μ′,min) be an RN-space and
(Y ,μ,min) be a complete RN-space. Let r be a positive real number with  < r < , z ∈ Z
and f : X → Y be a mapping satisfying (.). Then the limit (x) = limn→∞ f (nx)

n exists, for
all x ∈ X, and defines a unique CJA mapping  : X → Y such that

μf (x)–(x)(t) ≥ μ′
‖x‖pz

(
( – r)t
r + 

)
,

for all x ∈ X and t > .
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Proof Let α = r and ϕ : X → Z be amapping defined by ϕ(x, y, z) = (‖x‖r +‖y‖r +‖z‖r)z.
Then, from Theorem ., the conclusion follows. �

Theorem . Let X be a linear space, (Y ,μ,TM) be a complete RN-space and� be amap-
ping from X to D+ (�(x, y, z) is denoted by �x,y.z) such that there exists  < α < 

 such that

�x,y,z(t) ≤ �x,y,z(αt), (.)

for all x, y, z ∈ X and t > . Let f : X → Y be a mapping satisfying

μf ( x+y+z )f (x)–f (y)–f (z)(t) ≥ �x,y,z(t), (.)

for all x, y, z ∈ X and t > . Then, for all x ∈ X, (x) := limn→∞ nf ( x
n ) exists and  : X → Y

is a unique CJA mapping such that

μf (x)–(x)(t) ≥ �x,x,x

(
( – α)t

α

)
, (.)

for all x ∈ X and t > .

Proof Putting y = x and z = x in (.), we have

μf ( x )–f (x)(t)≥ �x,x,x

(
t
α

)
, (.)

for all x ∈ X and t > . Consider the set S := {g : X → Y } and the generalized metric d in S
defined by

d(f , g) = inf
u∈(,∞)

{
μg(x)–h(x)(ut)≥ �x,x,x(t),∀x ∈ X, t > 

}
, (.)

where inf∅ = +∞. It is easy to show that (S,d) is complete (see [], Lemma .). Now, we
consider a linear mapping J : (S,d)→ (S,d) such that

Jh(x) := h
(
x


)
, (.)

for all x ∈ X. First, we prove that J is a strictly contractive mapping with the Lipschitz con-
stant α. In fact, let g,h ∈ S be such that d(g,h) < ε. Then we have μg(x)–h(x)(εt) ≥ �x,x,x(t),
for all x ∈ X and t > , and so

μJg(x)–Jh(x)(αεt) = μg( x )–h(
x
 )(αεt) = μg( x )–h(

x
 )(αεt)

≥ � x
 ,x,

x

(αt)

≥ �x,x,x(t),

for all x ∈ X and t > . Thus d(g,h) < ε implies that d(Jg, Jh) < αε. This means that
d(Jg, Jh) ≤ αd(g,h), for all g,h ∈ S. It follows from (.) that d(f , Jf ) ≤ α. By Theorem .,
there exists a mapping A : X → Y satisfying the following:

http://www.journalofinequalitiesandapplications.com/content/2014/1/209
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()  is a fixed point of J , that is,


(
x


)
=


(x), (.)

for all x ∈ X. The mapping  is a unique fixed point of J in the set  = {h ∈ S : d(g,h) < ∞}.
This implies that  is a unique mapping satisfying (.) such that there exists u ∈ (,∞)
satisfying μf (x)–(x)(ut) ≥ �x,x,x(t), for all x ∈ X and t > .
() d(Jnf ,) →  as n → ∞. This implies the equality limn→∞ nf ( x

n ) = (x), for all
x ∈ X.
() d(f ,) ≤ d(f ,Jf )

–α with f ∈ , which implies the inequality d(f ,) ≤ α
–α and so

μf (x)–(x)(t) ≥ �x,x,x

(
( – α)t

α

)
,

for all x ∈ X and t > . This implies that the inequality (.) holds. On the other hand

μn+f ( x+y+z
n+

)–nf ( x
n )–

nf ( y
n )–

nf ( z
n )

(t)≥ � x
n ,

y
n ,

z
n

(
t
n

)
,

for all x, y, z ∈ X, t >  and n≥ . By (.), we know that� x
n ,

y
n ,

z
n
( t
n ) ≥ �x,y,z( t

(α)n ). Since
limn→∞ �x,y,z( t

(α)n ) = , for all x, y, z ∈ X and t > , we haveμ( x+y+z )–(x)–(y)–(z)(t) = , for
all x, y, z ∈ X and t > . Thus the mapping  : X → Y satisfying (.). Furthermore

(x) – (x) = lim
n→∞nf

(
x

n–

)
–  lim

n→∞nf
(

x
n

)

= 
[
lim
n→∞n–f

(
x

n–

)
– lim

n→∞nf
(

x
n

)]
= .

This completes the proof. �

Corollary . Let X be a real normed space, θ ≥  and r be a real number with r > . Let
f : X → Y be a mapping satisfying

μf ( x+y+z )–f (x)–f (y)–f (z)(t)≥
t

t + θ (‖x‖r + ‖y‖r + ‖z‖r) , (.)

for all x, y, z ∈ X and t > . Then (x) = limn→∞ nf ( x
n ) exists, for all x ∈ X, and  : X → Y

is a unique CJA mapping such that

μf (x)–(x)(t) ≥ (r – )t
(r – )t + (r + )θ‖x‖r ,

for all x ∈ X and t > .

Proof The proof follows from Theorem . if we take �x,y,z(t) = t
t+θ (‖x‖r+‖y‖r+‖z‖r) , for all

x, y, z ∈ X and t > . In fact, if we choose α = –r , then we get the desired result. �
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Theorem . Let X be a linear space, (Y ,μ,TM) be a complete RN-space and � be a
mapping from X to D+ (�(x, y, z) is denoted by �x,y,z) such that for some  < α < ,
� x

 ,
y
 ,

z

(t) ≤ �x,y,z(αt), for all x, y, z ∈ X and t > . Let f : X → Y be a mapping satisfying

(.). Then the limit (x) := limn→∞ f (nx)
n exists, for all x ∈ X, and  : X → Y is a unique

CJA mapping such that

μf (x)–(x)(t) ≥ �x,x,x
(
( – α)t

)
, (.)

for all x ∈ X and t > .

Proof Putting y = x and z = x in (.), we have

μ f (x)
 –f (x)(t)≥ �x,x,x(t), (.)

for all x ∈ X and t > . Let (S,d) be the generalized metric space defined in the proof
of Theorem .. Now, we consider a linear mapping J : (S,d) → (S,d) such that Jh(x) :=

h(x), for all x ∈ X. It follows from (.) that d(f , Jf ) ≤ 

 . By Theorem ., there exists a
mapping  : X → Y satisfying the following:
()  is a fixed point of J , that is,

(x) = (x), (.)

for all x ∈ X. The mapping  is a unique fixed point of J in the set  = {h ∈ S : d(g,h) < ∞}.
This implies that  is a unique mapping satisfying (.) such that there exists u ∈ (,∞)
satisfying μf (x)–(x)(ut) ≥ �x,x,x(t), for all x ∈ X and t > .
() d(Jnf ,) →  as n→ ∞. This implies the equality

lim
n→∞

f (nx)
n

= (x),

for all x ∈ X.
() d(f ,) ≤ d(f ,Jf )

– α


with f ∈ , which implies the inequalityμf (x)–(x)( t
–α

) ≥ �x,x,x(t), for
all x ∈ X and t > . This implies that the inequality (.) holds. The rest of the proof is
similar to the proof of Theorem .. �

Corollary . Let X be a real normed space, θ ≥  and r be a real number with  < r < .
Let f : X → Y be a mapping satisfying (.). Then the limit (x) = limn→∞ f (nx)

n exists, for
all x ∈ X, and  : X → Y is a unique CJA mapping such that

μf (x)–(x)(t) ≥ ( – r)t
( – r)t + (r + )θ‖x‖r ,

for all x ∈ X and t > .

Proof The proof follows from Theorem . if we take �x,y,z(t) = t
t+θ (‖x‖r+‖y‖r+‖z‖r) , for all

x, y, z ∈ X and t > . In fact, if we choose α = r , then we get the desired result. �
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