RESEARCH

Journal of Inequalities and Applications a SpringerOpen Journal

Open Access

Some results on asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense and equilibrium problems

Chunyan Huang¹ and Xiaoyan Ma^{2*}

*Correspondence: kfmaxy@yeah.net ²Basic Experimental & Teaching Center, Henan University, Kaifeng, Henan, China Full list of author information is available at the end of the article

Abstract

In this paper, we investigate a common fixed point problem of a finite family of asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense and an equilibrium problem. Strong convergence theorems of common solutions are established in a uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property.

MSC: 47H09; 47J25; 90C33

Keywords: asymptotically quasi- ϕ -nonexpansive mapping; asymptotically quasi- ϕ -nonexpansive mapping in the intermediate sense; generalized projection; equilibrium problem; fixed point

1 Introduction-preliminaries

Let *E* be a real Banach space. Recall that *E* is said to be strictly convex if $\|\frac{x+y}{2}\| < 1$ for all $x, y \in E$ with $\|x\| = \|y\| = 1$ and $x \neq y$. It is said to be uniformly convex if $\lim_{n\to\infty} \|x_n - y_n\| = 0$ for any two sequences $\{x_n\}$ and $\{y_n\}$ in *E* such that $\|x_n\| = \|y_n\| = 1$ and $\lim_{n\to\infty} \|\frac{x_n+y_n}{2}\| = 1$. Let $U_E = \{x \in E : \|x\| = 1\}$ be the unit sphere of *E*. Then the Banach space *E* is said to be smooth if

$$\lim_{t\to 0} \frac{\|x+ty\| - \|x\|}{t}$$

exists for each $x, y \in U_E$. It is said to be uniformly smooth if the above limit is attained uniformly for $x, y \in U_E$.

Recall that *E* has Kadec-Klee property if for any sequence $\{x_n\} \subset E$, and $x \in E$ with $x_n \rightharpoonup x$, and $||x_n|| \rightarrow ||x||$, then $||x_n - x|| \rightarrow 0$ as $n \rightarrow \infty$. For more details of the Kadec-Klee property, the readers can refer to [1] and the references therein. It is well known that if *E* is a uniformly convex Banach space, then *E* enjoys the Kadec-Klee property.

Recall that the normalized duality mapping *J* from *E* to 2^{E^*} is defined by

 $Jx = \{f^* \in E^* : \langle x, f^* \rangle = ||x||^2 = ||f^*||^2\},\$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. It is well known that if *E* is uniformly smooth, then *J* is uniformly norm-to-norm continuous on each bounded subset of *E*. It is also well known that if *E* is uniformly smooth if and only if *E*^{*} is uniformly convex.

Next, we assume that *E* is a smooth Banach space. Consider the functional defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2, \quad \forall x, y \in E.$$

Observe that, in a Hilbert space H, the equality is reduced to $\phi(x, y) = ||x - y||^2$, $x, y \in H$. As we all know if C is a nonempty closed convex subset of a Hilbert space H and P_C : $H \to C$ is the metric projection of H onto C, then P_C is nonexpansive. This fact actually characterizes Hilbert spaces and consequently, it is not available in more general Banach spaces. In this connection, Alber [2] recently introduced a generalized projection operator Π_C in a Banach space E which is an analog of the metric projection P_C in Hilbert spaces. Recall that the generalized projection $\Pi_C : E \to C$ is a map that assigns to an arbitrary point $x \in E$ the minimum point of the functional $\phi(x, y)$, that is, $\Pi_C x = \bar{x}$, where \bar{x} is the solution to the minimization problem

$$\phi(\bar{x},x) = \min_{y \in C} \phi(y,x).$$

The existence and uniqueness of the operator Π_C follow from the properties of the functional $\phi(x, y)$ and strict monotonicity of the mapping *J*; see, for example, [1, 2]. In Hilbert spaces, $\Pi_C = P_C$. It is obvious from the definition of the function ϕ that

$$(\|x\| - \|y\|)^{2} \le \phi(x, y) \le (\|y\| + \|x\|)^{2}, \quad \forall x, y \in E,$$
(1.1)

and

$$\phi(x, y) = \phi(x, z) + \phi(z, y) + 2\langle x - z, Jz - Jy \rangle, \quad \forall x, y, z \in E.$$

$$(1.2)$$

Remark 1.1 If *E* is a reflexive, strictly convex, and smooth Banach space, then $\phi(x, y) = 0$ if and only if x = y; for more details, see [1, 2] and the references therein.

Let *C* be a nonempty subset of *E* and let $T : C \to C$ be a mapping. In this paper, we use F(T) to denote the fixed point set of *T*. *T* is said to be asymptotically regular on *C* if for any bounded subset *K* of *C*,

$$\limsup_{n\to\infty}\left\{\left\|T^{n+1}x-T^nx\right\|:x\in K\right\}=0.$$

T is said to be closed if for any sequence $\{x_n\} \subset C$ such that $\lim_{n\to\infty} x_n = x_0$ and $\lim_{n\to\infty} Tx_n = y_0$, then $Tx_0 = y_0$. In this paper, we use \rightarrow and \rightarrow to denote the strong convergence and weak convergence, respectively.

Recall that a point *p* in *C* is said to be an asymptotic fixed point of *T* [3] iff *C* contains a sequence $\{x_n\}$ which converges weakly to *p* such that $\lim_{n\to\infty} ||x_n - Tx_n|| = 0$. The set of asymptotic fixed points of *T* will be denoted by $\widetilde{F}(T)$.

A mapping T is said to be relatively nonexpansive iff

$$\widetilde{F}(T) = F(T) \neq \emptyset, \qquad \phi(p, Tx) \le \phi(p, x), \quad \forall x \in C, \forall p \in F(T).$$

$$\widetilde{F}(T) = F(T) \neq \emptyset, \qquad \phi(p, T^n x) \leq (1 + \mu_n)\phi(p, x), \quad \forall x \in C, \forall p \in F(T), \forall n \geq 1,$$

where $\{\mu_n\} \subset [0, \infty)$ is a sequence such that $\mu_n \to 0$ as $n \to \infty$.

Remark 1.2 The class of relatively asymptotically nonexpansive mappings were first considered in [4]; see also, [5] and the references therein.

Recall that a mapping *T* is said to be quasi- ϕ -nonexpansive iff

 $F(T) \neq \emptyset$, $\phi(p, Tx) \le \phi(p, x)$, $\forall x \in C, \forall p \in F(T)$.

Recall that a mapping *T* is said to be asymptotically quasi- ϕ -nonexpansive iff there exists a sequence $\{\mu_n\} \subset [0, \infty)$ with $\mu_n \to 0$ as $n \to \infty$ such that

$$F(T) \neq \emptyset$$
, $\phi(p, T^n x) \leq (1 + \mu_n)\phi(p, x)$, $\forall x \in C, \forall p \in F(T), \forall n \geq 1$.

Remark 1.3 The class of quasi- ϕ -nonexpansive mappings was considered in [6]. The class of asymptotically quasi- ϕ -nonexpansive mappings which was investigated in [7] and [8] includes the class of quasi- ϕ -nonexpansive mappings as a special case.

Remark 1.4 The class of quasi- ϕ -nonexpansive mappings and the class of asymptotically quasi- ϕ -nonexpansive mappings are more general than the class of relatively nonexpansive mappings and the class of relatively asymptotically nonexpansive mappings. Quasi- ϕ -nonexpansive mappings and asymptotically quasi- ϕ -nonexpansive do not require the restriction $F(T) = \tilde{F}(T)$.

Remark 1.5 The class of quasi- ϕ -nonexpansive mappings and the class of asymptotically quasi- ϕ -nonexpansive mappings are generalizations of the class of quasi-nonexpansive mappings and the class of asymptotically quasi-nonexpansive mappings in Banach spaces.

Recall that *T* is said to be asymptotically quasi- ϕ -nonexpansive in the intermediate sense iff $F(T) \neq \emptyset$ and the following inequality holds:

$$\limsup_{n \to \infty} \sup_{p \in F(T), x \in C} \left(\phi(p, T^n x) - \phi(p, x) \right) \le 0.$$
(1.3)

Putting

$$\xi_n = \max\left\{0, \sup_{p \in F(T), x \in C} (\phi(p, T^n x) - \phi(p, x))\right\},\$$

it follows that $\xi_n \to 0$ as $n \to \infty$. Then (1.3) is reduced to the following:

$$\phi(p, T^n x) \le \phi(p, x) + \xi_n, \quad \forall p \in F(T), \forall x \in C.$$
(1.4)

Remark 1.6 The class of asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense was first considered by Qin and Wang [9].

Remark 1.7 The class of asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense is a generalization of the class of asymptotically quasi-nonexpansive mappings in the intermediate sense, which was considered by Kirk [10], in the framework of Banach spaces.

Let *f* be a bifunction from $C \times C$ to \mathbb{R} , where \mathbb{R} denotes the set of real numbers. Recall the following equilibrium problem. Find $p \in C$ such that

$$f(p, y) \ge 0, \quad \forall y \in C. \tag{1.5}$$

We use EP(f) to denote the solution set of the equilibrium problem (1.5). That is,

$$EP(f) = \{ p \in C : f(p, y) \ge 0, \forall y \in C \}.$$

We remark here that the equilibrium problem was first introduced by Fan [11]. Given a mapping $Q: C \rightarrow E^*$, let

$$f(x, y) = \langle Qx, y - x \rangle, \quad \forall x, y \in C.$$

Then $p \in EP(f)$ if and only if p is a solution of the following variational inequality. Find p such that

$$\langle Qp, y-p \rangle \ge 0, \quad \forall y \in C.$$
 (1.6)

To study the equilibrium problems (1.5), we may assume that F satisfies the following conditions:

- (A1) F(x, x) = 0 for all $x \in C$;
- (A2) *F* is monotone, *i.e.*, $F(x, y) + F(y, x) \le 0$ for all $x, y \in C$;
- (A3) for each $x, y, z \in C$,

$$\limsup_{t\downarrow 0} F(tz + (1-t)x, y) \le F(x, y);$$

(A4) for each $x \in C$, $y \mapsto F(x, y)$ is convex and weakly lower semi-continuous.

Numerous problems in physics, optimization, and economics reduce to find a solution of (1.5). Recently, many authors have investigated common solutions of fixed point and equilibrium problems in Banach spaces; see, for example, [12–33] and the references therein.

In this paper, we consider a projection algorithm for treating the equilibrium problem and fixed point problems of asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense.

In order to prove our main results, we need the following lemmas.

Lemma 1.8 [2] Let *E* be a reflexive, strictly convex and smooth Banach space. Let *C* be a nonempty closed convex subset of *E* and let $x \in E$. Then

$$\phi(y, \Pi_C x) + \phi(\Pi_C x, x) \le \phi(y, x), \quad \forall y \in C.$$

Lemma 1.9 [2] Let C be a nonempty closed convex subset of a smooth Banach space E and let $x \in E$. Then $x_0 = \prod_C x$ if and only if

$$\langle x_0 - y, Jx - Jx_0 \rangle \ge 0, \quad \forall y \in C.$$

Lemma 1.10 Let *C* be a closed convex subset of a smooth, strictly convex and reflexive Banach space *E*. Let *f* be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let r > 0 and $x \in E$. Then

(a) [34] There exists $z \in C$ such that

$$f(z,y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle \ge 0, \quad \forall y \in C.$$

(b) [6, 24] Define a mapping $T_r: E \to C$ by

$$S_r x = \left\{ z \in C : f(z, y) + \frac{1}{r} \langle y - z, Jz - Jx \rangle, \forall y \in C \right\}.$$

Then the following conclusions hold:

- (1) S_r is single-valued;
- (2) S_r is a firmly nonexpansive-type mapping, i.e., for all $x, y \in E$,

$$\langle S_r x - S_r y, J S_r x - J S_r y \rangle \le \langle S_r x - S_r y, J x - J y \rangle$$

- (3) $F(S_r) = EP(f);$
- (4) S_r is quasi- ϕ -nonexpansive;
- (5) $\phi(q, S_r x) + \phi(S_r x, x) \le \phi(q, x), \forall q \in F(S_r);$
- (6) EP(f) is closed and convex.

Lemma 1.11 [35] Let *E* be a smooth and uniformly convex Banach space and let r > 0. Then there exists a strictly increasing, continuous and convex function $g : [0, 2r] \rightarrow R$ such that g(0) = 0 and

$$\left\| tx + (1-t)y \right\|^2 \le t \|x\|^2 + (1-t)\|y\|^2 - t(1-t)g(\|x-y\|)$$

for all $x, y \in B_r = \{x \in E : ||x|| \le r\}$ and $t \in [0, 1]$.

2 Main results

Theorem 2.1 Let *E* be a uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property and let *C* be a nonempty closed and convex subset of *E*. Let *f* be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4) and let *N* be some positive integer. Let $T_i : C \to C$ an asymptotically quasi- ϕ -nonexpansive mapping in the intermediate sense for every $1 \le i \le N$. Assume that T_i is closed asymptotically regular on *C* and $\bigcap_{i=1}^N F(T_i) \cap$ EF(f) is nonempty and bounded. Let $\{x_n\}$ be a sequence generated in the following manner:

$$\begin{aligned} x_{0} \in E \ chosen \ arbitrarily, \\ C_{1} &= C, \\ x_{1} &= \Pi_{C_{1}} x_{0}, \\ y_{n} &= J^{-1}(\alpha_{n,0}Jx_{n} + \sum_{i=1}^{N} \alpha_{n,i}JT_{i}^{n}x_{n}), \\ u_{n} \in C \ such \ that \ f(u_{n}, y) + \frac{1}{r_{n}} \langle y - u_{n}, Ju_{n} - Jy_{n} \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} &= \{ z \in C_{n} : \phi(z, u_{n}) \leq \phi(z, x_{n}) + \xi_{n} \}, \\ x_{n+1} &= \Pi_{C_{n+1}} x_{0}, \end{aligned}$$

where $\xi_n = \max\{0, \sup_{p \in F(T_i), x \in C}(\phi(p, T_i^n x) - \phi(p, x))\}, \{\alpha_{n,i}\}$ is a real number sequence in (0, 1) for every $1 \le i \le N$, $\{r_n\}$ is a real number sequence in $[k, \infty)$, where k is some positive real number. Assume that $\sum_{i=0}^N \alpha_{n,i} = 1$ and $\liminf_{n\to\infty} \alpha_{n,0}\alpha_{n,i} > 0$ for every $1 \le i \le N$. Then the sequence $\{x_n\}$ converges strongly to $\prod_{i=1}^N F(T_i) \cap EF(f) x_1$, where $\prod_{i=1}^N F(T_i) \cap EF(f)$ is the generalized projection from E onto $\bigcap_{i=1}^N F(T_i) \cap EF(f)$.

Proof First, we show that $\bigcap_{i=1}^{N} F(T_i) \cap EF(f)$ is closed and convex. From [9], we find that $\bigcap_{i=1}^{N} F(T_i)$ is closed and convex, which combines with Lemma 1.10 shows that $\bigcap_{i=1}^{N} F(T_i) \cap EF(f)$ is closed and convex. Next, we show that C_n is closed and convex. It is obvious that $C_1 = C$ is closed and convex. Suppose that C_h is closed and convex for some positive integer *h*. For $z \in C_h$, we see that $\phi(z, u_h) \le \phi(z, x_h) + \xi_h$ is equivalent to

$$2\langle z, Jx_h - Ju_h \rangle \leq ||x_k||^2 - ||u_k||^2 + \xi_h.$$

It is to see that C_{h+1} is closed and convex. This proves that C_n is closed and convex. This in turn shows that $\prod_{C_{n+1}} x_1$ is well defined. Putting $u_n = S_{r_n} y_n$, we from Lemma 1.10 see that S_{r_n} is quasi- ϕ -nonexpansive. Now, we are in a position to prove that $\bigcap_{i=1}^N F(T_i) \cap EF(f) \subset C_n$. Indeed, $\bigcap_{i=1}^N F(T_i) \cap EF(f) \subset C_1 = C$ is obvious. Assume that $\bigcap_{i=1}^N F(T_i) \cap EF(f) \subset C_h$ for some positive integer h. Then, for $\forall w \in \bigcap_{i=1}^N F(T_i) \cap EF(f) \subset C_h$, we have

$$\begin{split} \phi(w, u_h) &= \phi(w, S_{r_h} y_h) \\ &\leq \phi(w, y_h) \\ &= \phi\left(w, J^{-1}\left(\alpha_{h,0} J x_h + \sum_{i=1}^{N} \alpha_{h,i} J T_i^h x_h\right)\right) \\ &= \|w\|^2 - 2\left\langle w, \alpha_{h,0} J x_h + \sum_{i=1}^{N} \alpha_{h,i} J T_i^h x_h \right\rangle + \left\|\alpha_{h,0} J x_h + \sum_{i=1}^{N} \alpha_{h,i} J T_i^h x_h\right\|^2 \\ &\leq \|w\|^2 - 2\alpha_{h,0} \langle w, J x_h \rangle - 2 \sum_{i=1}^{N} \alpha_{h,i} \langle w, J T_i^h x_h \rangle + \alpha_{h,0} \|x_h\|^2 + \sum_{i=1}^{N} \alpha_{h,i} \|T_i^h x_h\|^2 \\ &= \alpha_{h,0} \phi(w, x_h) + \sum_{i=1}^{N} \alpha_{h,i} \phi(w, T_i^h x_h) \\ &\leq \alpha_{h,0} \phi(w, x_h) + \sum_{i=1}^{N} \alpha_{h,i} \phi(w, x_h) + \sum_{i=1}^{N} \alpha_{h,i} \xi_h \end{split}$$

$$= \phi(w, x_{h}) + \sum_{i=1}^{N} \alpha_{h,i} \xi_{h}$$

$$\leq \phi(w, x_{h}) + \sum_{i=1}^{N} \xi_{h}, \qquad (2.1)$$

which shows that $w \in C_{h+1}$. This implies that $\bigcap_{i=1}^{N} F(T_i) \cap EF(f) \subset C_n$.

Next, we prove that the sequence $\{x_n\}$ is bounded. Notice that $x_n = \prod_{C_n} x_1$. We find from Lemma 1.9 that $\langle x_n - z, Jx_1 - Jx_n \rangle \ge 0$, for any $z \in C_n$. Since $\bigcap_{i=1}^N F(T_i) \cap EF(f) \subset C_n$, we find that

$$\langle x_n - w, Jx_1 - Jx_n \rangle \ge 0, \quad \forall w \in \bigcap_{i=1}^N F(T_i) \cap EF(f).$$
 (2.2)

It follows from Lemma 1.8 that

$$\begin{split} \phi(x_n, x_1) &\leq \phi(\Pi_{\bigcap_{i=1}^N F(T_i) \cap EF(f)} x_1, x_1) - \phi(\Pi_{\bigcap_{i=1}^N F(T_i) \cap EF(f)} x_1, x_n) \\ &\leq \phi(\Pi_{\bigcap_{i=1}^N F(T_i) \cap EF(f)} x_1, x_1). \end{split}$$

This implies that the sequence $\{\phi(x_n, x_1)\}$ is bounded. It follows from (1.1) that the sequence $\{x_n\}$ is also bounded. Since the space is reflexive, we may assume, without loss of generality, that $x_n \rightarrow \bar{x}$. Next, we prove that $\bar{x} \in \bigcap_{i=1}^N F(T_i) \cap EF(f)$. Since C_n is closed and convex, we find that $\bar{x} \in C_n$. This implies from $x_n = \prod_{C_n} x_1$ that $\phi(x_n, x_1) \le \phi(\bar{x}, x_1)$. On the other hand, we see from the weakly lower semicontinuity of $\|\cdot\|$ that

$$\begin{split} \phi(\bar{x}, x_1) &= \|\bar{x}\|^2 - 2\langle \bar{x}, Jx_1 \rangle + \|x_1\|^2 \\ &\leq \liminf_{n \to \infty} \left(\|x_n\|^2 - 2\langle x_n, Jx_1 \rangle + \|x_1\|^2 \right) \\ &= \liminf_{n \to \infty} \phi(x_n, x_1) \\ &\leq \limsup_{n \to \infty} \phi(x_n, x_1) \\ &\leq \phi(\bar{x}, x_1), \end{split}$$

which implies that $\lim_{n\to\infty} \phi(x_n, x_1) = \phi(\bar{x}, x_1)$. Hence, we have $\lim_{n\to\infty} ||x_n|| = ||\bar{x}||$. In view of the Kadec-Klee property of *E*, we find that $x_n \to \bar{x}$ as $n \to \infty$. Since $x_n = \prod_{C_n} x_1$, and $x_{n+1} = \prod_{C_{n+1}} x_1 \in C_{n+1} \subset C_n$, we find that $\phi(x_n, x_1) \le \phi(x_{n+1}, x_1)$. This shows that $\{\phi(x_n, x_1)\}$ is nondecreasing. We find from its boundedness that $\lim_{n\to\infty} \phi(x_n, x_1)$ exists. It follows that

$$\phi(x_{n+1}, x_n) = \phi(x_{n+1}, \Pi_{C_n} x_1)$$

$$\leq \phi(x_{n+1}, x_1) - \phi(\Pi_{C_n} x_1, x_1)$$

$$= \phi(x_{n+1}, x_1) - \phi(x_n, x_1).$$

This implies that

$$\lim_{n \to \infty} \phi(x_{n+1}, x_n) = 0.$$
(2.3)

In the light of $x_{n+1} = \prod_{C_{n+1}} x_1 \in C_{n+1}$, we find that

$$\phi(x_{n+1},u_n) \leq \phi(x_{n+1},x_n) + \xi_n.$$

It follows from (2.3) that

$$\lim_{n \to \infty} \phi(x_{n+1}, u_n) = 0.$$
(2.4)

In view of (1.1), we see that $\lim_{n\to\infty} (||x_{n+1}|| - ||u_n||) = 0$. This implies that $\lim_{n\to\infty} ||u_n|| = ||\bar{x}||$. That is,

$$\lim_{n \to \infty} \|Ju_n\| = \lim_{n \to \infty} \|u_n\| = \|J\bar{x}\|.$$
(2.5)

This implies that $\{Ju_n\}$ is bounded. Note that both E and E^* are reflexive. We may assume, without loss of generality, that $Ju_n \rightarrow u^* \in E^*$. In view of the reflexivity of E, we see that $J(E) = E^*$. This shows that there exists an element $u \in E$ such that $Ju = u^*$. It follows that

$$\phi(x_{n+1}, u_n) = \|x_{n+1}\|^2 - 2\langle x_{n+1}, Ju_n \rangle + \|u_n\|^2$$
$$= \|x_{n+1}\|^2 - 2\langle x_{n+1}, Ju_n \rangle + \|Ju_n\|^2.$$

Taking $\liminf_{n\to\infty}$ on both sides of the equality aboven yields

$$0 \ge \|\bar{x}\|^2 - 2\langle \bar{x}, u^* \rangle + \|u^*\|^2$$

= $\|\bar{x}\|^2 - 2\langle \bar{x}, Ju \rangle + \|Ju\|^2$
= $\|\bar{x}\|^2 - 2\langle \bar{x}, Ju \rangle + \|u\|^2$
= $\phi(\bar{x}, u).$

That is, $\bar{x} = u$, which in turn implies that $u^* = J\bar{x}$. It follows that $Ju_n \rightarrow J\bar{x} \in E^*$. Since E^* enjoys the Kadec-Klee property, we obtain from (2.5) that $\lim_{n\to\infty} Ju_n = J\bar{x}$. Since J^{-1} : $E^* \rightarrow E$ is demicontinuous and E enjoys the Kadec-Klee property, we obtain $u_n \rightarrow \bar{x}$, as $n \rightarrow \infty$. Note that

$$||x_n - u_n|| \le ||x_n - \bar{x}|| + ||\bar{x} - u_n||$$

It follows that

$$\lim_{n \to \infty} \|x_n - u_n\| = 0.$$
(2.6)

Since *J* is uniformly norm-to-norm continuous on any bounded sets, we have

$$\lim_{n \to \infty} \|Jx_n - Ju_n\| = 0.$$
(2.7)

On the other hand, we have

$$\phi(w, x_n) - \phi(w, u_n) = ||x_n||^2 - ||u_n||^2 - 2\langle w, Jx_n - Ju_n \rangle$$

$$\leq ||x_n - u_n|| (||x_n|| + ||u_n||) + 2||w|| ||Jx_n - Ju_n||.$$

We, therefore, find that

$$\lim_{n \to \infty} \left(\phi(w, x_n) - \phi(w, u_n) \right) = 0.$$
(2.8)

Since *E* is uniformly smooth, we know that E^* is uniformly convex. In view of Lemma 1.11, we find that

$$\begin{split} \phi(w, u_n) &= \phi(w, S_{r_n} y_n) \\ &\leq \phi(w, y_n) \\ &= \phi\left(w, J^{-1}\left(\alpha_{n,0} J x_n + \sum_{i=1}^{N} \alpha_{n,i} J T_i^n x_n\right)\right) \\ &= \|w\|^2 - 2\left\langle w, \alpha_{n,0} J x_n + \sum_{i=1}^{N} \alpha_{n,i} J T_i^n x_n\right\rangle + \left\|\alpha_{n,0} J x_n + \sum_{i=1}^{N} \alpha_{n,i} J T_i^n x_n\right\|^2 \\ &\leq \|w\|^2 - 2\alpha_{n,0} \langle w, J x_n \rangle - 2 \sum_{i=1}^{N} \alpha_{n,i} \langle w, J T_i^n x_n \rangle + \alpha_{n,0} \|x_n\|^2 + \sum_{i=1}^{N} \alpha_{n,i} \|T_i^n x_n\|^2 \\ &- \alpha_{n,0} \alpha_{n,1} g(\|J x_n - J T_1^n x_n\|) \\ &= \alpha_{n,0} \phi(w, x_n) + \sum_{i=1}^{N} \alpha_{n,i} \phi(w, T_i^n x_n) - \alpha_{n,0} \alpha_{n,1} g(\|J x_n - J T_1^n x_n\|) \\ &\leq \alpha_{n,0} \phi(w, x_n) + \sum_{i=1}^{N} \alpha_{n,i} \phi(w, x_n) + \sum_{i=1}^{N} \alpha_{n,i} \xi_h \\ &- \alpha_{n,0} \alpha_{n,1} g(\|J x_n - J T_1^n x_n\|) \\ &= \phi(w, x_n) + \sum_{i=1}^{N} \alpha_{n,i} \xi_n - \alpha_{n,0} \alpha_{n,1} g(\|J x_n - J T_1^n x_n\|) \\ &\leq \phi(w, x_n) + \xi_n - \alpha_{n,0} \alpha_{n,1} g(\|J x_n - J T_1^n x_n\|). \end{split}$$

It follows that

$$\alpha_{n,0}\alpha_{n,1}g\big(\big\|Jx_n-JT_1^nx_n\big\|\big)\leq \phi(w,x_n)-\phi(w,u_n)+\xi_n.$$

In view of the restriction on the sequences, we find from (2.8) that $\lim_{n\to\infty} g(||Jx_n - JT_1^n x_n||) = 0$. It follows that

$$\lim_{n\to\infty} \left\| Jx_n - JT_1^n x_n \right\| = 0.$$

In the same way, we obtain

$$\lim_{n\to\infty} \left\| Jx_n - JT_i^n x_n \right\| = 0, \quad \forall 1 \le i \le N.$$

Notice that $||JT_i^n x_n - J\bar{x}|| \le ||JT_i^n x_n - Jx_n|| + ||Jx_n - J\bar{x}||$. It follows that

$$\lim_{n \to \infty} \left\| JT_i^n x_n - J\bar{x} \right\| = 0.$$
(2.9)

The demicontinuity of $J^{-1}: E^* \to E$ implies that $T_i^n x_n \to \bar{x}$. Note that

$$\left| \left\| T_{i}^{n} x_{n} \right\| - \left\| \bar{x} \right\| \right| = \left| \left\| J T_{i}^{n} x_{n} \right\| - \left\| J \bar{x} \right\| \right| \le \left\| J T_{i}^{n} x_{n} - J \bar{x} \right\|.$$

This implies from (2.9) that $\lim_{n\to\infty} ||T_i^n x_n|| = ||\bar{x}||$. Since *E* has the Kadec-Klee property, we obtain $\lim_{n\to\infty} ||T_i^n x_n - \bar{x}|| = 0$. On the other hand, we have

$$||T_i^{n+1}x_n - \bar{x}|| \le ||T_i^{n+1}x_n - T_i^n x_n|| + ||T_i^n x_n - \bar{x}||.$$

It follows from the uniformly asymptotic regularity of T_i that

$$\lim_{n\to\infty} \left\| T_i^{n+1} x_n - \bar{x} \right\| = 0.$$

That is, $T_i T_i^n x_n \to \bar{x}$. From the closedness of T_i , we find $\bar{x} = T_i \bar{x}$ for every $1 \le i \le N$. This proves $\bar{x} \in \bigcap_{i=1}^N F(T_i)$.

Next, we show that $\bar{x} \in EF(f)$. In view of Lemma 1.8, we find that

$$\phi(u_n, y_n) \le \phi(w, y_n) - \phi(w, u_n)$$
$$\le \phi(w, x_n) + \mu_n - \phi(w, u_n).$$

It follows from (2.8) that $\lim_{n\to\infty} \phi(u_n, y_n) = 0$. This implies that $\lim_{n\to\infty} (||u_n|| - ||y_n||) = 0$. It follows from (2.6) that

$$\lim_{n\to\infty}\|y_n\|=\|\bar{x}\|.$$

It follows that

$$\lim_{n \to \infty} \|Jy_n\| = \lim_{n \to \infty} \|y_n\| = \|\bar{x}\| = \|J\bar{x}\|.$$

This shows that $\{Jy_n\}$ is bounded. Since E^* is reflexive, we may assume that $Jy_n \rightarrow v^* \in E^*$. In view of $J(E) = E^*$, we see that there exists $v \in E$ such that $Jv = v^*$. It follows that

$$\phi(u_n, y_n) = ||u_n||^2 - 2\langle u_n, Jy_n \rangle + ||y_n||^2$$
$$= ||u_n||^2 - 2\langle u_n, Jy_n \rangle + ||Jy_n||^2.$$

Taking $\liminf_{n\to\infty}$ the both sides of equality above yields that

$$0 \ge \|\bar{x}\|^2 - 2\langle \bar{x}, \nu^* \rangle + \|\nu^*\|^2$$
$$= \|\bar{x}\|^2 - 2\langle \bar{x}, J\nu \rangle + \|J\nu\|^2$$
$$= \|\bar{x}\|^2 - 2\langle \bar{x}, J\nu \rangle + \|\nu\|^2$$
$$= \phi(\bar{x}, \nu).$$

That is, $\bar{x} = v$, which in turn implies that $v^* = J\bar{x}$. It follows that $Jy_n \rightarrow J\bar{x} \in E^*$. Since E^* enjoys the Kadec-Klee property, we obtain $Jy_n - J\bar{x} \rightarrow 0$ as $n \rightarrow \infty$. Note that $J^{-1} : E^* \rightarrow E$

is demicontinuous. It follows that $y_n \rightarrow \bar{x}$. Since *E* enjoys the Kadec-Klee property, we obtain $y_n \rightarrow \bar{x}$ as $n \rightarrow \infty$. Note that

$$||u_n - y_n|| \le ||u_n - \bar{x}|| + ||\bar{x} - y_n||.$$

This implies that $\lim_{n\to\infty} ||u_n - y_n|| = 0$. Since *J* is uniformly norm-to-norm continuous on any bounded sets, we have $\lim_{n\to\infty} ||Ju_n - Jy_n|| = 0$. From the assumption $r_n \ge k$, we see that

$$\lim_{n \to \infty} \frac{\|Ju_n - Jy_n\|}{r_n} = 0.$$
 (2.10)

Since $u_n = S_{r_n} y_n$, we find that

$$f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jy_n \rangle \ge 0, \quad \forall y \in C.$$

It follows from (A2) that

$$\|y-u_n\|\frac{\|Ju_n-Jy_n\|}{r_n}\geq \frac{1}{r_n}\langle y-u_n,Ju_n-Jy_n\rangle\geq f(y,u_n),\quad \forall y\in C.$$

In view of (A4), we find from (2.10) that

$$f(y,\bar{x}) \leq 0, \quad \forall y \in C.$$

For 0 < t < 1 and $y \in C$, define $y_t = ty + (1 - t)\bar{x}$. It follows that $y_t \in C$, which yields $f(y_t, \bar{x}) \le 0$. It follows from (A1) and (A4) that

$$0 = f(y_t, y_t) \le tf(y_t, y) + (1 - t)f(y_t, \bar{x}) \le tf(y_t, y).$$

That is,

$$f(y_t, y) \ge 0.$$

Letting $t \downarrow 0$, we obtain from (A3) that $f(\bar{x}, y) \ge 0$, $\forall y \in C$. This implies that $\bar{x} \in EP(f)$.

Finally, we turn our attention to proving that $\bar{x} = \prod_{\bigcap_{i=1}^{N} F(T_i) \cap EF(f)} x_1$. Letting $n \to \infty$ in (2.2), we obtain

$$\langle \bar{x} - w, Jx_1 - J\bar{x} \rangle \ge 0, \quad \forall w \in \bigcap_{i=1}^{\infty} F(T_i) \cap EF(f).$$

In view of Lemma 1.9, we find that $\bar{x} = \prod_{\substack{n \\ i=1}}^{N} F(T_i) \cap EF(f) x_1$. This completes the proof. \Box

From the definition of quasi- ϕ -nonexpansive mappings, we see that every quasi- ϕ -nonexpansive mapping is asymptotically quasi- ϕ -nonexpansive in the intermediate sense. We also know that every uniformly smooth and uniformly convex space is a uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property (note that every uniformly convex Banach space enjoys the Kadec-Klee property).

Remark 2.2 Theorem 2.1 can be viewed an extension of the corresponding results in Qin *et al.* [6], Kim [12], Qin *et al.* [22], Takahashi and Zembayashi [24], respectively. The space L^p , where p > 1, satisfies the restriction in Theorem 2.1.

3 Applications

Theorem 3.1 Let *E* be a uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property and let *C* be a nonempty closed and convex subset of *E*. Let *f* be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Let $T : C \to C$ an asymptotically quasi- ϕ -nonexpansive mapping in the intermediate sense. Assume that *T* is closed asymptotically regular on *C* and $F(T) \cap EF(f)$ is nonempty and bounded. Let $\{x_n\}$ be a sequence generated in the following manner:

 $\begin{cases} x_{0} \in E \text{ chosen arbitrarily,} \\ C_{1} = C, \\ x_{1} = \prod_{C_{1}} x_{0}, \\ y_{n} = J^{-1}(\alpha_{n,0}Jx_{n} + \alpha_{n,1}JT^{n}x_{n}), \\ u_{n} \in C \text{ such that } f(u_{n}, y) + \frac{1}{r_{n}} \langle y - u_{n}, Ju_{n} - Jy_{n} \rangle \geq 0, \quad \forall y \in C, \\ C_{n+1} = \{z \in C_{n} : \phi(z, u_{n}) \leq \phi(z, x_{n}) + \xi_{n}\}, \\ x_{n+1} = \prod_{C_{n+1}} x_{0}, \end{cases}$

where $\xi_n = \max\{0, \sup_{p \in F(T), x \in C} (\phi(p, T^n x) - \phi(p, x))\}, \{r_n\}$ is a real number sequence in $[k, \infty)$, where k is some positive real number, $\{\alpha_{n,0}\}$ and $\{\alpha_n, n, 1\}$ are two real number sequence in (0, 1). Assume that $\liminf_{n \to \infty} \alpha_{n,0} \alpha_{n,1} > 0$. Then the sequence $\{x_n\}$ converges strongly to $\prod_{F(T) \cap EF(f)} x_1$, where $\prod_{F(T) \cap EF(f)} is$ the generalized projection from E onto $F(T) \cap EF(f)$.

Proof Putting N = 1, we draw from Theorem 2.1 the desired conclusion immediately. \Box

Remark 3.2 If the mapping *T* in Theorem 3.1 is quasi- ϕ -nonexpansive, then the restrictions that *T* is closed asymptotically regular on *C* and $F(T) \cap EF(f)$ is bounded will not be required anymore.

If $T_i = I$, where *I* is the identity for every $1 \le i \le N$, then we find from Theorem 2.1 the following.

Theorem 3.3 Let *E* be a uniformly smooth and strictly convex Banach space which also enjoys the Kadec-Klee property and let *C* be a nonempty closed and convex subset of *E*. Let *f* be a bifunction from $C \times C$ to \mathbb{R} satisfying (A1)-(A4). Assume that EF(f) is nonempty. Let $\{x_n\}$ be a sequence generated in the following manner:

$$\begin{aligned} x_0 \in E \text{ chosen arbitrarily,} \\ C_1 &= C, \\ x_1 &= \prod_{C_1} x_0, \\ u_n \in C \text{ such that } f(u_n, y) + \frac{1}{r_n} \langle y - u_n, Ju_n - Jx_n \rangle \ge 0, \quad \forall y \in C, \\ C_{n+1} &= \{z \in C_n : \phi(z, u_n) \le \phi(z, x_n)\}, \\ x_{n+1} &= \prod_{C_{n-1}} x_0, \end{aligned}$$

where $\{r_n\}$ is a real number sequence in $[k, \infty)$, where k is some positive real number. Then the sequence $\{x_n\}$ converges strongly to $\prod_{EF(f)} x_1$, where $\prod_{EF(f)}$ is the generalized projection from E onto EF(f).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally to this manuscript.

Author details

¹School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou, China. ²Basic Experimental & Teaching Center, Henan University, Kaifeng, Henan, China.

Acknowledgements

The authors thank the reviewers for useful suggestions which improved the contents of this paper.

Received: 29 January 2014 Accepted: 2 May 2014 Published: 22 May 2014

References

- 1. Cioranescu, I: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)
- Alber, YI: Metric and generalized projection operators in Banach spaces: properties and applications. In: Kartsatos, AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Dekker, New York (1996)
- 3. Reich, S: A weak convergence theorem for the alternating method with Bregman distance. In: Kartsatos, AG (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Dekker, New York (1996)
- Agarwal, RP, Qin, X, Cho, YJ: Generalized projection algorithms for nonlinear operators. Numer. Funct. Anal. Optim. 28, 1197-1215 (2007)
- 5. Su, Y, Qin, X: Strong convergence of modified Ishikawa iterations for nonlinear mappings. Proc. Indian Acad. Sci. Math. Sci. 117, 97-107 (2007)
- 6. Qin, X, Cho, YJ, Kang, SM: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20-30 (2009)
- Qin, X, Cho, SY, Kang, SM: On hybrid projection methods for asymptotically quasi-*φ*-nonexpansive mappings. Appl. Math. Comput. 215, 3874-3883 (2010)
- Zhou, H, Gao, G, Tan, B: Convergence theorems of a modified hybrid algorithm for a family of quasi *p*-asymptotically nonexpansive mappings. J. Appl. Math. Comput. **32**, 453-464 (2010)
- 10. Kirk, WA: Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type. Isr. J. Math. 17, 339-346 (1974)
- 11. Fan, K: A minimax inequality and applications. In: Shisha, O (ed.) Inequality III, pp. 103-113. Academic Press, New York (1972)
- 12. Kim, JK: Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi- ϕ -nonexpansive mappings. Fixed Point Theory Appl. **2011**, Article ID 10 (2011)
- Hao, Y: On generalized quasi-φ-nonexpansive mappings and their projection algorithms. Fixed Point Theory Appl. 2013, Article ID 204 (2013)
- 14. Cho, SY, Qin, X: On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems. Appl. Math. Comput. 235, 430-438 (2014)
- Zhang, QN: Common solutions of equilibrium and fixed point problems. J. Inequal. Appl. 2013, Article ID 425 (2013)
 Chang, SS, Chan, CK, Lee, HWJ: Modified block iterative algorithm for quasi-*φ*-asymptotically nonexpansive
- mappings and equilibrium problem in Banach space. Appl. Math. Comput. **217**, 7520-7530 (2011)
- 17. Chang, SS, Lee, HWJ, Chan, CK: A new hybrid method for solving a generalized equilibrium problem, solving a variational inequality problem and obtaining common fixed points in Banach spaces, with applications. Nonlinear Anal. **73**, 2260-2270 (2010)

- Yang, S, Zhang, MY: Strong convergence theorems for fixed points of generalized asymptotically guasi-*φ*-nonexpansive mappings. Adv. Fixed Point Theory *4*, 69-90 (2014)
- 19. Chen, JH: Iterations for equilibrium and fixed point problems. J. Nonlinear Funct. Anal. 2013, Article ID 4 (2013)
- 20. Qin, X, Su, Y: Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 1958-1965 (2007)
- Yang, L, Zhao, F, Kim, JK: Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi-*φ*-nonexpansive mappings in Banach spaces. Appl. Math. Comput. 218, 6072-6082 (2012)
- Qin, X, Cho, SY, Kang, SM: Strong convergence of shrinking projection methods for quasi-*φ*-nonexpansive mappings and equilibrium problems. J. Comput. Appl. Math. 234, 750-760 (2010)
- Wu, C, Lv, S: Bregman projection methods for zeros of monotone operators. J. Fixed Point Theory 2013, Article ID 7 (2013)
- 24. Takahashi, W, Zembayashi, K: Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Nonlinear Anal. **70**, 45-57 (2009)
- Qin, X: A regularization method for treating zero points of the sum of two monotone operators. Fixed Point Theory Appl. 2014, Article ID 75 (2014)
- Yuan, Q: Some results on asymptotically quasi *φ*-nonexpansive mappings in the intermediate sense. J. Fixed Point Theory 2012, Article ID 1 (2012)
- Cho, SY: Strong convergence of a splitting algorithm for treating monotone operators. Fixed Point Theory Appl. 2014, Article ID 94 (2014)
- 28. Wang, S, Zhou, C: New iterative scheme for finite families of equilibrium, variational inequality, and fixed point problems in Banach spaces. Fixed Point Theory Appl. **2011**, Article ID 372975 (2011)
- 29. Zhang, C, Li, J, Liu, B: Strong convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces. Comput. Math. Appl. **61**, 262-276 (2011)
- Cho, SY, Kang, SM: Approximation of common solutions of variational inequalities via strict pseudocontractions. Acta Math. Sci. 32, 1607-1618 (2012)
- 31. Qin, X, Agarwal, RP: Shrinking projection methods for a pair of asymptotically quasi- ϕ -nonexpansive mappings. Numer. Funct. Anal. Optim. **31**, 1072-1089 (2010)
- 32. Zhang, M: An algorithm for treating asymptotically strict pseudocontractions and monotone operators. Fixed Point Theory Appl. 2014, Article ID 52 (2014)
- Qing, Y, Lv, S: A strong convergence theorem for solutions of equilibrium problems and asymptotically quasi *φ*-nonexpansive mappings in the intermediate sense. Fixed Point Theory Appl. 2013, Article ID 305 (2013)
- Wang, W, Song, J: Hybrid projection methods for a bifunction and relatively asymptotically nonexpansive mappings. Fixed Point Theory Appl. 2013, Article ID 294 (2013)
- 35. Zălinescu, C: On uniformly convex functions. J. Math. Anal. Appl. 95, 344-374 (1983)

10.1186/1029-242X-2014-202

Cite this article as: Huang and Ma: Some results on asymptotically quasi- ϕ -nonexpansive mappings in the intermediate sense and equilibrium problems. *Journal of Inequalities and Applications* 2014, 2014:202

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com