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Abstract
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considered.
MSC: 26D15

Keywords: Hölder inequality; generalization; refinement; diamond-α integral; time
scale

1 Introduction
Let

∑m
j=


pj
= . If fj(x) >  and fj (j = , , . . . ,m) is a continuous real-valued function on

[a,b], then
() for pj > , we have the following Hölder inequality (see []):

∫ b

a

m∏
j=

fj(x)dx ≤
m∏
j=

(∫ b

a
f pjj (x)dx

)/pj
; (.)

() for  < pm < , pj <  (j = , , . . . ,m – ), we have the following reverse Hölder
inequality (see []):

∫ b

a

m∏
j=

fj(x)dx ≥
m∏
j=

(∫ b

a
f pjj (x)dx

)/pj
. (.)

If m =  and p = p = , then inequality (.) reduces to the famous Cauchy-Schwarz
inequality (see []). Both the Cauchy-Schwarz inequality and the Hölder inequality play a
significant role in different branches of modern mathematics. A great number of general-
izations, refinements, variations, and applications of these inequalities have been studied
in the literature (see [–] and the references therein).
The aim of this paper is to derive some new generalizations and refinements of the

diamond-α integral Hölder inequality on time scales. Some related inequalities are also
considered. The paper is organized as follows. In Section , we recall the basic definitions
of time scale calculus, which can also be found in [, –], and of delta, nabla, and
diamond-α dynamic derivatives. In Section , we will give the main results.
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2 Preliminaries
A time scale T is an arbitrary nonempty closed subset of R. The set of the real numbers,
the integers, the natural numbers, and the Cantor set are examples of time scales. But the
rational numbers, the irrational numbers, the complex numbers, and the open interval
between  and  are not time scales. We first recall some basic concepts from the theory
of time scales.
For t ∈ T, we define the forward jump operator σ : T → T by

σ (t) = inf{s ∈ T :s > t}

and the backward jump operator ρ : T→ T by

ρ(t) = sup{s ∈ T :s < t},

where inf∅ := supT and sup∅ := infT, ∅ denotes the empty set.

Definition . A point t ∈ T, t > infT, is said to be left-dense if ρ(t) = t, right-dense if
t < supT and σ (t) = t, left-scattered if ρ(t) < t, and right-scattered if σ (t) > t.

Definition . A function f : T → R is called rd-continuous if it is continuous at right-
dense points and has finite left-sided limits at left-dense points. A function is called
ld-continuous if it is continuous at left-dense points and has finite right-sided limits at
right-dense points.

Definition . Assume that f : T → R is a function, then we define the functions f σ =
f ◦ σ and f ρ = f ◦ ρ .

Definition . Suppose that f : T → R is a function, then for t ∈ T we define f �(t) to be
the number, if one exists, such that for all ε >  there is a neighborhood U of t such that
for all s ∈U

∣∣f (σ (t)) – f (s) – f �(t)
(
σ (t) – s

)∣∣ ≤ ε
∣∣σ (t) – s

∣∣.
We say that f is delta differentiable on T provided f �(t) exists for all t ∈ T. Similarly, for
t ∈ T we define f ∇ (t) to be the number value, if one exists, such that for all ε >  there is a
neighborhood V of t such that for all s ∈ V

∣∣f (ρ(t)) – f (s) – f ∇ (t)
(
ρ(t) – s

)∣∣ ≤ ε
∣∣ρ(t) – s

∣∣.
We say that f is nabla differentiable on T provided f ∇ (t) exists for all t ∈ T.

We now introduce the basic notions of delta and nabla integrations.

Definition . An F : T → R with F� = f is called a �-antiderivative of f , and then the
�-integral of f is defined by

∫ t
a f (s)�s = F(t) – F(a) for any a, t ∈ T. Also, G : T → R

with G∇ = f is called a ∇-antiderivative of f , and then the ∇-integral of f is defined by∫ t
a f (s)∇s = G(t) – G(a) for any a, t ∈ T. It is known that rd-continuous functions have

�-antiderivatives and ld-continuous functions have ∇-antiderivatives.

http://www.journalofinequalitiesandapplications.com/content/2014/1/207


Chen et al. Journal of Inequalities and Applications 2014, 2014:207 Page 3 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/207

Recently, using the above derivatives and integrations, Sheng et al. [] (see also [–
]) have established the diamond-α derivative and the diamond-α integration on time
scales.

Definition . If α ∈ [, ] and f : T →R is a function, then the ♦α-differentiation of f at
a point t ∈ T is defined by

f ♦α (t) = αf �(t) + ( – α)f ∇ (t).

The ♦α-integral of f is defined by

∫ t

a
h(τ )♦ατ = α

∫ t

a
h(τ )�τ + ( – α)

∫ t

a
h(τ )∇τ .

Proposition . (see []) Let T be a time scale a,b ∈ T with a < b. Assume that f and g
are continuous functions on [a,b]T. Let c ∈ [a,b]T and k ∈R. Then
()

∫ b
a (f (t) + g(t))♦αt =

∫ b
a f (t)♦αt +

∫ b
a g(t)♦αt;

()
∫ b
a kf (t)♦αt = k

∫ b
a f (t)♦αt;

()
∫ b
a f (t)♦αt = –

∫ a
b f (t)♦αt;

()
∫ b
a f (t)♦αt =

∫ c
a f (t)♦αt +

∫ b
c f (t)♦αt;

()
∫ a
a f (t)♦αt = .

Proposition . (see []) Let T be a time scale a,b ∈ T with a < b. Assume that f and g
are continuous functions on [a,b]T,
() if f (t) ≥  for all t ∈ [a,b]T, then

∫ b
a f (t)♦αt ≥ ;

() if f (t)≤ g(t) for all t ∈ [a,b]T, then
∫ b
a f (t)♦αt ≤ ∫ b

a g(t)♦αt;
() if f (t) ≥  for all t ∈ [a,b]T, then f (t) =  if and only if

∫ b
a f (t)♦αt = .

Results about ♦α-derivatives and ♦α-integrals may be found in the papers [–, ].
Throughout this work, we suppose that T is a time scale, a,b ∈ T with a < b and an

interval [a,b] means the intersection of a real interval with the given time scale.

3 Main results
In this section, we introduce the following lemma first before we give our results.

Lemma . (see []) Let
∑m

j=

pj
= , aj ≥  (j = , , . . . ,m). Then

() for pj > , we have

m∏
j=

aj ≤
m∑
j=

apjj
pj

; (.)

() for  < pm < , pj <  (j = , , . . . ,m – ), we have

m∏
j=

aj ≥
m∑
j=

apjj
pj

. (.)

Theorem . Let T be a time scale, a,b ∈ T with a < b and
∑m

j=

pj
= . If fj(x) > , and fj

(j = , , . . . ,m) is continuous real-valued function on [a,b]T, then

http://www.journalofinequalitiesandapplications.com/content/2014/1/207
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() for pj > , we have

∫ b

a

m∏
j=

fj(x)♦αx ≤
m∏
j=

(∫ b

a
f pjj (x)♦αx

)/pj
; (.)

() for  < pm < , pj <  (j = , , . . . ,m – ), we have

∫ b

a

m∏
j=

fj(x)♦αx ≥
m∏
j=

(∫ b

a
f pjj (x)♦αx

)/pj
. (.)

Proof () Let ϕj(x) =
fj(x)

(
∫ b
a f

pj
j (x)♦αx)

/pj
, by (.), we have

∫ b

a

m∏
j=

ϕj(x)♦αx ≤
∫ b

a

m∑
j=

ϕ
pj
j (x)
pj

♦αx

=
m∑
j=


pj

∫ b

a

f pjj (x)∫ b
a f pjj (x)♦αx

♦αx =
m∑
j=


pj

= .

Therefore, we obtain the desired inequality.
() Set ϕj(x) =

fj(x)

(
∫ b
a f

pj
j (x)♦αx)

/pj
, by (.), we obtain

∫ b

a

m∏
j=

ϕj(x)♦αx ≥
∫ b

a

m∑
j=

ϕ
pj
j (x)
pj

♦αx

=
m∑
j=


pj

∫ b

a

f pjj (x)∫ b
a f pjj (x)♦αx

♦αx =
m∑
j=


pj

= .

Hence, we have the desired result. �

Theorem . Let T be a time scale a,b ∈ T with a < b and αkj ∈ R (j = , , . . . ,m, k =
, , . . . , s),

∑s
k


pk

= ,
∑s

k= αkj = . If fj(x) > , and fj (j = , , . . . ,m) is a continuous real-
valued function on [a,b]T, then

() for pk > , we have the following inequality:

∫ b

a

m∏
j=

fj(x)♦αx≤
s∏

k=

(∫ b

a

m∏
j=

f
+pkαkj
j (x)♦αx

)/pk

; (.)

()  < ps < , pk <  (k = , , . . . , s – ), we have the following reverse inequality:

∫ b

a

m∏
j=

fj(x)♦αx≥
s∏

k=

(∫ b

a

m∏
j=

f
+pkαkj
j (x)♦αx

)/pk

. (.)

Proof () Set

gk(x) =

( m∏
j=

f
+pkαkj
j (x)

)/pk

. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/207
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Applying the assumptions
∑s

k

pk

=  and
∑s

k= αkj = , by computing, we can observe
that

s∏
k=

gk(t) = gg · · · gs

=

( m∏
j=

f +aαjj (t)

)/a( m∏
j=

f +aαjj (t)

)/a

· · ·
( m∏

j=

f +asαsjj (t)

)/as

=
m∏
j=

f /a+αj
j (t)

m∏
j=

f /a+αj
j (t) · · ·

m∏
j=

f /as+αsj
j (t)

=
m∏
j=

f /a+/a+···+/as+αj+αj+···+αsj
j (t) =

m∏
j=

fj(t).

That is,

s∏
k=

gk(t) =
m∏
j=

fj(t).

Hence, we obtain

∫ b

a

m∏
j=

fj(x)♦αx =
∫ b

a

s∏
k=

gk(x)♦αx. (.)

By the Hölder inequality (.), we find

∫ b

a

s∏
k=

gk(x)♦αx ≤
s∏

k=

(∫ b

a
gpkk (x)♦αx

)/pk
. (.)

Substitution of gk(x) in (.) conduce to inequality (.) immediately. This proves inequal-
ity (.).
() This proof is similar to the proof of inequality (.), by (.), (.), and the reverse

Hölder inequality (.), we have

∫ b

a

s∏
k=

gk(x)♦αx ≥
s∏

k=

(∫ b

a
gpkk (x)♦αx

)/pk
. (.)

Substitution of gk(x) in (.) leads to inequality (.) immediately. �

Corollary . Under the conditions of Theorem ., let s = m, αkj = –t/pk for k 
= j and
αjj = t( – /pj) with t ∈ R, then
() for pk > , we have the following inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≤
m∏
k=

(∫ b

a

( m∏
j=

fj(x)

)–t(
f pkk

)t(x)♦αx

)/pk

; (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/207
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()  < pm < , pk <  (k = , , . . . ,m – ), we have the following reverse inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≥
m∏
k=

(∫ b

a

( m∏
j=

fj(x)

)–t(
f pkk

)t(x)♦αx

)/pk

. (.)

Theorem . Let T be a time scale, a,b ∈ T with a < b and r ∈ R, αkj ∈ R (j = , , . . . ,m,
k = , , . . . , s),

∑s
k


pk

= r,
∑s

k= αkj = . If fj(x) > , and fj (j = , , . . . ,m) is a continuous real-
valued function on [a,b]T, then
() for rpk > , we have the following inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≤
s∏

k=

(∫ b

a

m∏
j=

f
+rpkαkj
j (x)♦αx

)/rpk

; (.)

() for  < rps < , rpk <  (k = , , . . . , s – ), we have the following reverse inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≥
s∏

k=

(∫ b

a

m∏
j=

f
+rpkαkj
j (x)♦αx

)/rpk

. (.)

Proof () Since rpk >  and
∑s

k

pk

= r, we get
∑s

k


rpk
= . Then by (.), we immediately

obtain the inequality (.).
() Since  < rps < , rpk <  (k = , , . . . , s – ) and

∑s
k


pk

= r, we have
∑s

k


rpk
= , by

(.), we immediately have the inequality (.). This completes the proof. �

Recently, Yang [] established an extension of the Callebaut inequality, that is,

∫ b

a

m∏
j=

fj(x)♦αx≤
(∫ b

a

m∏
j=

f +αj
j (x)♦αx

)/(∫ b

a

m∏
j=

f –αj
j (x)♦αx

)/

. (.)

From Theorem ., we obtain a Hölder type generalization of (.) as follows.

Corollary . Under the conditions of Theorem ., and taking s = , p = p, p = q, αj =
–αj = αj, then
() for rp, rq > , we have the following inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≤
(∫ b

a

m∏
j=

f +rpαjj (x)♦αx

)/rp(∫ b

a

m∏
j=

f –rqαjj (x)♦αx

)/rq

; (.)

() for  < rp < , rq < , we have the following reverse inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≥
(∫ b

a

m∏
j=

f +rpαjj (x)♦αx

)/rp(∫ b

a

m∏
j=

f –rqαjj (x)♦αx

)/rq

. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/207
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Now we present a refinement of inequality (.) and (.), respectively.

Theorem . Under the conditions of Theorem ., we have
() for rpk > , we have the following inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≤ ϕ(c) ≤
s∏

k=

(∫ b

a

m∏
j=

f
+rpkαkj
j (x)♦αx

)/rpk

, (.)

where

ϕ(c) ≡
∫ c

a

m∏
j=

fj(x)♦αx +
s∏

k=

(∫ b

c

m∏
j=

f
+rpkαkj
j (x)♦αx

)/rpk

is a nonincreasing function with a≤ c≤ b;
() for  < rps < , rpk <  (k = , , . . . , s – ), we have the following reverse inequality:

∫ b

a

m∏
j=

fj(x)♦αx ≥ φ(c) ≥
s∏

k=

(∫ b

a

m∏
j=

f
+rpkαkj
j (x)♦αx

)/rpk

, (.)

where

φ(c) ≡
∫ c

a

m∏
j=

fj(x)♦αx +
s∏

k=

(∫ b

c

m∏
j=

f
+rpkαkj
j (x)♦αx

)/rpk

is a nondecreasing function with a≤ c≤ b.

Proof () Let

gk(x) =

( m∏
j=

f
+rpkαkj
j (x)

)/rpk

.

By rearrangement, using the assumptions of Theorem ., we have

m∏
j=

fj(x) =
s∏

k=

gk(x).

Then by the Hölder inequality (.), we obtain

∫ b

a

m∏
j=

fj(x)♦αx =
∫ b

a

s∏
k=

gk(x)♦αx =
∫ c

a

s∏
k=

gk(x)♦αx +
∫ b

c

s∏
k=

gk(x)♦αx

≤
∫ c

a

s∏
k=

gk(x)♦αx +
s∏

k=

(∫ b

c
grpkk (x)♦αx

)/rpk

≤
s∏

k=

(∫ c

a
grpkk (x)♦αx +

∫ b

c
grpkk (x)♦αx

)/rpk

http://www.journalofinequalitiesandapplications.com/content/2014/1/207
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=
s∏

k=

(∫ b

a
grpkk (x)♦αx

)/rpk

=
s∏

k=

(∫ b

a

m∏
j=

f
+rpkαkj
j (x)♦αx

)/rpk

.

Therefore, we obtain the desired result.
() This proof is similar to the proof of inequality (.), we have inequality (.). �

Remark . Taking s = , Theorem . presents refinement of (.) and (.).Moreover,
letting T =R and T = Z, then the results of this paper lead to the main results of [].
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