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Abstract
In this paper, motivated and inspired by Zegeye and Shahzad (Nonlinear Anal.
70:2707-2716, 2009), Qin et al. (J. Comput. Appl. Math. 225(1):20-30, 2009) and Kimura
and Takahashi (J. Math. Anal. Appl. 357:356-363, 2009), we introduce a new hybrid
projection iterative scheme that converges strongly to a common element of the
solution set of a generalized mixed equilibrium problem, the solution set of a
variational inequality problem, and the set of common fixed points for a family of
hemi-relatively nonexpansive mappings in a Banach space.
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1 Introduction
A real Banach spaceE is said to be strictly convex if ‖ x+y

 ‖ <  for all x, y ∈ Ewith ‖x‖ = ‖y‖ =
 and x �= y. It is said to be uniformly convex if limn→∞ ‖xn – yn‖ =  for any two sequences
{xn} and {yn} in E such that ‖xn‖ = ‖yn‖ =  and limn→∞ ‖ xn+yn

 ‖ = . It is known that a
uniformly convex Banach space is reflexive and strictly convex. Let U = {x ∈ E : ‖x‖ = }
be the unit sphere of E. Then the Banach space E is said to be smooth if

lim
t→

‖x + ty‖ – ‖x‖
t

exists for each x, y ∈ U . It is said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ E.
Let E be a real Banach space with the norm ‖ · ‖, and let E∗ denote the dual space of E.

We denote by J the normalized duality mapping from E to E∗ defined by

Jx =
{
f ∗ ∈ E∗ :

〈
x, f ∗〉 = ‖x‖ = ∥∥f ∗∥∥},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗ is strictly
convex, then J is single-valued, and if E is uniformly smooth, then J is uniformly norm-to-
norm continuous on a bounded subset of E. Moreover, if E is a reflexive and strictly convex
Banach space with a strictly convex dual, then J– is single-valued, one-to-one, surjective
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and it is the duality mapping from E∗ into E and thus JJ– = IE∗ and J–J = IE (see []). We
note that J is the identity mapping in a Hilbert space.
A mapping A :D(A)⊂ E → E∗ is said to bemonotone if for each x, y ∈D(A),

〈x – y,Ax –Ay〉 ≥ .

AmappingA is said to be γ -inverse stronglymonotone if there exists a positive real number
γ >  such that

〈x – y,Ax –Ay〉 ≥ γ ‖Ax –Ay‖, ∀x, y ∈D(A).

If a mapping A is γ -inverse strongly monotone, then it is Lipschitz continuous with con-
stant 

γ
, i.e.,

‖Ax –Ay‖ ≤ 
γ

‖x – y‖, x, y ∈D(A).

A mapping A is said to be strongly monotone, if for each x, y ∈ D(A), there exists k ∈ (, )
such that

〈x – y,Ax –Ay〉 ≥ k‖x – y‖.

A monotone mapping A is said to be maximal if its graph G(A) = {(x, y) : y ∈ Ax} is not
properly contained in the graph of any other monotone mapping. It is known that the
monotone mapping A is maximal if and only if for (x,x∗) ∈ E × E∗,

〈
x – y,x∗ – y∗〉 ≥ 

for every (y, y∗) ∈ G(A) implies that x∗ ∈ Ax.
Let C be a nonempty, closed convex subset of a Banach space E. For a bifunction θ :

C ×C →R, we assume that θ satisfies the following conditions:
(E) θ (x,x) =  for all x ∈ C;
(E) θ is monotone, i.e., θ (x, y) + θ (y,x)≤  for all x, y ∈ C;
(E) for each x, y, z ∈ C,

lim
t↓ θ

(
tz + ( – t)x, y

) ≤ θ (x, y);

(E) for each x ∈ C, the function y �→ θ (x, y) is convex and lower semi-continuous.
The generalized mixed equilibrium problem is to find x ∈ C such that

θ (x, y) +ψ(y) –ψ(x) + 〈Ax, y – x〉 ≥ , ∀y ∈ C, (.)

where ψ is a lower semicontinuous and convex function. The set of solutions of problem
(.) is denoted byGMEP. Recently, Zhang [] considered this problem. Some special cases
of problem (.) are stated as follows.
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If A = , then problem (.) reduces to the followingmixed equilibrium problem of find-
ing x ∈ C such that

θ (x, y) +ψ(y) –ψ(x)≥ , ∀y ∈ C,

which was considered by Ceng and Yao [].
If ψ = , then problem (.) reduces to the following generalized equilibrium problem

of finding x ∈ C such that

θ (x, y) + 〈Ax, y – x〉 ≥ , ∀y ∈ C,

which was studied in [].
If ψ =  and A = , then problem (.) reduces to the following equilibrium problem of

finding x ∈ C such that

θ (x, y)≥ , ∀y ∈ C. (.)

The set of solutions of problem (.) is denoted by EP.
If θ =  and ψ = , then problem (.) reduces to the following classical variational in-

equality problem of finding x ∈ C such that

〈Ax, y – x〉 ≥ , ∀y ∈ C. (.)

The set of solutions of problem (.) is denoted by VI(C,A).
Equilibrium problems, which were introduced in [] in , have had great impact

and influence on the development of several branches of pure and applied sciences. They
include numerous problems in economics, finance, physics, network, elasticity, optimiza-
tion, variational inequalities, minimax problems, and semigroups; see, for instance, [–,
–] and the references therein.
As well known, if C is a nonempty, closed and convex subset of a Hilbert space H and

PC :H → C is the metric projection of H onto C, then PC is nonexpansive. This fact actu-
ally characterizes Hilbert spaces and, consequently, it is not true to more general Banach
spaces. In this connection, Alber [] introduced a generalized projection operator �C in
a Banach space Ewhich is an analogue of themetric projection inHilbert spaces. Consider
the functional defined by

φ(x, y) = ‖x‖ – 〈x, Jy〉 + ‖y‖ for x, y ∈ E. (.)

Observe that, in a Hilbert space H , (.) reduces to

φ(x, y) = ‖x – y‖ for x, y ∈H .

The generalized projection �C : E → C is a mapping that assigns an arbitrary point x ∈ E
to the minimum point of the functional φ(x, y), that is, �Cx = x̄, where x̄ is the solution to
the minimization problem

φ(x̄,x) = inf
y∈C φ(y,x).

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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The existence and uniqueness of the mapping �C follows from the properties of the func-
tional φ(x, y) and strict monotonicity of the mapping J (see, for example, [] and []). In
a Hilbert space, �C = PC . It is obvious from the definition of the function φ that:
() (‖x‖ – ‖y‖) ≤ φ(x, y)≤ (‖x‖ + ‖y‖) for all x, y ∈ E.
() φ(x, y) = φ(x, z) + φ(z, y) + 〈x – z, Jz – Jy〉 for all x, y, z ∈ E.
() φ(x, y) = 〈x, Jx – Jy〉 + 〈y – x, Jy〉 ≤ ‖x‖‖Jx – Jy‖ + ‖y – x‖‖y‖ for all x, y ∈ E.
() If E is a reflexive, strictly convex and smooth Banach space, then, for all x, y ∈ E,

φ(x, y) =  if and only if x = y.

Remark . In (), it is sufficient to show that if φ(x, y) =  then x = y. In fact, from () we
have ‖x‖ = ‖y‖. This implies that 〈x, Jy〉 = ‖x‖ = ‖Jy‖. From the definition of J , we have
Jx = Jy. Therefore, we have x = y. For more details, see [].

Let C be a nonempty closed and convex subset of E, and let T be a mapping from C
into itself. We denote by F(T) be the set of fixed points of T . A point p in C is said to be
a weak asymptotic fixed point of T [] if C contains a sequence {xn} which converges
weakly to p such that limn→∞(Txn –xn) = . The set of asymptotic fixed points of T will be
denoted by F̂(T). A mapping T from C into itself is called relatively nonexpansive [–]
if F̂(T) = F(T) and φ(p,Tx) ≤ φ(p,x) for all x ∈ C and p ∈ F(T). The asymptotic behavior
of relatively nonexpansive mappings was studied in [, ] and [].
A point p in C is said to be a strong asymptotic fixed point of T if C contains a se-

quence {xn} which converges strongly to p such that limn→∞(Txn – xn) = . The set of
strong asymptotic fixed points of T is denoted by F̃(T). A mapping T from C into it-
self is called relatively weak nonexpansive if F̃(T) = F(T) and φ(p,Tx) ≤ φ(p,x) for all
x ∈ C and p ∈ F(T). A mapping T is called hemi-relatively nonexpansive if F(T) �= ∅ and
φ(p,Tx) ≤ φ(p,x) for all x ∈ C and p ∈ F(T).

Remark . () It is obvious that a relatively nonexpansive mapping is a relatively weak
nonexpansive mapping (see []). In fact, for any mapping T : C → C, we have F(T) ⊂
F̃(T) ⊂ F̂(T). Therefore, if T is a relatively nonexpansive mapping, then F(T) = F̃(T) =
F̂(T).
() The class of hemi-relatively nonexpansive mappings is more general than the class

of relatively weak nonexpansive mappings.

The converse of Remark . is not true. In order to explain this better, we give the fol-
lowing example.

Example . ([]) Let E be any smooth Banach space, and let x �=  be any element of E.
We define a mapping T : E → E as follows:

Tx =

⎧⎨
⎩
(  +


n+ )x if x = (  +


n )x,

–x if x �= (  +

n )x

for n = , , , . . . . Then T is a hemi-relatively nonexpansive mapping but not a relatively
nonexpansive mapping.
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Remark . There are other examples of hemi-relatively nonexpansive mappings such as
the generalized projections (or projections) from a smooth, strictly convex and reflexive
Banach space, and others; see [].

A mapping T : C → C is said to be closed, if for any sequence {xn} ⊂ C with xn → x and
Txn → y, then Tx = y.
In , Kimura and Takahashi [] proposed the following hybrid iteration method

with a generalized projection for a family of relatively nonexpansive mappings {Tλ} in a
Banach space E:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ C, chosen arbitrarily,

C = C,

yn(λ) = J–(αnJxn + ( – αn)JTλxn) for all λ ∈ 	,

Cn+ = {z ∈ Cn : supλ∈	 φ(z, yn(λ))≤ φ(z,xn)},
xn+ =�Cn+x.

They proved that {xn} converges strongly to �Fx ∈ C, where F =
⋂

λ∈	 F(Tλ) is the set of
common fixed points of Tλ, and �K is the generalized projection of E onto a nonempty
closed convex subset K of E.
Recently, Zegeye and Shahzad [] introduced the following iterative scheme for finding

a common element of the solution set of a variational inequality problem and a fixed point
of a relatively weak nonexpansive mapping with γ -inverse strongly monotone mapping
satisfying ‖Ax‖ ≤ ‖Ax –Ap‖ for all x ∈ C and p ∈ VI(C,A) (see, e.g., []):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, chosen arbitrarily,

yn =�C(J–(Jxn – αnAxn)),

zn = Tyn,

H = {v ∈ C : φ(v, z) ≤ φ(v, y) ≤ φ(v,x)},
W = C,

Hn = {v ∈ Hn– ∩Wn– : φ(v, zn) ≤ φ(v, yn) ≤ φ(v,xn)},
Wn = {v ∈Hn– ∩Wn– : 〈xn – v, Jx – Jxn〉 ≥ },
xn+ =�Hn∩Wnx, n≥ .

On the other hand, Qin et al. [] proposed the following hybrid iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ E, chosen arbitrarily,

C = C,

x =�Cx,

yn = J–(αnJxn + ( – αn)JTxn),

un ∈ C such that f (un, y) + 
rn 〈y – un, Jun – Jyn〉 ≥ , ∀y ∈ C,

Cn+ = {z ∈ Cn : φ(z,un) ≤ φ(z,xn)},
xn+ =�Cn+x,

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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whereT : C → C is a closed hemi-relatively nonexpansivemapping. Under suitable condi-
tions, they proved that the sequence {xn} converges strongly to �F(T)∩EP(f )x, where EP(f )
is the solution of an equilibrium problem for a bifunction f : C ×C →R.
In this paper, we introduce a new hybrid projection iterative scheme that converges

strongly to a common element of the solution set of a generalized mixed equilibrium
problem, the solution set of a variational inequality problem, and the set of common fixed
points for a family of hemi-relatively nonexpansive mappings in a Banach space.

2 Preliminaries
Let E be a normed linear space with dimE ≥ . The modulus of smoothness of E is the
function ρE : [,∞) → [,∞) defined by

ρE(τ ) := sup

{‖x + y‖ + ‖x – y‖


–  : ‖x‖ = ,‖y‖ = τ

}
.

The space E is said to be smooth if ρE(τ ) > , ∀τ >  and E is called uniformly smooth if and
only if limt→

ρE(t)
t = . The modulus of convexity of E is the function δE : (, ] → [, ]

defined by

δE(ε) := inf

{
 –

‖x + y‖


: ‖x‖ = ‖y‖ = , ε = ‖x – y‖
}
.

E is called uniformly convex if and only if δE(ε) >  for every ε ∈ (, ]. Let p > . Then E is
said to be p-uniformly convex if there exists a constant c >  such that δ(ε) ≥ c · εp for all
ε ∈ [, ]. Observe that every p-uniformly convex space is uniformly convex.
It is well known (see, for example, []) that

Lp(lp) or Wp
m is

⎧⎨
⎩
p-uniformly convex if p≥ ;

-uniformly convex if  < p ≤ .

In the following, we shall need the following results.

Lemma . ([]) Let E be a -uniformly convex and smooth Banach space. Then, for all
x, y ∈ E, we have

‖x – y‖ ≤ 
c

‖Jx – Jy‖,

where J is the normalized duality mapping of E, and 
c ( < c≤ ) is the -uniformly convex

constant of E.

Lemma . ([, ]) Let E be a real smooth, strictly convex and reflexive Banach space,
and let C be a nonempty closed convex subset of E. Then the following conclusions hold:

(i) φ(y,�Cx) + φ(�Cx,x)≤ φ(y,x), ∀x ∈ E, y ∈ C.
(ii) Suppose x ∈ E and z ∈ C. Then

z =�Cx ⇔ 〈z – y, Jx – Jz〉 ≥ , ∀y ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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Lemma . ([]) Let E be a strictly convex and smooth Banach space, C be a nonempty
closed and convex subset of E and T : C → C be a hemi-relatively nonexpansive mapping.
Then F(T) is a closed convex subset of C.

Lemma . ([]) Let E be a real smooth and uniformly convex Banach space, and let
{xn}, {yn} be two sequences of E. If limn→∞ φ(xn, yn) =  and either {xn} or {yn} is bounded,
then limn→∞ ‖xn – yn‖ = .

Lemma . ([]) Let E be a real smooth Banach space and A : E → E∗ be a maximal
monotone mapping. Then A–() is a closed and convex subset of E.

We denote the normal cone for C at a point v ∈ C by NC(v), that is,

NC(v) :=
{
x∗ ∈ E∗ :

〈
v – y,x∗〉 ≥ ,∀y ∈ C

}
.

Lemma . ([]) Let C be a nonempty closed convex subset of a Banach space E, and let
A be a monotone and hemicontinuous mapping of C into E∗ with C =D(A). Let T ⊂ E×E∗

be a mapping defined as follows:

Tv :=

⎧⎨
⎩
Av +NC(v), v ∈ C,

∅, v /∈ C.

Then T is maximal monotone and T–() = VI(C,A).

Remark . It is well known that the monotone and hemicontinuous mapping A with
D(A) = E is maximal (see, e.g., []). Note that Lemma . is for the monotone and hemi-
continuous mapping.

Remark . Let C be a nonempty closed convex subset of a Banach space E, and let A be
a monotone and hemicontinuous mapping from C into E∗ with C =D(A). Then

VI(C,A) =
{
u ∈ C : 〈v – u,Av〉 ≥  for all v ∈ C

}
.

It is obvious that the set VI(C,A) is a closed convex subset of C and the set A– = VI(E,A)
is a closed convex subset of E (see []).

We make use of the function V : E × E∗ →R defined by

V
(
x,x∗) = ‖x‖ – 

〈
x,x∗〉 + ∥∥x∗∥∥

for all x ∈ E and x∗ ∈ E∗, which was studied by Alber []. That is,

V
(
x,x∗) = φ

(
x, J–x∗)

for all x ∈ E and x∗ ∈ E∗. We know the following lemma.

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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Lemma . ([]) Let E be a reflexive, strictly convex and smooth Banach space with E∗

as its dual. Then

V
(
x,x∗) + 

〈
J–x∗ – x, y∗〉 ≤ V

(
x,x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma . ([]) Let C be a closed subset of a smooth, strictly convex and reflexive Banach
space E. Let B : C → E∗ be a continuous and monotone mapping, ψ : C → R be a lower
semicontinuous and convex function, and θ be a bifunction from C × C to R satisfying
(E)-(E). Then, for r >  and x ∈ E, there exists u ∈ C such that

θ (u, y) + 〈Bu, y – u〉 +ψ(y) –ψ(u) +

r
〈y – u, Ju – Jx〉 ≥ , ∀y ∈ C.

Define a mapping Tr : E → C by

Tr(x) =
{
u ∈ C : θ (u, y) + 〈Bu, y – u〉 +ψ(y) –ψ(u)

+

r
〈y – u, Ju – Jx〉 ≥ ,∀y ∈ C

}
(.)

for all x ∈ E. Then the following conclusions hold:
(i) Tr is single-valued;
(ii) Tr is a firmly nonexpansive type mapping [], i.e., for all x, y ∈ E,

〈Trx – Try, JTrx – JTry〉 ≤ 〈Trx – Try, Jx – Jy〉;

(iii) F(Tr) =GMEP = F̂(Tr);
(iv) GMEP is a closed and convex subset of C;
(v) φ(p,Trz) + φ(Trz, z) ≤ φ(p, z), ∀p ∈ F(Tr), x ∈ E.

Remark . ([]) The mapping Tr : E → C defined by (.) is a relatively nonexpansive
mapping. Thus, it is a hemi-relatively nonexpansive mapping.

3 An iterative scheme for a family of hemi-relatively nonexpansive mappings
In this section, we introduce a new hybrid iterative scheme for a common element of the
solution set of problem (.), the solution set of problem (.) for an inverse stronglymono-
tonemapping and the set of common fixed points of a family of hemi-relatively nonexpan-
sive mappings.

Theorem . Let E be a real uniformly smooth and -uniformly convex Banach space
and C be a nonempty, closed and convex subset of E. Let A : C → E∗ be a γ -inverse strongly
monotone mapping and B : C → E∗ be a continuous and monotone mapping. Let ψ : C →
R be a lower semicontinuous and convex function and θ be a bifunction from C × C to
R satisfying (E)-(E). Let {Tλ : λ ∈ 	} be a family of closed hemi-relatively nonexpansive
mappings of C into itself having

� =F ∩VI(C,A)∩GMEP �= ∅,

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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whereF =
⋂

λ∈	 F(Tλ) is the set of common fixed points of {Tλ}.Assume that ‖Ax‖ ≤ ‖Ax–
Ap‖ for all x ∈ C and p ∈ VI(C,A). Suppose that  < a < μn < b = cγ

 ,where c is the constant
in Lemma .. Let {rn} ⊂ [c∗, +∞) for some c∗ > . Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, chosen arbitrarily,

yn =�CJ–(Jxn –μnAxn),

zn,λ = J–(αnJxn + ( – αn)JTλyn),

un,λ = Trn ,λzn,λ,

H,λ = {v ∈ C : supλ∈	 φ(v,u,λ)

≤ αφ(v,x) + ( – α)φ(v, y)≤ φ(v,x)},
Hn,λ = {v ∈Hn–,λ ∩Wn–,λ : supλ∈	 φ(v,un,λ)

≤ αnφ(v,xn) + ( – αn)φ(v, yn) ≤ φ(v,xn)},
W,λ = C,

Wn,λ = {v ∈Hn–,λ ∩Wn–,λ : 〈xn – v, Jx – Jxn〉 ≥ },
xn+ =�Hn,λ∩Wn,λx, n≥ ,λ ∈ 	,

(.)

where J is the normalized duality mapping, and {αn} is a sequence in [, ] satisfying
lim infn→∞(–αn) > .Then {xn} converges to��x,where�� is the generalized projection
of E onto �.

Proof Step . We prove that Hn,λ and Wn,λ both are closed and convex subsets of C and
� ⊂ Hn,λ ∩ Wn,λ with n ≥ , λ ∈ 	. In fact, it is obvious that Wn,λ is closed and convex,
and Hn,λ is closed for each n≥ , λ ∈ 	. Since

φ(v,un,λ) ≤ αnφ(v,xn) + ( – αn)φ(v, yn)

⇔ 
〈
v,αnJxn + ( – αn)Jyn – Jun,λ

〉 ≤ ( – αn)‖yn‖ – ‖un,λ‖ + αn‖xn‖

and

αnφ(v,xn) + ( – αn)φ(v, yn) ≤ φ(v,xn)

⇔ φ(v, yn) ≤ φ(v,xn),

Hn,λ is convex for each n≥ , λ ∈ 	. Hence Hn,λ ∩Wn,λ is closed and convex for all n ≥ ,
λ ∈ 	.
Step . For any given p ∈ �, from (v) of Lemma . and that Tλ is hemi-relatively non-

expansive, we have

φ(p,u,λ) = φ(p,Tr,λz,λ)

≤ φ(p, z,λ) = φ
(
p, J–

(
αJx + ( – α)JTλy

))
= ‖p‖ – 

〈
p,αJx + ( – α)JTλy

〉
+

∥∥αJx + ( – α)JTλy
∥∥

≤ ‖p‖ – α〈p, Jx〉 – ( – α)〈p, JTλy〉

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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+ α‖x‖ + ( – α)‖Tλy‖

= αφ(p,x) + ( – α)φ(p,Tλy)

≤ αφ(p,x) + ( – α)φ(p, y) (.)

for each λ ∈ 	. From Lemma ., Lemma ., and the assumption of A, we obtain

φ(p, y) = φ
(
p,�CJ–(Jx –μAx)

)
≤ φ

(
p, J–(Jx –μAx)

)
= V (p, Jx –μAx)

≤ V (p, Jx –μAx +μAx)

– 
〈
J–(Jx –μAx) – p,μAx

〉
= V (p, Jx) – μ

〈
J–(Jx –μAx) – J–(Jx),Ax

〉
– μ〈x – p,Ax〉

≤ V (p, Jx) – μ
〈
J–(Jx –μAx) – J–(Jx),Ax

〉
– μ〈x – p,Ax –Ap〉 – μ〈x – p,Ap〉

≤ φ(p,x) +
μ


c

‖Ax‖ – μγ ‖Ax –Ap‖

≤ φ(p,x) + μ

(
μ

c
– γ

)
‖Ax –Ap‖

≤ φ(p,x). (.)

From (.) and (.),

φ(p,u,λ) ≤ αφ(p,x) + ( – α)φ(p, y)≤ φ(p,x) (.)

for each λ ∈ 	. Thus

sup
λ∈	

φ(p,u,λ) ≤ αφ(p,x) + ( – α)φ(p, y) ≤ φ(p,x).

Therefore, p ∈H,λ and p ∈H,λ ∩W,λ. Suppose that� ⊂Hn–,λ ∩Wn–,λ. Then, themeth-
ods in (.) and (.) imply that

φ(p,un,λ) ≤ αnφ(p,xn) + ( – αn)φ(p, yn) ≤ φ(p,xn), ∀λ ∈ 	,

which implies that p ∈Hn,λ. Since xn =�Hn–,λ∩Wn–,λx, it follows from Lemma . that

〈xn – z, Jx – Jxn〉 ≥ , ∀z ∈Hn–,λ ∩Wn–,λ.

It implies that 〈xn – p, Jx – Jxn〉 ≥ . Hence p ∈ Wn,λ. Therefore, � ⊂ Hn,λ ∩ Wn,λ. Then,
by induction on n, � ⊂Hn,λ ∩Wn,λ for all n≥ , λ ∈ 	. From Lemma . and Lemma .,
we know that VI(C,A) is closed and convex set. Therefore, � is closed and convex. The
sequence {xn} generated by (.) is well defined.

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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Step . We prove that {xn} is a Cauchy sequence. Let p ∈ �. From the definition of Hn,λ,
Wn,λ and Lemma ., we have xn =�Hn–,λ∩Wn–,λx and

φ(p,xn) + φ(xn,x) ≤ φ(p,x).

Thus {xn} is bounded. Moreover, since

xn =�Hn–,λ∩Wn–,λx, xn+ =�Hn,λ∩Wn,λx ∈Hn,λ ∩Wn,λ,

we have

φ(xn+,xn) + φ(xn,x)≤ φ(xn+,x),

which implies that {φ(xn,x)} is nondecreasing. It follows that the limit of {φ(xn,x)} exists.
By the construction Hn,λ ∩Wn,λ, one has that

Hm,λ ∩Wm,λ ⊂Hm–,λ ∩Wm–,λ,

xm =�Hm,λ∩Wm,λx ∈ Hn,λ ∩Wn,λ

for any positive integer m ≥ n. From Lemma ., we have

φ(xm,xn) = φ(xm,�Hn–,λ∩Wn–,λx)

≤ φ(xm,x) – φ(�Hn,λ∩Wn,λx,x)

= φ(xm,x) – φ(xn,x). (.)

Letting m,n→ ∞ in (.), we have

φ(xm,xn) → .

Thus, Lemma . implies that

lim
m,n→∞‖xm – xn‖ = .

This implies that {xn} is a Cauchy sequence.
Step . Now, we prove that limn→∞ ‖yn – Tλyn‖ =  for each λ ∈ 	 and q ∈ F =⋂
λ∈	 F(Tλ). Since xn+ ∈Hn,λ, we obtain

φ(xn+,un,λ) ≤ φ(xn+,xn)

for all λ ∈ 	 and

φ(xn+, yn) ≤ φ(xn+,xn).

By (.) and Lemma ., we have

lim
n→∞‖xn+ – un,λ‖ = lim

n→∞‖xn+ – yn‖ = , ∀λ ∈ 	.

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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Hence,

lim
n→∞‖xn – un,λ‖ = lim

n→∞‖xn – yn‖ = lim
n→∞‖un,λ – yn‖ =  (.)

for all λ ∈ 	. By the methods in (.) and (.), we have

φ(p,un,λ) ≤ φ(p, zn,λ) ≤ φ(p,xn) (.)

for all n ≥ , λ ∈ 	. Since J is uniformly continuous on the bounded sets, it follows from
Lemma .(v), (.) and (.) that for any given p ∈ �,

φ(un,λ, zn,λ) = φ(Trn ,λzn,λ, zn,λ)

≤ φ(p, zn,λ) – φ(p,Trn ,λzn,λ)

≤ φ(p,xn) – φ(p,un,λ)

= ‖xn‖ – ‖un,λ‖ – 〈p, Jxn – Jun,λ〉
≤ (‖xn‖ – ‖un,λ‖

)(‖xn‖ + ‖un,λ‖
)
+ ‖p‖‖Jxn – Jun,λ‖

→ , as n→ ∞

for all λ ∈ 	. From Lemma .,

lim
n→∞‖un,λ – zn,λ‖ = . (.)

Thus limn→∞ ‖zn,λ – xn‖ =  for each λ ∈ 	. Since J is uniformly continuous on bounded
sets, we obtain

( – αn)‖Jxn – JTλyn‖ =
∥∥αnJxn + ( – αn)JTλyn – Jxn

∥∥
= ‖Jzn,λ – Jxn‖
→ 

as n → ∞. Since lim infn→∞( – αn) >  and J– is uniformly continuous on bounded sets,
we obtain

lim
n→∞‖xn – Tλyn‖ =  (.)

for all λ ∈ 	. It follows from (.) and (.) that

‖yn – Tλyn‖ ≤ ‖yn – xn‖ + ‖xn – Tλyn‖ → , as n→ ∞ (.)

for all λ ∈ 	. Since {xn} is a Cauchy sequence, there exists a point q ∈ C such that
limn→∞ xn = q. It follows from (.) that yn → q. Since Tλ is closed, from (.) we get
q ∈F =

⋂
λ∈	 F(Tλ).

Step . Now, we show that q ∈ VI(C,A)∩GMEP. Let S ⊂ E×E∗ be amapping as follows:

Sv =

⎧⎨
⎩
Av +NC(v), v ∈ C,

∅, v /∈ C.

http://www.journalofinequalitiesandapplications.com/content/2014/1/2
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By Lemma ., S is maximal monotone, and S–() = VI(C,A). Let (v,w) ∈ G(S) (graph of
S). Since w ∈ Sv = Av +NC(v), we have w –Av ∈NC(v). Moreover, yn ∈ C implies that

〈v – yn,w –Av〉 ≥ . (.)

On the other hand, from yn =�CJ–(Jxn –μnAxn) and Lemma ., we obtain that

〈
v – yn, Jyn – (Jxn –μnAxn)

〉 ≥ .

Hence,
〈
v – yn,

Jxn – Jyn
μn

–Axn
〉
≤ . (.)

From (.) and (.), we obtain

〈v – yn,w〉 ≥ 〈v – yn,Av〉

≥ 〈v – yn,Av〉 +
〈
v – yn,

Jxn – Jyn
μn

–Axn
〉

=
〈
v – yn,Av –Axn +

Jxn – Jyn
μn

〉

= 〈v – yn,Av –Ayn〉 + 〈v – yn,Ayn –Axn〉 +
〈
v – yn,

Jxn – Jyn
μn

〉

≥ –‖v – yn‖‖Ayn –Axn‖ – ‖v – yn‖
∥∥∥∥ Jxn – Jyn

μn

∥∥∥∥
≥ –


γ

‖v – yn‖‖yn – xn‖ – 
μn

‖v – yn‖‖Jxn – Jyn‖.

Since J is uniformly continuous on bounded sets, by (.) we have

lim
n→∞〈v – yn,w〉 = 〈v – q,w〉 ≥ .

Thus, since S is maximal monotone, we have q ∈ S–() and q ∈ VI(C,A). Next, we show
that q ∈GMEP = F(Tr,λ). Let

Hλ(un,λ, y) = θλ(un,λ, y) + 〈Bun,λ, y – un,λ〉 +ψ(y) –ψ(un,λ), ∀y ∈ C.

From (.) and (.), we obtain limn→∞ un,λ = q and limn→∞ zn,λ = q for all λ ∈ 	. Since J is
uniformly continuous, from (.) we have limn→∞ ‖Jun,λ – Jzn,λ‖ = . Therefore, it follows
from rn ∈ [c∗,∞) for some c∗ >  that limn→∞

‖Jun,λ–Jzn,λ‖
rn = . Since un,λ = Trn ,λzn,λ, we have

Hλ(un,λ, y) +

rn

〈y – un,λ, Jun,λ – Jzn,λ〉 ≥ , ∀y ∈ C,λ ∈ 	.

Combining the above inequality and (E), we get

‖y – un,λ‖ · ‖Jun,λ – Jzn,λ‖
rn

≥ 
rn

〈y – un,λ, Jun,λ – Jzn,λ〉 = –Hλ(un,λ, y)

≥Hλ(y,un,λ), ∀y ∈ C,λ ∈ 	.
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Taking the limit as n→ ∞ in the above inequality and by (E), we haveHλ(y,q) ≤  for all
y ∈ C, λ ∈ 	. For any t ∈ (, ) and y ∈ C, define

yt = ty + ( – t)q ∈ C.

Then Hλ(yt ,q) ≤ . From (E) and (E), we have

 = Hλ(yt , yt) =Hλ

(
yt , ty + ( – t)q

)
≤ tHλ(yt , y) + ( – t)Hλ(yt ,q)

≤ tHλ(yt , y),

i.e., Hλ(yt , y) ≥ , for all λ ∈ 	. Thus, from (E) and let t ↓ , we have Hλ(q, y) ≥  for all
y ∈ C, λ ∈ 	. This implies that q ∈GMEP. Therefore q ∈ �.
Step . Finally, we prove that q =��x. Since xn+ =�Hn,λ∩Wn,λx and by Lemma ., we

have

〈xn+ – z, Jx – Jxn+〉 ≥ , ∀z ∈Hn,λ ∩Wn,λ. (.)

Taking the limit in (.) and from � ⊂Hn,λ ∩Wn,λ for all n≥ , λ ∈ 	, we obtain

〈q – z, Jx – Jq〉 ≥ , ∀z ∈ �.

Therefore, from Lemma ., we have q =��x. �

Remark . An iterative scheme for finding a solution of the variational inequality prob-
lem for a mapping A that satisfies the following conditions in a -uniformly and uniformly
smooth Banach space E:
() A is inverse strongly monotone,
() VI(C,A) �= ∅,
() ‖Ax‖ ≤ ‖Ax –Au‖ for all x ∈ C and u ∈ VI(C,A).
If condition () holds, then we can prove a convergence theorem for variational inequal-

ity problems. To consider the general variational inequality problem for inverse strongly
monotone mappings, we have to assume condition () (see []).

For a practical case, we may apply this theorem to a finite number of mappings
{T,T, . . . ,Tm} as follows.

Corollary . Let E be a real uniformly smooth and -uniformly convex Banach space
and C be a nonempty, closed and convex subset of E. Let A : C → E∗ be a γ -inverse
strongly monotone mapping and B : C → E∗ be a continuous and monotone mapping. Let
ψ : C →R be a lower semicontinuous and convex function and θ be a bifunction fromC×C
toR satisfying (E)-(E). Let {T,T, . . . ,Tm} be a finite family of closed hemi-relatively non-
expansive mappings of C into itself having

� =F ∩VI(C,A)∩GMEP �= ∅,

where F =
⋂m

k= F(Tk) is the set of common fixed points. Assume that ‖Ax‖ ≤ ‖Ax – Ap‖
for all x ∈ C and p ∈ VI(C,A). Suppose that  < a < μn < b = cγ

 , where c is the constant in
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Lemma .. Let {rn} ⊂ [c∗, +∞) for some c∗ > . Let {xn} be the sequence generated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, chosen arbitrarily,

yn =�CJ–(Jxn –μnAxn),

zn,k = J–(αnJxn + ( – αn)JTkyn),

un,k = Trn ,kzn,k ,

H,k = {v ∈ C :maxk=,,...,m φ(v,u,k)

≤ αφ(v,x) + ( – α)φ(v, y) ≤ φ(v,x)},
Hn,k = {v ∈ Hn–,k ∩Wn–,k :maxk=,,...,m φ(v,un,k)

≤ αnφ(v,xn) + ( – αn)φ(v, yn) ≤ φ(v,xn)},
W,k = C,

Wn,k = {v ∈Wn–,k ∩Hn–,k : 〈xn – v, Jx – Jxn〉 ≥ },
xn+ =�Hn,k∩Wn,k x, n≥ ,k = , , . . . ,m,

where J is the normalized duality mapping, and {αn} is a sequence in [, ] satisfying
lim infn→∞(–αn) > .Then {xn} converges to��x,where�� is the generalized projection
of E onto �.

If E =H is the Hilbert space, then J = J– = I is the identity mapping on H . Then Theo-
rem . reduces to the following corollary.

Corollary . Let H be a real Hilbert space and C be a nonempty, closed and convex subset
of H . Let A : C → H be a continuous and monotone mapping. Let ψ : C → R be a lower
semicontinuous and convex function and θ be a bifunction from C×C toR satisfying (E)-
(E). Let {Tλ : C → C : λ ∈ 	} be a family of closed hemi-relatively nonexpansive mappings
with

� =F ∩VI(C,A)∩GMEP �= ∅,

whereF =
⋂

λ∈	 F(Tλ) is the set of common fixed points of {Tλ}.Assume that ‖Ax‖ ≤ ‖Ax–
Ap‖ for all x ∈ C and p ∈ VI(C,A). Suppose that  < a < μn < b = cγ

 ,where c is the constant
in Lemma .. Let {rn} ⊂ [c∗, +∞) for some c∗ > . Let {xn} be the sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C, chosen arbitrarily,

yn = PC(xn –μnAxn),

zn,λ = αnxn + ( – αn)Tλyn,

un,λ = Trn ,λzn,λ,

H,λ = {v ∈ C : supλ∈	 ‖v – u,λ‖
≤ α‖v – x‖ + ( – α)‖v – y‖ ≤ ‖v – x‖},

Hn,λ = {v ∈Hn–,λ ∩Wn–,λ : supλ∈	 ‖v – un,λ‖
≤ αn‖v – xn‖ + ( – αn)‖v – yn‖ ≤ ‖v – xn‖},

W,λ = C,

Wn,λ = {v ∈Wn–,λ ∩Hn–,λ : 〈xn – v, Jx – Jxn〉 ≥ },
xn+ = PHn,λ∩Wn,λx, n≥ ,λ ∈ 	,

http://www.journalofinequalitiesandapplications.com/content/2014/1/2


Kim et al. Journal of Inequalities and Applications 2014, 2014:2 Page 16 of 17
http://www.journalofinequalitiesandapplications.com/content/2014/1/2

where {αn} is a sequence in [, ] satisfying lim infn→∞( – αn) > . Then {xn} converges to
P�x, where P� is the metric projection of H onto �.
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